SED navigation bar go to SED home page go to Dataplot home page go to NIST home page SED Home Page SED Staff SED Projects SED Products and Publications Search SED Pages
Dataplot Vol 1 Vol 2

CONFIDENCE LIMITS

Name:
    CONFIDENCE LIMITS
Type:
    Analysis Command
Purpose:
    Generates a confidence interval for the mean.
Description:
    The confidence interval for the mean is:

      \( \bar{x} \pm \frac{t_{(\alpha/2,n-1)} s} {\sqrt{n}} \)

    with \( \bar{x} \), s, n, and t denoting the sample mean, the sample standard deviation, the sample size, and the percent point function of the t distribution, respectively.

    This confidence interval is based on the assumption that the underlying data is approximately normally distributed. However, this confidence interval is fairly robust against non-normality unless the sample size is small or the departure from normality is severe (in particular, the data is not too skewed).

    For lognormally distributed data, the modified Cox method can be used to obtain a confidence interval for the mean. In this case, let Yi denote the log of Xi where X represents the original data. The confidence interval for the mean is then

      \( \bar{Y} + \frac{s^2}{2} \pm t(1-\alpha/2,n-1) \sqrt{\frac{s^2}{n} + \frac{s^4}{2(n-1)}} \)

    with \( \bar{Y} \) and \( s \) denoting the mean and standard deviation of Y (i.e., the logged data) and t denotes the t percent point function.

    For confidence intervals, computing standard confidence limits for the logged data and then back transforming to obtain confidence limits for the original data does not generate accurate intervals. For sufficiently large samples (based on simulations, Olsson suggests sample sizes larger than 200), using the standard normal based confidence interval should give reasonable results. Using the BOOTSTRAP MEAN PLOT command is an alternative method to obtain the confidence interval for data that is not approximately normally distributed.

Syntax 1:
    <LOWER/UPPER> <LOGNORMAL> CONFIDENCE LIMITS <y>
                            <SUBSET/EXCEPT/FOR qualification>
    where <y> is the response variable;
                <LOGNORMAL> is optional;
    and where the <SUBSET/EXCEPT/FOR qualification> is optional.

    If LOWER is specified, a one-sided lower confidence limit is returned. If UPPER is specified, a one-sided upper confidence limit is returned. If neither is specified, a two-sided limit is returned.

    If LOGNORMAL is given, the confidence interval based on the lognormal distribution will be used.

    This syntax supports matrix arguments for the response variable.

Syntax 2:
    MULTIPLE <LOWER/UPPER> <LOGNORMAL> CONFIDENCE LIMITS
                            <y1> ... <yk>             <SUBSET/EXCEPT/FOR qualification>
    where <y1> .... <yk> is a list of 1 to 30 response variables;
                <LOGNORMAL> is optional;
    and where the <SUBSET/EXCEPT/FOR qualification> is optional.

    This syntax will generate a confidence interval for each of the response variables. The word MULTIPLOT is optional. That is,

      MULTIPLE CONFIDENCE LIMITS Y1 Y2 Y3

    is equivalent to

      CONFIDENCE LIMITS Y1 Y2 Y3

    If LOWER is specified, a one-sided lower confidence limit is returned. If UPPER is specified, a one-sided upper confidence limit is returned. If neither is specified, a two-sided limit is returned.

    If LOGNORMAL is given, the confidence interval based on the lognormal distribution will be used.

    This syntax supports matrix arguments for the response variables.

Syntax 3:
    REPLICATED <LOWER/UPPER> <LOGNORMAL> CONFIDENCE LIMITS
                            <y> <x1> ... <xk>             <SUBSET/EXCEPT/FOR qualification>
    where <y> is the response variable;
                <x1> .... <xk> is a list of 1 to 6 group-id variables;
                <LOGNORMAL> is optional;
    and where the <SUBSET/EXCEPT/FOR qualification> is optional.

    This syntax performs a cross-tabulation of the <x1> ... <xk> and generates a confidence interval for each unique combination of the cross-tabulated values. For example, if X1 has 3 levels and X2 has 2 levels, six confidence intervals will be generated.

    If LOWER is specified, a one-sided lower confidence limit is returned. If UPPER is specified, a one-sided upper confidence limit is returned. If neither is specified, a two-sided limit is returned.

    If LOGNORMAL is given, the confidence interval based on the lognormal distribution will be used.

    This syntax does not support matrix arguments.

Examples:
    CONFIDENCE LIMITS Y1
    CONFIDENCE LIMITS Y1 SUBSET TAG > 2
    MULTIPLE CONFIDENCE LIMITS Y1 TO Y5
    REPLICATED CONFIDENCE LIMITS Y X
Note:
    A table of confidence intervals is printed for alpha levels of 50.0, 75.0, 90.0, 95.0, 99.0, 99.9, 99.99, and 99.999. The sample mean, sample standard deviation, and sample standard deviation of the mean are also printed. The t-value and t-value X standard deviation of the mean are printed in the table. These numbers can be used to construct the equivalent hypothesis test if desired (DATAPLOT does not currently provide a hypothesis test command).
Note:
    In addition to the CONFIDENCE INTERVALS command, the following commands can also be used:

      LET ALPHA = 0.05

      LET A = LOWER CONFIDENCE LIMIT Y
      LET A = UPPPER CONFIDENCE LIMIT Y
      LET A = ONE SIDED LOWER CONFIDENCE LIMIT Y
      LET A = ONE SIDED UPPER CONFIDENCE LIMIT Y

    The LET ALPHA = command is used to specify the significance level.

    In addition to the above LET command, built-in statistics are supported for about 20 different commands (enter HELP STATISTICS for details).

Note:
    Hypothesis tests for the mean can be performed using the t-test.
Default:
    None
Synonyms:
    None
Related Commands: Reference:
    Hahn and Meeker (1991), "Statistical Intervals: A Guide for Practitioners", Wiley, pp. 54-55.

    Olsson (2005), "Confidence Intervals for the Mean of a Log-Normal Distribution", Journal of Statistics Education, Vol. 13, No. 1.

Applications:
    Confirmatory Data Analysis
Implementation Date:
    Pre-1987
    2010/03: Support for MULTIPLE and REPLICATION options
    2010/03: Support for matrix options
    2017/07: Support for lognormal confidence limits
Program 1:
     
    SKIP 25
    READ ZARR13.DAT Y
    SET WRITE DECIMALS 5
    CONFIDENCE LIMITS Y
        
    The following output is generated.
                Confidence Limits for the Mean
                         (Two-Sided)
     
    Response Variable: Y
     
    Summary Statistics:
    Number of Observations:                             195
    Sample Mean:                                    9.26146
    Sample Standard Deviation:                      0.02278
    Sample Standard Deviation of the Mean:          0.00163
     
     
     
    -----------------------------------------------------------------
      Confidence       t      t-Value X          Lower          Upper
       Value (%)   Value       SD(Mean)          Limit          Limit
    -----------------------------------------------------------------
          50.000   0.675        0.00110        9.26035        9.26256
          75.000   1.153        0.00188        9.25957        9.26334
          90.000   1.652        0.00269        9.25876        9.26415
          95.000   1.972        0.00321        9.25824        9.26467
          99.000   2.601        0.00424        9.25721        9.26570
          99.900   3.341        0.00545        9.25600        9.26691
          99.990   3.973        0.00648        9.25497        9.26794
          99.999   4.536        0.00740        9.25405        9.26886
        
Program 2:
     
    SKIP 25
    READ GEAR.DAT Y X
    SET WRITE DECIMALS 5
    REPLICATED CONFIDENCE LIMITS Y X
        
    The following output is generated.
                Confidence Limits for the Mean
                         (Two-Sided)
     
    Response Variable: Y
    Factor Variable 1: X                            1.00000
     
    Summary Statistics:
    Number of Observations:                              10
    Sample Mean:                                    0.99800
    Sample Standard Deviation:                      0.00434
    Sample Standard Deviation of the Mean:          0.00137
     
     
     
    -----------------------------------------------------------------
      Confidence       t      t-Value X          Lower          Upper
       Value (%)   Value       SD(Mean)          Limit          Limit
    -----------------------------------------------------------------
          50.000   0.702        0.00096        0.99703        0.99896
          75.000   1.229        0.00169        0.99630        0.99969
          90.000   1.833        0.00251        0.99548        1.00051
          95.000   2.262        0.00310        0.99489        1.00110
          99.000   3.249        0.00446        0.99353        1.00246
          99.900   4.779        0.00656        0.99143        1.00456
          99.990   6.584        0.00904        0.98895        1.00704
          99.999   8.794        0.01208        0.98591        1.01008
     
     
                Confidence Limits for the Mean
                         (Two-Sided)
     
    Response Variable: Y
    Factor Variable 1: X                            2.00000
     
    Summary Statistics:
    Number of Observations:                              10
    Sample Mean:                                    0.99910
    Sample Standard Deviation:                      0.00521
    Sample Standard Deviation of the Mean:          0.00164
     
     
     
    -----------------------------------------------------------------
      Confidence       t      t-Value X          Lower          Upper
       Value (%)   Value       SD(Mean)          Limit          Limit
    -----------------------------------------------------------------
          50.000   0.702        0.00115        0.99794        1.00025
          75.000   1.229        0.00202        0.99707        1.00112
          90.000   1.833        0.00302        0.99607        1.00212
          95.000   2.262        0.00373        0.99536        1.00283
          99.000   3.249        0.00536        0.99373        1.00446
          99.900   4.779        0.00788        0.99121        1.00698
          99.990   6.584        0.01086        0.98823        1.00996
          99.999   8.794        0.01450        0.98459        1.01360
     
     
                Confidence Limits for the Mean
                         (Two-Sided)
     
    Response Variable: Y
    Factor Variable 1: X                            3.00000
     
    Summary Statistics:
    Number of Observations:                              10
    Sample Mean:                                    0.99540
    Sample Standard Deviation:                      0.00397
    Sample Standard Deviation of the Mean:          0.00125
     
     
     
    -----------------------------------------------------------------
      Confidence       t      t-Value X          Lower          Upper
       Value (%)   Value       SD(Mean)          Limit          Limit
    -----------------------------------------------------------------
          50.000   0.702        0.00088        0.99451        0.99628
          75.000   1.229        0.00154        0.99385        0.99694
          90.000   1.833        0.00230        0.99309        0.99770
          95.000   2.262        0.00284        0.99255        0.99824
          99.000   3.249        0.00408        0.99131        0.99948
          99.900   4.779        0.00601        0.98938        1.00141
          99.990   6.584        0.00828        0.98711        1.00368
          99.999   8.794        0.01106        0.98433        1.00646
     
     
                Confidence Limits for the Mean
                         (Two-Sided)
     
    Response Variable: Y
    Factor Variable 1: X                            4.00000
     
    Summary Statistics:
    Number of Observations:                              10
    Sample Mean:                                    0.99820
    Sample Standard Deviation:                      0.00385
    Sample Standard Deviation of the Mean:          0.00121
     
     
     
    -----------------------------------------------------------------
      Confidence       t      t-Value X          Lower          Upper
       Value (%)   Value       SD(Mean)          Limit          Limit
    -----------------------------------------------------------------
          50.000   0.702        0.00085        0.99734        0.99905
          75.000   1.229        0.00149        0.99670        0.99969
          90.000   1.833        0.00223        0.99596        1.00043
          95.000   2.262        0.00275        0.99544        1.00095
          99.000   3.249        0.00395        0.99424        1.00215
          99.900   4.779        0.00582        0.99237        1.00402
          99.990   6.584        0.00802        0.99017        1.00622
          99.999   8.794        0.01071        0.98748        1.00891
     
     
                Confidence Limits for the Mean
                         (Two-Sided)
     
    Response Variable: Y
    Factor Variable 1: X                            5.00000
     
    Summary Statistics:
    Number of Observations:                              10
    Sample Mean:                                    0.99190
    Sample Standard Deviation:                      0.00757
    Sample Standard Deviation of the Mean:          0.00239
     
     
     
    -----------------------------------------------------------------
      Confidence       t      t-Value X          Lower          Upper
       Value (%)   Value       SD(Mean)          Limit          Limit
    -----------------------------------------------------------------
          50.000   0.702        0.00168        0.99021        0.99358
          75.000   1.229        0.00294        0.98895        0.99484
          90.000   1.833        0.00439        0.98750        0.99629
          95.000   2.262        0.00542        0.98647        0.99732
          99.000   3.249        0.00778        0.98411        0.99968
          99.900   4.779        0.01145        0.98044        1.00335
          99.990   6.584        0.01578        0.97611        1.00768
          99.999   8.794        0.02107        0.97082        1.01297
     
     
                Confidence Limits for the Mean
                         (Two-Sided)
     
    Response Variable: Y
    Factor Variable 1: X                            6.00000
     
    Summary Statistics:
    Number of Observations:                              10
    Sample Mean:                                    0.99879
    Sample Standard Deviation:                      0.00988
    Sample Standard Deviation of the Mean:          0.00312
     
     
     
    -----------------------------------------------------------------
      Confidence       t      t-Value X          Lower          Upper
       Value (%)   Value       SD(Mean)          Limit          Limit
    -----------------------------------------------------------------
          50.000   0.702        0.00219        0.99660        1.00099
          75.000   1.229        0.00384        0.99495        1.00264
          90.000   1.833        0.00573        0.99306        1.00453
          95.000   2.262        0.00707        0.99172        1.00587
          99.000   3.249        0.01015        0.98864        1.00895
          99.900   4.779        0.01494        0.98385        1.01374
          99.990   6.584        0.02058        0.97821        1.01938
          99.999   8.794        0.02749        0.97130        1.02629
     
     
                Confidence Limits for the Mean
                         (Two-Sided)
     
    Response Variable: Y
    Factor Variable 1: X                            7.00000
     
    Summary Statistics:
    Number of Observations:                              10
    Sample Mean:                                    1.00150
    Sample Standard Deviation:                      0.00787
    Sample Standard Deviation of the Mean:          0.00249
     
     
     
    -----------------------------------------------------------------
      Confidence       t      t-Value X          Lower          Upper
       Value (%)   Value       SD(Mean)          Limit          Limit
    -----------------------------------------------------------------
          50.000   0.702        0.00175        0.99974        1.00325
          75.000   1.229        0.00306        0.99843        1.00456
          90.000   1.833        0.00456        0.99693        1.00606
          95.000   2.262        0.00563        0.99586        1.00713
          99.000   3.249        0.00809        0.99340        1.00959
          99.900   4.779        0.01190        0.98959        1.01340
          99.990   6.584        0.01640        0.98509        1.01790
          99.999   8.794        0.02190        0.97959        1.02340
     
     
                Confidence Limits for the Mean
                         (Two-Sided)
     
    Response Variable: Y
    Factor Variable 1: X                            8.00000
     
    Summary Statistics:
    Number of Observations:                              10
    Sample Mean:                                    1.00039
    Sample Standard Deviation:                      0.00362
    Sample Standard Deviation of the Mean:          0.00114
     
     
     
    -----------------------------------------------------------------
      Confidence       t      t-Value X          Lower          Upper
       Value (%)   Value       SD(Mean)          Limit          Limit
    -----------------------------------------------------------------
          50.000   0.702        0.00080        0.99959        1.00120
          75.000   1.229        0.00141        0.99898        1.00181
          90.000   1.833        0.00210        0.99829        1.00250
          95.000   2.262        0.00259        0.99780        1.00299
          99.000   3.249        0.00372        0.99667        1.00412
          99.900   4.779        0.00548        0.99491        1.00588
          99.990   6.584        0.00755        0.99284        1.00795
          99.999   8.794        0.01008        0.99031        1.01048
     
     
                Confidence Limits for the Mean
                         (Two-Sided)
     
    Response Variable: Y
    Factor Variable 1: X                            9.00000
     
    Summary Statistics:
    Number of Observations:                              10
    Sample Mean:                                    0.99829
    Sample Standard Deviation:                      0.00413
    Sample Standard Deviation of the Mean:          0.00130
     
     
     
    -----------------------------------------------------------------
      Confidence       t      t-Value X          Lower          Upper
       Value (%)   Value       SD(Mean)          Limit          Limit
    -----------------------------------------------------------------
          50.000   0.702        0.00091        0.99738        0.99921
          75.000   1.229        0.00160        0.99669        0.99990
          90.000   1.833        0.00239        0.99590        1.00069
          95.000   2.262        0.00296        0.99533        1.00126
          99.000   3.249        0.00425        0.99404        1.00255
          99.900   4.779        0.00625        0.99204        1.00455
          99.990   6.584        0.00861        0.98968        1.00691
          99.999   8.794        0.01150        0.98679        1.00980
     
     
                Confidence Limits for the Mean
                         (Two-Sided)
     
    Response Variable: Y
    Factor Variable 1: X                           10.00000
     
    Summary Statistics:
    Number of Observations:                              10
    Sample Mean:                                    0.99479
    Sample Standard Deviation:                      0.00532
    Sample Standard Deviation of the Mean:          0.00168
     
     
     
    -----------------------------------------------------------------
      Confidence       t      t-Value X          Lower          Upper
       Value (%)   Value       SD(Mean)          Limit          Limit
    -----------------------------------------------------------------
          50.000   0.702        0.00118        0.99361        0.99598
          75.000   1.229        0.00207        0.99272        0.99687
          90.000   1.833        0.00308        0.99171        0.99788
          95.000   2.262        0.00381        0.99098        0.99861
          99.000   3.249        0.00547        0.98932        1.00027
          99.900   4.779        0.00805        0.98674        1.00285
          99.990   6.584        0.01109        0.98370        1.00589
          99.999   8.794        0.01482        0.97997        1.00962
        
Program 1:
     
    SKIP 25
    READ LGN2.DAT Y
    SET WRITE DECIMALS 4
    LOGNORMAL CONFIDENCE LIMITS Y
        
    The following output is generated.
                Two-Sided Confidence Limits for the Mean
                   (Log-Normal, Modified Cox Method)
     
    Response Variable: Y
     
    Summary Statistics:
    Number of Observations:                  40
    Sample Mean (Raw Data):                  274.96250
    Sample Standard Deviation (Raw Data):    310.34271
    Sample Mean (Log Data):                  5.12720
    Correction Term (s*2/2)                  0.50439
    Sample Standard Deviation (Log Data):    1.00438
    Sample Standard Deviation of the Mean:   0.19562
     
     
     
    -----------------------------------------------------------------
      Confidence       t      t-Value X          Lower          Upper
       Value (%)   Value       SD(Mean)          Limit          Limit
    -----------------------------------------------------------------
          50.000   0.681        0.13318      244.30086      318.86400
          75.000   1.168        0.22843      222.10554      350.72852
          90.000   1.685        0.32959      200.73651      388.06468
          95.000   2.023        0.39567      187.90017      414.57519
          99.000   2.708        0.52971      164.32892      474.04163
          99.900   3.558        0.69603      139.15044      559.81675
          99.990   4.333        0.84756      119.58387      651.41519
          99.999   5.071        0.99202      103.49946      752.64886
        
Date created: 04/15/2013
Last updated: 12/04/2023

Please email comments on this WWW page to alan.heckert@nist.gov.