|
BU2PDFName:
with r denoting the shape parameter. This distribution can be generalized with location and scale parameters in the usual way using the relation
<SUBSET/EXCEPT/FOR qualification> where <x> is a number, parameter, or variable; <y> is a variable or a parameter (depending on what <x> is) where the computed Burr type 2 pdf value is stored; <r> is a positive number, parameter, or variable that specifies the shape parameter; <loc> is a number, parameter, or variable that specifies the location parameter; <scale> is a positive number, parameter, or variable that specifies the scale parameter; and where the <SUBSET/EXCEPT/FOR qualification> is optional. If <loc> and <scale> are omitted, they default to 0 and 1, respectively.
LET Y = BU2PDF(X,0.5,0,5) PLOT BU2PDF(X,2,0,3) FOR X = 0 0.01 5
LET Y = BURR TYPE 2 RANDOM NUMBERS FOR I = 1 1 N BURR TYPE 2 PROBABILITY PLOT Y BURR TYPE 2 PROBABILITY PLOT Y2 X2 BURR TYPE 2 PROBABILITY PLOT Y3 XLOW XHIGH BURR TYPE 2 KOLMOGOROV SMIRNOV GOODNESS OF FIT Y BURR TYPE 2 CHI-SQUARE GOODNESS OF FIT Y2 X2 BURR TYPE 2 CHI-SQUARE GOODNESS OF FIT Y3 XLOW XHIGH The following commands can be used to estimate the r shape parameter for the Burr type 2 distribution:
LET R2 = <value> BURR TYPE 2 PPCC PLOT Y BURR TYPE 2 PPCC PLOT Y2 X2 BURR TYPE 2 PPCC PLOT Y3 XLOW XHIGH BURR TYPE 2 KS PLOT Y BURR TYPE 2 KS PLOT Y2 X2 BURR TYPE 2 KS PLOT Y3 XLOW XHIGH The default values for R1 and R2 are 0.5 and 10. The probability plot can then be used to estimate the location and scale (location = PPA0, scale = PPA1). The BOOTSTRAP DISTRIBUTION command can be used to find uncertainty intervals for the parameter estimates based on the ppcc plot and ks plot.
Johnson, Kotz, and Balakrishnan (1994), "Contiunuous Univariate Distributions--Volume 1", Second Edition, Wiley, pp. 53-54. Devroye (1986), "Non-Uniform Random Variate Generation", Springer-Verlang, pp. 476-477.
LABEL CASE ASIS
TITLE CASE ASIS
TITLE OFFSET 2
.
MULTIPLOT 2 2
MULTIPLOT CORNER COORDINATES 0 0 100 95
MULTIPLOT SCALE FACTOR 2
.
LET R = 0.5
TITLE R = ^r
PLOT BU2PDF(X,R) FOR X = 0.01 0.01 5
.
LET R = 1
TITLE R = ^r
PLOT BU2PDF(X,R) FOR X = 0.01 0.01 5
.
LET R = 2
TITLE R = ^r
PLOT BU2PDF(X,R) FOR X = 0.01 0.01 5
.
LET R = 5
TITLE R = ^r
PLOT BU2PDF(X,R) FOR X = 0.01 0.01 5
.
END OF MULTIPLOT
.
JUSTIFICATION CENTER
MOVE 50 97
TEXT Burr Type 2 Probability Density Functions
Program 2:
let r = 2.1
let rsav = r
.
let y = burr type 2 random numbers for i = 1 1 200
let y = 10*y
let amax = maximum y
.
burr type 2 ppcc plot y
let rtemp = shape - 2
let r1 = max(rtemp,0.05)
let r2 = shape + 2
y1label Correlation Coefficient
x1label R
burr type 2 ppcc plot y
let r = shape
justification center
move 50 6
text Rhat = ^r (R = ^rsav)
move 50 2
text Maximum PPCC = ^maxppcc
.
char x
line bl
burr type 2 prob plot y1
move 50 6
text Location = ^ppa0, Scale = ^ppa1
char bl
line so
.
relative hist y
limits freeze
pre-erase off
plot b10pdf(x,r,ppa0,ppa1) for x = 0.01 .01 amax
limits
pre-erase on
.
let ksloc = ppa0
let ksscale = ppa1
burr type 2 kolmogorov smirnov goodness of fit y
Date created: 11/27/2007 |