|
MEDIAN CONFIDENCE LIMITSName:
Standard confidence intervals are based on the mean and variance. These are the optimal estimators if the data are in fact from a Gaussian population. However, the mean lacks both resistance and robustness of efficiency. The median is less affected by outliers (i.e., resistance) than the mean. However, the median is not particularly robust with regards to efficiency. Dataplot generates confidence intervals for the median using the following two methods:
where <y> is the response variable, and where the <SUBSET/EXCEPT/FOR qualification> is optional.
<SUBSET/EXCEPT/FOR qualification> where <y> is the response variable, and where the <SUBSET/EXCEPT/FOR qualification> is optional.
LET P100 = 0.25
Only the method based on the Maritz-Jarrett standard error is supported for quantiles other than the median.
where
\( \hat{\sigma}_{hd} \) = the bootstrap estimate of the Herrell-Davis quantile standard error
\( \hat{c} \)
= 0.5064*N**(-0.25) + 1.96 for N >= 11 and 0.3 <= q <= 0.7
This can be coded in the following Dataplot macro: SET QUANTILE METHOD HERRELL DAVIS LET P100 = 0.5 LET THETAHAT = QUANTILE Y BOOTSTRAP QUANTILE STANDARD ERROR PLOT Y LET SIGMAHAT = B50 LET N = SIZE Y IF N < 11 QUIT END OF IF LET C = 0.5064*N**(-0.25) + 1.96 LET IQFLAG = 1 IF P100 <= 0.19 IF N > 41 LET C = 36.2*(1/N) + 1.31 END OF IF ELSEIF P100 <= 0.29 IF N <= 21 LET C = -6.23*(1/N) + 5.01 END OF IF ELSE IF P100 >= 0.81 IF N > 41 LET C = 36.2*(1/N) + 1.31 END OF IF ELSE IF P100 >= 0.71 IF N <= 21 LET C = -6.23*(1/N) + 5.01 END OF IF ENDIF LET LOWLIMIT = THETAHAT - C*B50 LET UPPLIMIT = THETAHAT + C*B50Default:
T. P. Hettmansperger and S. J. Sheather (1986), "Confidence Interval Based on Interpolated Order Statistics," Statistical Probability Letters 4, pp. 75-79.
LET Y1 = NORMAL RANDOM NUMBERS FOR I = 1 1 100 LET Y2 = LOGISTIC RANDOM NUMBERS FOR I = 1 1 100 LET Y3 = CAUCHY RANDOM NUMBERS FOR I = 1 1 100 LET Y4 = DOUBLE EXPONENTIAL RANDOM NUMBERS FOR I = 1 1 100 SET WRITE DECIMALS 4 MEDIAN CONFIDENCE LIMITS Y1 TO Y4Dataplot generates the following output: Confidence Limits for the Median (Based on Maritz-Jarrett Standard Error for Quantiles) Response Variable: Y1 Summary Statistics: Number of Observations: 100 Sample Minimum: -3.4580 Sample Maximum: 2.0059 Sample Median: 0.0015 Sample Quantile Standard Error: 0.1119 ----------------------------------------------------------------- Confidence Z Z-Value X Lower Upper Value (%) Value StdErr Limit Limit ----------------------------------------------------------------- 50.000 0.674 0.0755 -0.0739 0.0770 75.000 1.150 0.1287 -0.1272 0.1302 90.000 1.645 0.1840 -0.1825 0.1856 95.000 1.960 0.2193 -0.2177 0.2208 99.000 2.576 0.2882 -0.2866 0.2897 99.900 3.291 0.3682 -0.3666 0.3697 99.990 3.891 0.4353 -0.4337 0.4368 99.999 4.417 0.4942 -0.4927 0.4957 Hettmansperger-Sheater Median Confidence Limits ----------------------------------- Confidence Lower Upper Value (%) Limit Limit ----------------------------------- 50.000 -0.064 0.0410 75.000 -0.102 0.1053 90.000 -0.132 0.2318 95.000 -0.187 0.2382 99.000 -0.352 0.2681 99.900 -0.383 0.3789 99.990 -0.446 0.4064 99.999 -0.467 0.4250 Confidence Limits for the Median (Based on Maritz-Jarrett Standard Error for Quantiles) Response Variable: Y2 Summary Statistics: Number of Observations: 100 Sample Minimum: -5.0249 Sample Maximum: 5.3818 Sample Median: 0.1507 Sample Quantile Standard Error: 0.2162 ----------------------------------------------------------------- Confidence Z Z-Value X Lower Upper Value (%) Value StdErr Limit Limit ----------------------------------------------------------------- 50.000 0.674 0.1458 0.0048 0.2965 75.000 1.150 0.2487 -0.0981 0.3994 90.000 1.645 0.3556 -0.2050 0.5063 95.000 1.960 0.4238 -0.2731 0.5744 99.000 2.576 0.5569 -0.4063 0.7076 99.900 3.291 0.7115 -0.5608 0.8621 99.990 3.891 0.8412 -0.6905 0.9919 99.999 4.417 0.9551 -0.8044 1.1057 Hettmansperger-Sheater Median Confidence Limits ----------------------------------- Confidence Lower Upper Value (%) Limit Limit ----------------------------------- 50.000 -0.032 0.3550 75.000 -0.048 0.5086 90.000 -0.069 0.5268 95.000 -0.105 0.5454 99.000 -0.139 0.5622 99.900 -0.543 0.7184 99.990 -0.779 0.8084 99.999 -1.021 0.9848 Confidence Limits for the Median (Based on Maritz-Jarrett Standard Error for Quantiles) Response Variable: Y3 Summary Statistics: Number of Observations: 100 Sample Minimum: -27.0517 Sample Maximum: 8.6177 Sample Median: 0.0212 Sample Quantile Standard Error: 0.1866 ----------------------------------------------------------------- Confidence Z Z-Value X Lower Upper Value (%) Value StdErr Limit Limit ----------------------------------------------------------------- 50.000 0.674 0.1258 -0.1046 0.1470 75.000 1.150 0.2146 -0.1934 0.2358 90.000 1.645 0.3069 -0.2856 0.3281 95.000 1.960 0.3656 -0.3444 0.3869 99.000 2.576 0.4805 -0.4593 0.5018 99.900 3.291 0.6139 -0.5927 0.6351 99.990 3.891 0.7258 -0.7046 0.7470 99.999 4.417 0.8241 -0.8028 0.8453 Hettmansperger-Sheater Median Confidence Limits ----------------------------------- Confidence Lower Upper Value (%) Limit Limit ----------------------------------- 50.000 -0.086 0.1580 75.000 -0.158 0.2898 90.000 -0.225 0.3791 95.000 -0.333 0.4389 99.000 -0.380 0.4515 99.900 -0.412 0.6212 99.990 -0.485 0.8956 99.999 -0.683 0.9482 Confidence Limits for the Median (Based on Maritz-Jarrett Standard Error for Quantiles) Response Variable: Y4 Summary Statistics: Number of Observations: 100 Sample Minimum: -9.6504 Sample Maximum: 3.0304 Sample Median: 0.0233 Sample Quantile Standard Error: 0.0698 ----------------------------------------------------------------- Confidence Z Z-Value X Lower Upper Value (%) Value StdErr Limit Limit ----------------------------------------------------------------- 50.000 0.674 0.0471 -0.0238 0.0703 75.000 1.150 0.0803 -0.0570 0.1036 90.000 1.645 0.1148 -0.0915 0.1381 95.000 1.960 0.1368 -0.1135 0.1601 99.000 2.576 0.1798 -0.1565 0.2030 99.900 3.291 0.2296 -0.2064 0.2529 99.990 3.891 0.2715 -0.2482 0.2948 99.999 4.417 0.3083 -0.2850 0.3315 Hettmansperger-Sheater Median Confidence Limits ----------------------------------- Confidence Lower Upper Value (%) Limit Limit ----------------------------------- 50.000 -0.032 0.0478 75.000 -0.063 0.0691 90.000 -0.083 0.1003 95.000 -0.137 0.1559 99.000 -0.213 0.2189 99.900 -0.312 0.3046 99.990 -0.389 0.4273 99.999 -0.479 0.4552
Date created: 02/26/2003 |
Last updated: 12/11/2023 Please email comments on this WWW page to alan.heckert@nist.gov. |