|
MIECDFName:
.
The Mielke's beta-kappa distribution can be generalized
with location and scale parameters (u and
<SUBSET/EXCEPT/FOR qualification> where <x> is a number, parameter, or variable; <k> is a number, parameter, or variable that specifies the first shape parameter; <theta> is a number, parameter, or variable that specifies the second shape parameter; <u> is a number, parameter, or variable that specifies the location parameter; <beta> is a number, parameter, or variable that specifies the scale parameter; <y> is a variable or a parameter (depending on what <x> is) where the computed Mielke's beta-kappa cdf value is stored; and where the <SUBSET/EXCEPT/FOR qualification> is optional. The <u> and <beta> parameters are optional.
LET X2 = MIECDF(X1,K,THETA)
Johnson, Kotz, and Balakrishnan (1994), "Continuous Univariate Distributions: Volume 2", 2nd. Ed., John Wiley and Sons, p. 351.
2008/5: Renamed as MIECDF (KAPPDF now refers to regular Kappa distribution) 2008/5: Beta parameter now properly treated as a scale parameter (was previously treated as a shape parameter)
LET KP = DATA 0.5 1 1.5 2.0
LET T1 = 0.5
LET T2 = 1
LET T3 = 1.5
LET T4 = 2
.
MULTIPLOT 2 2
MULTIPLOT CORNER COORDINATES 0 0 95 95
MULTIPLOT SCALE FACTOR 2
TITLE CASE ASIS
TITLE OFFSET 2
X3LABEL
LINE COLOR BLACK BLUE RED GREEN
.
LOOP FOR LL = 1 1 4
LET K = KP(LL)
TITLE K = ^K, Theta = 0.5, 1, 1.5, 2
PLOT MIECDF(X,K,T1) FOR X = 0.01 0.01 5 AND
PLOT MIECDF(X,K,T2) FOR X = 0.01 0.01 5 AND
PLOT MIECDF(X,K,T3) FOR X = 0.01 0.01 5 AND
PLOT MIECDF(X,K,T4) FOR X = 0.01 0.01 5
END OF LOOP
END OF MULTIPLOT
.
JUSTIFICATION CENTER
MOVE 50 97
TEXT Mielke's Beta-Kappa CDF Functions
Date created: 1/26/2009 |