|
MEDIAN CONFIDENCE LIMITSName:
Standard confidence intervals are based on the mean and variance. These are the optimal estimators if the data are in fact from a Gaussian population. However, the mean lacks both resistance and robustness of efficiency. The median is less affected by outliers (i.e., resistance) than the mean. However, the median is not particularly robust with regards to efficiency. Dataplot generates confidence intervals for the median using the following two methods:
where <y> is the response variable, and where the <SUBSET/EXCEPT/FOR qualification> is optional.
<SUBSET/EXCEPT/FOR qualification> where <y> is the response variable, and where the <SUBSET/EXCEPT/FOR qualification> is optional.
LET P100 = 0.25
Only the method based on the Maritz-Jarrett standard error is supported for quantiles other than the median.
where
\( \hat{\sigma}_{hd} \) = the bootstrap estimate of the Herrell-Davis quantile standard error
\( \hat{c} \)
= 0.5064*N**(-0.25) + 1.96 for N >= 11 and 0.3 <= q <= 0.7
This can be coded in the following Dataplot macro:
SET QUANTILE METHOD HERRELL DAVIS
LET P100 = 0.5
LET THETAHAT = QUANTILE Y
BOOTSTRAP QUANTILE STANDARD ERROR PLOT Y
LET SIGMAHAT = B50
LET N = SIZE Y
IF N < 11
QUIT
END OF IF
LET C = 0.5064*N**(-0.25) + 1.96
LET IQFLAG = 1
IF P100 <= 0.19
IF N > 41
LET C = 36.2*(1/N) + 1.31
END OF IF
ELSEIF P100 <= 0.29
IF N <= 21
LET C = -6.23*(1/N) + 5.01
END OF IF
ELSE IF P100 >= 0.81
IF N > 41
LET C = 36.2*(1/N) + 1.31
END OF IF
ELSE IF P100 >= 0.71
IF N <= 21
LET C = -6.23*(1/N) + 5.01
END OF IF
ENDIF
LET LOWLIMIT = THETAHAT - C*B50
LET UPPLIMIT = THETAHAT + C*B50
Default:
T. P. Hettmansperger and S. J. Sheather (1986), "Confidence Interval Based on Interpolated Order Statistics," Statistical Probability Letters 4, pp. 75-79.
LET Y1 = NORMAL RANDOM NUMBERS FOR I = 1 1 100
LET Y2 = LOGISTIC RANDOM NUMBERS FOR I = 1 1 100
LET Y3 = CAUCHY RANDOM NUMBERS FOR I = 1 1 100
LET Y4 = DOUBLE EXPONENTIAL RANDOM NUMBERS FOR I = 1 1 100
SET WRITE DECIMALS 4
MEDIAN CONFIDENCE LIMITS Y1 TO Y4
Dataplot generates the following output:
Confidence Limits for the Median
(Based on Maritz-Jarrett Standard Error for Quantiles)
Response Variable: Y1
Summary Statistics:
Number of Observations: 100
Sample Minimum: -3.4580
Sample Maximum: 2.0059
Sample Median: 0.0015
Sample Quantile Standard Error: 0.1119
-----------------------------------------------------------------
Confidence Z Z-Value X Lower Upper
Value (%) Value StdErr Limit Limit
-----------------------------------------------------------------
50.000 0.674 0.0755 -0.0739 0.0770
75.000 1.150 0.1287 -0.1272 0.1302
90.000 1.645 0.1840 -0.1825 0.1856
95.000 1.960 0.2193 -0.2177 0.2208
99.000 2.576 0.2882 -0.2866 0.2897
99.900 3.291 0.3682 -0.3666 0.3697
99.990 3.891 0.4353 -0.4337 0.4368
99.999 4.417 0.4942 -0.4927 0.4957
Hettmansperger-Sheater Median Confidence Limits
-----------------------------------
Confidence Lower Upper
Value (%) Limit Limit
-----------------------------------
50.000 -0.064 0.0410
75.000 -0.102 0.1053
90.000 -0.132 0.2318
95.000 -0.187 0.2382
99.000 -0.352 0.2681
99.900 -0.383 0.3789
99.990 -0.446 0.4064
99.999 -0.467 0.4250
Confidence Limits for the Median
(Based on Maritz-Jarrett Standard Error for Quantiles)
Response Variable: Y2
Summary Statistics:
Number of Observations: 100
Sample Minimum: -5.0249
Sample Maximum: 5.3818
Sample Median: 0.1507
Sample Quantile Standard Error: 0.2162
-----------------------------------------------------------------
Confidence Z Z-Value X Lower Upper
Value (%) Value StdErr Limit Limit
-----------------------------------------------------------------
50.000 0.674 0.1458 0.0048 0.2965
75.000 1.150 0.2487 -0.0981 0.3994
90.000 1.645 0.3556 -0.2050 0.5063
95.000 1.960 0.4238 -0.2731 0.5744
99.000 2.576 0.5569 -0.4063 0.7076
99.900 3.291 0.7115 -0.5608 0.8621
99.990 3.891 0.8412 -0.6905 0.9919
99.999 4.417 0.9551 -0.8044 1.1057
Hettmansperger-Sheater Median Confidence Limits
-----------------------------------
Confidence Lower Upper
Value (%) Limit Limit
-----------------------------------
50.000 -0.032 0.3550
75.000 -0.048 0.5086
90.000 -0.069 0.5268
95.000 -0.105 0.5454
99.000 -0.139 0.5622
99.900 -0.543 0.7184
99.990 -0.779 0.8084
99.999 -1.021 0.9848
Confidence Limits for the Median
(Based on Maritz-Jarrett Standard Error for Quantiles)
Response Variable: Y3
Summary Statistics:
Number of Observations: 100
Sample Minimum: -27.0517
Sample Maximum: 8.6177
Sample Median: 0.0212
Sample Quantile Standard Error: 0.1866
-----------------------------------------------------------------
Confidence Z Z-Value X Lower Upper
Value (%) Value StdErr Limit Limit
-----------------------------------------------------------------
50.000 0.674 0.1258 -0.1046 0.1470
75.000 1.150 0.2146 -0.1934 0.2358
90.000 1.645 0.3069 -0.2856 0.3281
95.000 1.960 0.3656 -0.3444 0.3869
99.000 2.576 0.4805 -0.4593 0.5018
99.900 3.291 0.6139 -0.5927 0.6351
99.990 3.891 0.7258 -0.7046 0.7470
99.999 4.417 0.8241 -0.8028 0.8453
Hettmansperger-Sheater Median Confidence Limits
-----------------------------------
Confidence Lower Upper
Value (%) Limit Limit
-----------------------------------
50.000 -0.086 0.1580
75.000 -0.158 0.2898
90.000 -0.225 0.3791
95.000 -0.333 0.4389
99.000 -0.380 0.4515
99.900 -0.412 0.6212
99.990 -0.485 0.8956
99.999 -0.683 0.9482
Confidence Limits for the Median
(Based on Maritz-Jarrett Standard Error for Quantiles)
Response Variable: Y4
Summary Statistics:
Number of Observations: 100
Sample Minimum: -9.6504
Sample Maximum: 3.0304
Sample Median: 0.0233
Sample Quantile Standard Error: 0.0698
-----------------------------------------------------------------
Confidence Z Z-Value X Lower Upper
Value (%) Value StdErr Limit Limit
-----------------------------------------------------------------
50.000 0.674 0.0471 -0.0238 0.0703
75.000 1.150 0.0803 -0.0570 0.1036
90.000 1.645 0.1148 -0.0915 0.1381
95.000 1.960 0.1368 -0.1135 0.1601
99.000 2.576 0.1798 -0.1565 0.2030
99.900 3.291 0.2296 -0.2064 0.2529
99.990 3.891 0.2715 -0.2482 0.2948
99.999 4.417 0.3083 -0.2850 0.3315
Hettmansperger-Sheater Median Confidence Limits
-----------------------------------
Confidence Lower Upper
Value (%) Limit Limit
-----------------------------------
50.000 -0.032 0.0478
75.000 -0.063 0.0691
90.000 -0.083 0.1003
95.000 -0.137 0.1559
99.000 -0.213 0.2189
99.900 -0.312 0.3046
99.990 -0.389 0.4273
99.999 -0.479 0.4552
Date created: 02/26/2003 |
Last updated: 12/11/2023 Please email comments on this WWW page to [email protected]. | ||||||||||||||||||