![]() |
BU6PDFName:
![]() with r and k denoting the shape parameters. This distribution can be generalized with location and scale parameters in the usual way using the relation
![]()
<SUBSET/EXCEPT/FOR qualification> where <x> is a number, parameter, or variable; <y> is a variable or a parameter (depending on what <x> is) where the computed Burr type 6 pdf value is stored; <r> is a positive number, parameter, or variable that specifies the first shape parameter; <k> is a positive number, parameter, or variable that specifies the second shape parameter; <loc> is a number, parameter, or variable that specifies the location parameter; <scale> is a positive number, parameter, or variable that specifies the scale parameter; and where the <SUBSET/EXCEPT/FOR qualification> is optional. If <loc> and <scale> are omitted, they default to 0 and 1, respectively.
LET Y = BU6PDF(X,0.5,2.2,0,5) PLOT BU6PDF(X,2,1.8) FOR X = -5 0.01 5
LET K = <value> LET Y = BURR TYPE 6 RANDOM NUMBERS FOR I = 1 1 N BURR TYPE 6 PROBABILITY PLOT Y BURR TYPE 6 PROBABILITY PLOT Y2 X2 BURR TYPE 6 PROBABILITY PLOT Y3 XLOW XHIGH BURR TYPE 6 KOLMOGOROV SMIRNOV GOODNESS OF FIT Y BURR TYPE 6 CHI-SQUARE GOODNESS OF FIT Y2 X2 BURR TYPE 6 CHI-SQUARE GOODNESS OF FIT Y3 XLOW XHIGH The following commands can be used to estimate the r and k shape parameters for the Burr type 6 distribution:
LET R2 = <value> LET K1 = <value> LET K2 = <value> BURR TYPE 6 PPCC PLOT Y BURR TYPE 6 PPCC PLOT Y2 X2 BURR TYPE 6 PPCC PLOT Y3 XLOW XHIGH BURR TYPE 6 KS PLOT Y BURR TYPE 6 KS PLOT Y2 X2 BURR TYPE 6 KS PLOT Y3 XLOW XHIGH The default values for R1 and R2 are 0.5 and 10 and the default values for K1 and K2 are 0.5 and 10.. The probability plot can then be used to estimate the location and scale (location = PPA0, scale = PPA1). The BOOTSTRAP DISTRIBUTION command can be used to find uncertainty intervals for the parameter estimates based on the ppcc plot and ks plot.
Johnson, Kotz, and Balakrishnan (1994), "Contiunuous Univariate Distributions--Volume 1", Second Edition, Wiley, pp. 53-54. Devroye (1986), "Non-Uniform Random Variate Generation", Springer-Verlang, pp. 476-477.
LABEL CASE ASIS TITLE CASE ASIS TITLE OFFSET 2 . MULTIPLOT 4 4 MULTIPLOT CORNER COORDINATES 0 0 100 95 MULTIPLOT SCALE FACTOR 4 . LET RVAL = DATA 0.5 1 2 5 LET KVAL = DATA 0.5 1 2 5 . LOOP FOR IROW = 1 1 4 LOOP FOR ICOL = 1 1 4 LET R = RVAL(IROW) LET K = KVAL(ICOL) TITLE R = ^r, K = ^k PLOT BU6PDF(X,R,K) FOR X = -3 0.01 3 END OF LOOP END OF LOOP . END OF MULTIPLOT . JUSTIFICATION CENTER MOVE 50 97 TEXT Burr Type 6 Probability Density Functions ![]() Program 2: let r = 2.1 let k = 1.3 let rsav = r let ksav = k . let y = burr type 6 random numbers for i = 1 1 200 let y = 10*y let amin = minimum y let amax = maximum y . y1label Correlation Coefficeint x1label K (Curves Represent Values of R) let r1 = 0.5 let r2 = 5 let k1 = 0.5 let k2 = 3 burr type 6 ppcc plot y let r = shape1 let k = shape2 justification center move 50 6 text Rhat = ^r (R = ^rsav), Khat = ^k (K = ^ksav) move 50 2 text Maximum PPCC = ^maxppcc . y1label Data x1label Theoretical char x line bl burr type 6 prob plot y move 50 6 text Location = ^ppa0, Scale = ^ppa1 char bl line so . let loc = ppa0 let scale = ppa1 . y1label Relative Frequency x1label relative hist y limits freeze pre-erase off line color blue plot bu6pdf(x,r,k,loc,scale) for x = amin .01 amax line color black limits pre-erase on . let ksloc = loc let ksscale = scale burr type 6 kolmogorov smirnov goodness of fit y ![]()
Date created: 12/17/2007 |