![]() |
MIEPPFName:
![]()
![]() The Mielke's beta-kappa distribution can be generalized with location and scale parameters (u and beta, respectively) using the formula
![]()
<SUBSET/EXCEPT/FOR qualification> where <p> is a number, parameter, or variable in the range [0,1]; <k> is a number, parameter, or variable that specifies the first shape parameter; <theta> is a number, parameter, or variable that specifies the second shape parameter; <u> is a number, parameter, or variable that specifies the location parameter; <beta> is a number, parameter, or variable that specifies the scale parameter; <y> is a variable or a parameter (depending on what <x> is) where the computed Mielke's beta-kappa ppf value is stored; and where the <SUBSET/EXCEPT/FOR qualification> is optional. The <u> and <beta> parameters are optional.
LET X2 = MIEPPF(P1,K,THETA)
Johnson, Kotz, and Balakrishnan (1994), "Continuous Univariate Distributions: Volume 2", 2nd. Ed., John Wiley and Sons, p. 351.
2008/5: Renamed as MIEPPF (KAPPPF now refers to regular Kappa distribution) 2008/5: Beta parameter now properly treated as a scale parameter (was previously treated as a shape parameter) LET KP = DATA 0.5 1 1.5 2.0 LET T1 = 0.5 LET T2 = 1 LET T3 = 1.5 LET T4 = 2 . MULTIPLOT 2 2 MULTIPLOT CORNER COORDINATES 0 0 95 95 MULTIPLOT SCALE FACTOR 2 TITLE CASE ASIS TITLE OFFSET 2 X3LABEL LINE COLOR BLACK BLUE RED GREEN . LOOP FOR LL = 1 1 4 LET K = KP(LL) TITLE K = ^K, Theta = 0.5, 1, 1.5, 2 PLOT MIEPPF(P,K,T1) FOR P = 0.01 0.01 0.80 AND PLOT MIEPPF(P,K,T2) FOR P = 0.01 0.01 0.97 AND PLOT MIEPPF(P,K,T3) FOR P = 0.01 0.01 0.99 AND PLOT MIEPPF(P,K,T4) FOR P = 0.01 0.01 0.99 END OF LOOP END OF MULTIPLOT . JUSTIFICATION CENTER MOVE 50 97 TEXT Mielke's Beta-Kappa PPF Functions ![]()
Date created: 1/26/2009 |