|
BU8PDFName:
with r denoting the shape parameter. This distribution can be generalized with location and scale parameters in the usual way using the relation
<SUBSET/EXCEPT/FOR qualification> where <x> is a number, parameter, or variable; <y> is a variable or a parameter (depending on what <x> is) where the computed Burr type 8 pdf value is stored; <r> is a positive number, parameter, or variable that specifies the shape parameter; <loc> is a number, parameter, or variable that specifies the location parameter; <scale> is a positive number, parameter, or variable that specifies the scale parameter; and where the <SUBSET/EXCEPT/FOR qualification> is optional. If <loc> and <scale> are omitted, they default to 0 and 1, respectively.
LET Y = BU8PDF(X,0.5,0,5) PLOT BU8PDF(X,2,0,3) FOR X = -3 0.01 3
LET Y = BURR TYPE 2 RANDOM NUMBERS FOR I = 1 1 N BURR TYPE 8 PROBABILITY PLOT Y BURR TYPE 8 PROBABILITY PLOT Y2 X2 BURR TYPE 8 PROBABILITY PLOT Y3 XLOW XHIGH BURR TYPE 8 KOLMOGOROV SMIRNOV GOODNESS OF FIT Y BURR TYPE 8 CHI-SQUARE GOODNESS OF FIT Y2 X2 BURR TYPE 8 CHI-SQUARE GOODNESS OF FIT Y3 XLOW XHIGH The following commands can be used to estimate the r shape parameter for the Burr type 8 distribution:
LET R2 = <value> BURR TYPE 8 PPCC PLOT Y BURR TYPE 8 PPCC PLOT Y2 X2 BURR TYPE 8 PPCC PLOT Y3 XLOW XHIGH BURR TYPE 8 KS PLOT Y BURR TYPE 8 KS PLOT Y2 X2 BURR TYPE 8 KS PLOT Y3 XLOW XHIGH The default values for R1 and R2 are 0.5 and 10. The probability plot can then be used to estimate the location and scale (location = PPA0, scale = PPA1). The BOOTSTRAP DISTRIBUTION command can be used to find uncertainty intervals for the parameter estimates based on the ppcc plot and ks plot.
Johnson, Kotz, and Balakrishnan (1994), "Contiunuous Univariate Distributions--Volume 1", Second Edition, Wiley, pp. 53-54. Devroye (1986), "Non-Uniform Random Variate Generation", Springer-Verlang, pp. 476-477.
LABEL CASE ASIS TITLE CASE ASIS TITLE OFFSET 2 . MULTIPLOT 2 2 MULTIPLOT CORNER COORDINATES 0 0 100 95 MULTIPLOT SCALE FACTOR 2 . LET R = 0.5 TITLE R = ^r PLOT BU8PDF(X,R) FOR X = -3 0.01 3 . LET R = 1 TITLE R = ^r PLOT BU8PDF(X,R) FOR X = -3 0.01 3 . LET R = 2 TITLE R = ^r PLOT BU8PDF(X,R) FOR X = -3 0.01 3 . LET R = 5 TITLE R = ^r PLOT BU8PDF(X,R) FOR X = -3 0.01 3 . END OF MULTIPLOT . JUSTIFICATION CENTER MOVE 50 97 TEXT Burr Type 8 Probability Density Functions Program 2: let r = 2.1 let rsav = r . let y = burr type 8 random numbers for i = 1 1 200 let y = 10*y let amax = maximum y let amin = minimum y . burr type 8 ppcc plot y let rtemp = shape - 2 let r1 = max(rtemp,0.05) let r2 = shape + 2 y1label Correlation Coefficient x1label R burr type 8 ppcc plot y let r = shape justification center move 50 6 text Rhat = ^r (R = ^rsav) move 50 2 text Maximum PPCC = ^maxppcc . char x line bl burr type 8 prob plot y move 50 6 text Location = ^ppa0, Scale = ^ppa1 char bl line so . relative hist y limits freeze pre-erase off plot bu7pdf(x,r,ppa0,ppa1) for x = amin 0.01 amax limits pre-erase on . let ksloc = ppa0 let ksscale = ppa1 burr type 8 kolmogorov smirnov goodness of fit y
Date created: 11/27/2007 |