|
CONFIDENCE LIMITSName:
with \( \bar{x} \), s, n, and t denoting the sample mean, the sample standard deviation, the sample size, and the percent point function of the t distribution, respectively. This confidence interval is based on the assumption that the underlying data is approximately normally distributed. However, this confidence interval is fairly robust against non-normality unless the sample size is small or the departure from normality is severe (in particular, the data is not too skewed). For lognormally distributed data, the modified Cox method can be used to obtain a confidence interval for the mean. In this case, let Yi denote the log of Xi where X represents the original data. The confidence interval for the mean is then
with \( \bar{Y} \) and \( s \) denoting the mean and standard deviation of Y (i.e., the logged data) and t denotes the t percent point function. For confidence intervals, computing standard confidence limits for the logged data and then back transforming to obtain confidence limits for the original data does not generate accurate intervals. For sufficiently large samples (based on simulations, Olsson suggests sample sizes larger than 200), using the standard normal based confidence interval should give reasonable results. Using the BOOTSTRAP MEAN PLOT command is an alternative method to obtain the confidence interval for data that is not approximately normally distributed.
<SUBSET/EXCEPT/FOR qualification> where <y> is the response variable; <LOGNORMAL> is optional; and where the <SUBSET/EXCEPT/FOR qualification> is optional. If LOWER is specified, a one-sided lower confidence limit is returned. If UPPER is specified, a one-sided upper confidence limit is returned. If neither is specified, a two-sided limit is returned. If LOGNORMAL is given, the confidence interval based on the lognormal distribution will be used. This syntax supports matrix arguments for the response variable.
<y1> ... <yk> <SUBSET/EXCEPT/FOR qualification> where <y1> .... <yk> is a list of 1 to 30 response variables; <LOGNORMAL> is optional; and where the <SUBSET/EXCEPT/FOR qualification> is optional. This syntax will generate a confidence interval for each of the response variables. The word MULTIPLOT is optional. That is,
is equivalent to
If LOWER is specified, a one-sided lower confidence limit is returned. If UPPER is specified, a one-sided upper confidence limit is returned. If neither is specified, a two-sided limit is returned. If LOGNORMAL is given, the confidence interval based on the lognormal distribution will be used. This syntax supports matrix arguments for the response variables.
<y> <x1> ... <xk> <SUBSET/EXCEPT/FOR qualification> where <y> is the response variable; <x1> .... <xk> is a list of 1 to 6 group-id variables; <LOGNORMAL> is optional; and where the <SUBSET/EXCEPT/FOR qualification> is optional. This syntax performs a cross-tabulation of the <x1> ... <xk> and generates a confidence interval for each unique combination of the cross-tabulated values. For example, if X1 has 3 levels and X2 has 2 levels, six confidence intervals will be generated. If LOWER is specified, a one-sided lower confidence limit is returned. If UPPER is specified, a one-sided upper confidence limit is returned. If neither is specified, a two-sided limit is returned. If LOGNORMAL is given, the confidence interval based on the lognormal distribution will be used. This syntax does not support matrix arguments.
CONFIDENCE LIMITS Y1 SUBSET TAG > 2 MULTIPLE CONFIDENCE LIMITS Y1 TO Y5 REPLICATED CONFIDENCE LIMITS Y X
LET A = LOWER CONFIDENCE LIMIT Y The LET ALPHA = command is used to specify the significance level. In addition to the above LET command, built-in statistics are supported for about 20 different commands (enter HELP STATISTICS for details).
Olsson (2005), "Confidence Intervals for the Mean of a Log-Normal Distribution", Journal of Statistics Education, Vol. 13, No. 1.
2010/03: Support for MULTIPLE and REPLICATION options 2010/03: Support for matrix options 2017/07: Support for lognormal confidence limits
SKIP 25
READ ZARR13.DAT Y
SET WRITE DECIMALS 5
CONFIDENCE LIMITS Y
The following output is generated.
Confidence Limits for the Mean
(Two-Sided)
Response Variable: Y
Summary Statistics:
Number of Observations: 195
Sample Mean: 9.26146
Sample Standard Deviation: 0.02278
Sample Standard Deviation of the Mean: 0.00163
-----------------------------------------------------------------
Confidence t t-Value X Lower Upper
Value (%) Value SD(Mean) Limit Limit
-----------------------------------------------------------------
50.000 0.675 0.00110 9.26035 9.26256
75.000 1.153 0.00188 9.25957 9.26334
90.000 1.652 0.00269 9.25876 9.26415
95.000 1.972 0.00321 9.25824 9.26467
99.000 2.601 0.00424 9.25721 9.26570
99.900 3.341 0.00545 9.25600 9.26691
99.990 3.973 0.00648 9.25497 9.26794
99.999 4.536 0.00740 9.25405 9.26886
Program 2:
SKIP 25
READ GEAR.DAT Y X
SET WRITE DECIMALS 5
REPLICATED CONFIDENCE LIMITS Y X
The following output is generated.
Confidence Limits for the Mean
(Two-Sided)
Response Variable: Y
Factor Variable 1: X 1.00000
Summary Statistics:
Number of Observations: 10
Sample Mean: 0.99800
Sample Standard Deviation: 0.00434
Sample Standard Deviation of the Mean: 0.00137
-----------------------------------------------------------------
Confidence t t-Value X Lower Upper
Value (%) Value SD(Mean) Limit Limit
-----------------------------------------------------------------
50.000 0.702 0.00096 0.99703 0.99896
75.000 1.229 0.00169 0.99630 0.99969
90.000 1.833 0.00251 0.99548 1.00051
95.000 2.262 0.00310 0.99489 1.00110
99.000 3.249 0.00446 0.99353 1.00246
99.900 4.779 0.00656 0.99143 1.00456
99.990 6.584 0.00904 0.98895 1.00704
99.999 8.794 0.01208 0.98591 1.01008
Confidence Limits for the Mean
(Two-Sided)
Response Variable: Y
Factor Variable 1: X 2.00000
Summary Statistics:
Number of Observations: 10
Sample Mean: 0.99910
Sample Standard Deviation: 0.00521
Sample Standard Deviation of the Mean: 0.00164
-----------------------------------------------------------------
Confidence t t-Value X Lower Upper
Value (%) Value SD(Mean) Limit Limit
-----------------------------------------------------------------
50.000 0.702 0.00115 0.99794 1.00025
75.000 1.229 0.00202 0.99707 1.00112
90.000 1.833 0.00302 0.99607 1.00212
95.000 2.262 0.00373 0.99536 1.00283
99.000 3.249 0.00536 0.99373 1.00446
99.900 4.779 0.00788 0.99121 1.00698
99.990 6.584 0.01086 0.98823 1.00996
99.999 8.794 0.01450 0.98459 1.01360
Confidence Limits for the Mean
(Two-Sided)
Response Variable: Y
Factor Variable 1: X 3.00000
Summary Statistics:
Number of Observations: 10
Sample Mean: 0.99540
Sample Standard Deviation: 0.00397
Sample Standard Deviation of the Mean: 0.00125
-----------------------------------------------------------------
Confidence t t-Value X Lower Upper
Value (%) Value SD(Mean) Limit Limit
-----------------------------------------------------------------
50.000 0.702 0.00088 0.99451 0.99628
75.000 1.229 0.00154 0.99385 0.99694
90.000 1.833 0.00230 0.99309 0.99770
95.000 2.262 0.00284 0.99255 0.99824
99.000 3.249 0.00408 0.99131 0.99948
99.900 4.779 0.00601 0.98938 1.00141
99.990 6.584 0.00828 0.98711 1.00368
99.999 8.794 0.01106 0.98433 1.00646
Confidence Limits for the Mean
(Two-Sided)
Response Variable: Y
Factor Variable 1: X 4.00000
Summary Statistics:
Number of Observations: 10
Sample Mean: 0.99820
Sample Standard Deviation: 0.00385
Sample Standard Deviation of the Mean: 0.00121
-----------------------------------------------------------------
Confidence t t-Value X Lower Upper
Value (%) Value SD(Mean) Limit Limit
-----------------------------------------------------------------
50.000 0.702 0.00085 0.99734 0.99905
75.000 1.229 0.00149 0.99670 0.99969
90.000 1.833 0.00223 0.99596 1.00043
95.000 2.262 0.00275 0.99544 1.00095
99.000 3.249 0.00395 0.99424 1.00215
99.900 4.779 0.00582 0.99237 1.00402
99.990 6.584 0.00802 0.99017 1.00622
99.999 8.794 0.01071 0.98748 1.00891
Confidence Limits for the Mean
(Two-Sided)
Response Variable: Y
Factor Variable 1: X 5.00000
Summary Statistics:
Number of Observations: 10
Sample Mean: 0.99190
Sample Standard Deviation: 0.00757
Sample Standard Deviation of the Mean: 0.00239
-----------------------------------------------------------------
Confidence t t-Value X Lower Upper
Value (%) Value SD(Mean) Limit Limit
-----------------------------------------------------------------
50.000 0.702 0.00168 0.99021 0.99358
75.000 1.229 0.00294 0.98895 0.99484
90.000 1.833 0.00439 0.98750 0.99629
95.000 2.262 0.00542 0.98647 0.99732
99.000 3.249 0.00778 0.98411 0.99968
99.900 4.779 0.01145 0.98044 1.00335
99.990 6.584 0.01578 0.97611 1.00768
99.999 8.794 0.02107 0.97082 1.01297
Confidence Limits for the Mean
(Two-Sided)
Response Variable: Y
Factor Variable 1: X 6.00000
Summary Statistics:
Number of Observations: 10
Sample Mean: 0.99879
Sample Standard Deviation: 0.00988
Sample Standard Deviation of the Mean: 0.00312
-----------------------------------------------------------------
Confidence t t-Value X Lower Upper
Value (%) Value SD(Mean) Limit Limit
-----------------------------------------------------------------
50.000 0.702 0.00219 0.99660 1.00099
75.000 1.229 0.00384 0.99495 1.00264
90.000 1.833 0.00573 0.99306 1.00453
95.000 2.262 0.00707 0.99172 1.00587
99.000 3.249 0.01015 0.98864 1.00895
99.900 4.779 0.01494 0.98385 1.01374
99.990 6.584 0.02058 0.97821 1.01938
99.999 8.794 0.02749 0.97130 1.02629
Confidence Limits for the Mean
(Two-Sided)
Response Variable: Y
Factor Variable 1: X 7.00000
Summary Statistics:
Number of Observations: 10
Sample Mean: 1.00150
Sample Standard Deviation: 0.00787
Sample Standard Deviation of the Mean: 0.00249
-----------------------------------------------------------------
Confidence t t-Value X Lower Upper
Value (%) Value SD(Mean) Limit Limit
-----------------------------------------------------------------
50.000 0.702 0.00175 0.99974 1.00325
75.000 1.229 0.00306 0.99843 1.00456
90.000 1.833 0.00456 0.99693 1.00606
95.000 2.262 0.00563 0.99586 1.00713
99.000 3.249 0.00809 0.99340 1.00959
99.900 4.779 0.01190 0.98959 1.01340
99.990 6.584 0.01640 0.98509 1.01790
99.999 8.794 0.02190 0.97959 1.02340
Confidence Limits for the Mean
(Two-Sided)
Response Variable: Y
Factor Variable 1: X 8.00000
Summary Statistics:
Number of Observations: 10
Sample Mean: 1.00039
Sample Standard Deviation: 0.00362
Sample Standard Deviation of the Mean: 0.00114
-----------------------------------------------------------------
Confidence t t-Value X Lower Upper
Value (%) Value SD(Mean) Limit Limit
-----------------------------------------------------------------
50.000 0.702 0.00080 0.99959 1.00120
75.000 1.229 0.00141 0.99898 1.00181
90.000 1.833 0.00210 0.99829 1.00250
95.000 2.262 0.00259 0.99780 1.00299
99.000 3.249 0.00372 0.99667 1.00412
99.900 4.779 0.00548 0.99491 1.00588
99.990 6.584 0.00755 0.99284 1.00795
99.999 8.794 0.01008 0.99031 1.01048
Confidence Limits for the Mean
(Two-Sided)
Response Variable: Y
Factor Variable 1: X 9.00000
Summary Statistics:
Number of Observations: 10
Sample Mean: 0.99829
Sample Standard Deviation: 0.00413
Sample Standard Deviation of the Mean: 0.00130
-----------------------------------------------------------------
Confidence t t-Value X Lower Upper
Value (%) Value SD(Mean) Limit Limit
-----------------------------------------------------------------
50.000 0.702 0.00091 0.99738 0.99921
75.000 1.229 0.00160 0.99669 0.99990
90.000 1.833 0.00239 0.99590 1.00069
95.000 2.262 0.00296 0.99533 1.00126
99.000 3.249 0.00425 0.99404 1.00255
99.900 4.779 0.00625 0.99204 1.00455
99.990 6.584 0.00861 0.98968 1.00691
99.999 8.794 0.01150 0.98679 1.00980
Confidence Limits for the Mean
(Two-Sided)
Response Variable: Y
Factor Variable 1: X 10.00000
Summary Statistics:
Number of Observations: 10
Sample Mean: 0.99479
Sample Standard Deviation: 0.00532
Sample Standard Deviation of the Mean: 0.00168
-----------------------------------------------------------------
Confidence t t-Value X Lower Upper
Value (%) Value SD(Mean) Limit Limit
-----------------------------------------------------------------
50.000 0.702 0.00118 0.99361 0.99598
75.000 1.229 0.00207 0.99272 0.99687
90.000 1.833 0.00308 0.99171 0.99788
95.000 2.262 0.00381 0.99098 0.99861
99.000 3.249 0.00547 0.98932 1.00027
99.900 4.779 0.00805 0.98674 1.00285
99.990 6.584 0.01109 0.98370 1.00589
99.999 8.794 0.01482 0.97997 1.00962
Program 1:
SKIP 25
READ LGN2.DAT Y
SET WRITE DECIMALS 4
LOGNORMAL CONFIDENCE LIMITS Y
The following output is generated.
Two-Sided Confidence Limits for the Mean
(Log-Normal, Modified Cox Method)
Response Variable: Y
Summary Statistics:
Number of Observations: 40
Sample Mean (Raw Data): 274.96250
Sample Standard Deviation (Raw Data): 310.34271
Sample Mean (Log Data): 5.12720
Correction Term (s*2/2) 0.50439
Sample Standard Deviation (Log Data): 1.00438
Sample Standard Deviation of the Mean: 0.19562
-----------------------------------------------------------------
Confidence t t-Value X Lower Upper
Value (%) Value SD(Mean) Limit Limit
-----------------------------------------------------------------
50.000 0.681 0.13318 244.30086 318.86400
75.000 1.168 0.22843 222.10554 350.72852
90.000 1.685 0.32959 200.73651 388.06468
95.000 2.023 0.39567 187.90017 414.57519
99.000 2.708 0.52971 164.32892 474.04163
99.900 3.558 0.69603 139.15044 559.81675
99.990 4.333 0.84756 119.58387 651.41519
99.999 5.071 0.99202 103.49946 752.64886
Date created: 04/15/2013 |
Last updated: 12/04/2023 Please email comments on this WWW page to [email protected]. | ||||||||||||