Probability Distributions
The following commands operate on distributions:
For these commands, you may need to enter value of one or more
shape parameters and/or values for location and scale parameters.
For example,
LET GAMMA = 2.5
WEIBULL PROBABILITY PLOT Y
More specifically:
- For the RANDOM NUMBERS command, you need to specify the values
of any shape parameters. This command does not utilize location
or scale parameters. However, you can transform the random
numbers using the relation
For example,
LET GAMMA = 2.5
LET LOC = 10
LET SCALE = 5
LET Y = WEIBULL RANDOM NUMBERS FOR I = 1 1 N
LET Y = LOC + SCALE*Y
- For the PROBABILITY PLOT command, you need to specify the
values for any shape parameters. For example,
LET GAMMA = 2.5
WEIBULL PROBABILITY PLOT Y
You can optionally specify location and scale parameters with
the commands
LET PPLOC = <value>
LET PPSCALE = <value>
Note that the probability plot is invariant to location and
scale (i.e., the linearity of the probability plot does not
depend on the values of the location and scale parameters).
PPLOC and PPSCALE are typically used when a non-PPCC method
is used to estimate the location/scale parameters.
- For the PPCC PLOT, ANDERSON DARLING PLOT, KOLMOGOROV SMIRNOV PLOT
and CHI-SQUARE PLOT commands, you can optionally specify the
range for the shape parameter(s) (default ranges will be used if
they are not specified). For example,
LET GAMMA1 = 0.5
LET GAMMA2 = 5
WEIBULL PPCC PLOT Y
That is, you append a 1 (for the lower limit) and a 2 (for the
upper limit) to the shape parameter name.
For the ANDERSON DARLING, KOLMOGOROV SMIRNOV, and CHI-SQUARE
variants, you can optionally fix the values of the location/scale
parameters with the commands
LET KSLOC = <value>
LET KSSCALE = <value>
- For the GOODNESS OF FIT and the BOOTSTRAP/JACKNIFE PLOT commands,
you need to specify the values for any shape parameters.
In addition, you can specify the values for the location/scale
parameters with the commands (these will default to 0 and 1
if these commands are not given)
LET KSLOC = <value>
LET KSSCALE = <value>
Distributions that are bounded both above and below specify
the lower and upper limits (rather than the location/scale)
with the commands
LET A = <value>
LET B = <value>
Distributions that use A and B rather than KSLOC/KSSCALE will
be denoted by the phrase "bounded distribution" in the tables
below.
An example of using these commands:
LET GAMMA = 2.5
LET KSLOC = 5
LET KSSCALE = 10
WEIBULL ANDERSON DARLING GOODNESS OF FIT Y
BOOTSTRAP WEIBULL ANDERSON DARLING PLOT Y
The extreme value type 1 (Gumbel), extreme value type 2 (Frechet),
generalized Pareto, generalized extreme value and the Weibull
support "minimum" and "maximum" forms of the distribution. You
can specify the minimum form with either of the following commands
SET MINMAX 1
SET MINMAX MINIMUM
You can specify the maximum form with either of the following commands
SET MINMAX 2
SET MINMAX MAXIMUM
The default is the "minimum" for the Weibull and "maximum" for the
others.
This section documents the values you need to enter for the distributions
supported in Dataplot.
CONTINUOUS DISTRIBUTIONS:
Location/Scale Distributions:
- NORMAL
- UNIFORM - bounded distribution
- LOGISTIC
- DOUBLE EXPONENTIAL
- CAUCHY
- SEMI-CIRCULAR
- COSINE
- ANGLIT
- HYPERBOLIC SECANT
- HALF-NORMAL
- ARCSIN
- EXPONENTIAL
- EXTREME VALUE TYPE I (GUMBEL)
- HALF-CAUCHY
- SLASH
- RAYLEIGH
- MAXWELL
- LANDAU
One Shape Parameter Distributions - name of shape parameter(s) listed:
1. ALPHA:
|
ALPHA
|
2. ASYMMETRIC DOUBLE EXPONENTIAL:
|
K (or MU)
|
3. BRADFORD:
|
BETA
|
4. BURR TYPE 2:
|
R
|
5. BURR TYPE 7:
|
R
|
6. BURR TYPE 8:
|
R
|
7. BURR TYPE 10:
|
R
|
8. BURR TYPE 11:
|
R
|
9. CHI:
|
NU
|
10. CHI-SQUARED:
|
NU
|
11. DOUBLE GAMMA:
|
GAMMA
|
12. DOUBLE WEIBULL:
|
GAMMA
|
13. ERROR (SUBBOTIN):
|
ALPHA
|
14. EXPONENTIAL POWER:
|
BETA
|
15. EXTREME VALUE TYPE 2 (FRECHET):
|
GAMMA
|
16. FATIGUE LIFE:
|
GAMMA
|
17. FOLDED T:
|
NU
|
18. GAMMA:
|
GAMMA
|
19. GENERALIZED EXTREME VALUE:
|
GAMMA
|
20. GENERALIZED HALF LOGISTIC:
|
GAMMA
|
21. GENERALIZED LOGISTIC:
|
ALPHA
|
22. GENERALIZED LOGISTIC TYPE 2:
|
ALPHA
|
23. GENERALIZED LOGISTIC TYPE 3:
|
ALPHA
|
24. GENERALIZED LOGISTIC TYPE 5:
|
ALPHA
|
25. GENERALIZED PARETO:
|
GAMMA
|
26. GEOMETRIC EXTREME EXPONENTIAL:
|
GAMMA
|
27. INVERTED GAMMA:
|
GAMMA
|
28. INVERTED WEIBULL:
|
GAMMA
|
29. LOG DOUBLE EXPONENTIAL:
|
ALPHA
|
30. LOG GAMMA:
|
GAMMA
|
31. LOGISTIC-EXPONENTIAL:
|
BETA
|
32. LOG LOGISTIC:
|
DELTA
|
33. LOGNORMAL:
|
SIGMA
|
34. MCLEISH:
|
ALPHA
|
35. MUTH:
|
BETA
|
36. OGIVE:
|
N
|
37. PEARSON TYPE 3:
|
GAMMA
|
38. POWER FUNCTION:
|
C
|
39. POWER NORMAL:
|
P, bounded distribution
|
40. RECIPROCAL:
|
B
|
41. REFLECTED POWER:
|
C, bounded distribution
|
42. SKEW DOUBLE EXPONENTIAL:
|
LAMBDA
|
43. SKEW NORMAL:
|
LAMBDA
|
44. SLOPE:
|
ALPHA, bounded distribution
|
45. T:
|
NU
|
46. TOPP AND LEONE:
|
BETA, bounded distributin
|
47. TRIANGULAR:
|
C, bounded distribution
|
48. TUKEY LAMBDA:
|
LAMBDA
|
49. VON MISES:
|
B
|
50. WALD:
|
GAMMA
|
51. WEIBULL:
|
GAMMA
|
52. WRAPPED CAUCHY:
|
P
|
Two Shape Parameter Distributions:
1. ASYMMETRIC LOG DOUBLE EXPONENTIAL:
|
ALPHA, BETA
|
2. BETA:
|
ALPHA, BETA, bounded distribution
|
3. BETA NORMAL:
|
ALPHA, BETA
|
4. BURR TYPE 3:
|
R, K
|
5. BURR TYPE 4:
|
R, C
|
6. BURR TYPE 5:
|
R, K
|
7. BURR TYPE 6:
|
R, K
|
8. BURR TYPE 9:
|
R, K
|
9. BURR TYPE 12:
|
C, K
|
10. DOUBLY PARETO UNIFORM:
|
M, N
|
11. EXPONENTIATED WEIBULL:
|
GAMMA, THETA
|
12. F:
|
NU1, NU2
|
13. FOLDED CAUCHY:
|
LOC, SCALE
|
14. FOLDED NORMAL:
|
MU, SD
|
15. G-AND-H:
|
G, H
|
16. GENERALIZED ASYMMETRIC LAPLACE:
|
K, TAU or K, MU
|
17. GENERALIZED GAMMA:
|
ALPHA, C
|
18. GENERALZIED INVERSE GAUSSIAN:
|
LAMBDA, OMEGA
|
19. GENERALIZED LOGISTIC TYPE 4:
|
P, Q
|
20. GENERALIZED MCLEISH:
|
ALPHA, A
|
21. GENERALIZED TOPP AND LEONE:
|
ALPHA, BETA, bounded distribution
|
22. GENERALIZED TUKEY LAMBDA:
|
LAMBDA3, LAMBDA4
|
23. GOMPERTZ:
|
C, B or ALPHA, K
|
24. GOMPERTZ-MAKEHAM:
|
ETA, ZETA (Meeker parameterization)
|
25. INVERSE GAUSSIAN:
|
GAMMA, MU
|
26. INVERTED BETA:
|
ALPHA, BETA
|
27. JOHNSON SB:
|
ALPHA1, ALPHA2
|
28. JOHNSON SU:
|
ALPHA1, ALPHA2
|
29. KAPPA:
|
K, H
|
30. KUMARASWAMY:
|
ALPHA, BETA bounded distribution
|
31. LOG-SKEW-NORMAL:
|
LAMBDA, SD
|
32. MIELKE'S BETA-KAPPA:
|
THETA, K
|
33. NON-CENTRAL T:
|
NU, LAMBDA
|
34. NON-CENTRAL CHI-SQUARE:
|
NU, LAMBDA
|
35. PARETO:
|
GAMMA, A (A defaults to 1 if not specified)
|
36. PARETO SECOND KIND:
|
GAMMA, A (A defaults to 1 if not specified)
|
37. POWER LOGNORMAL:
|
P, SD
|
38. RECIPROCAL INVERSE GAUSSIAN:
|
GAMMA, NU
|
39. REFLECTED GENERALIZED TOPP LEONE:
|
ALPHA, BETA bounded distribution
|
40. TWO-SIDED OGIVE:
|
THETA, N bounded distribution
|
41. TWO-SIDED POWER:
|
THETA, N bounded distribution
|
42. TWO-SIDED SLOPE:
|
THETA, ALPHA bounded distribution
|
43. SKEW T:
|
LAMBDA, NU
|
Three or More Shape Parameter Distributions:
1. BESSEL I-FUNCTION:
|
SIGMA1SQ, SIGMA2SQ, NU or B, C, M
|
2. BESSEL K-FUNCTION:
|
SIGMA1SQ, SIGMA2SQ, NU or B, C, M
|
3. BI-WEIBULL:
|
GAMMA1, GAMMA2, SCALE1, SCALE2, LOC2
|
4. BRITTLE FRACTURE:
|
ALPHA, BETA, R
|
5. DOUBLY NON-CENTRAL BETA:
|
ALPHA, BETA, LAMBDA1, LAMBDA2
|
6. DOUBLY NON-CENTRAL F:
|
NU1, NU2, LAMBDA1, LAMBDA2
|
7. DOUBLY NON-CENTRAL T:
|
NU, LAMBDA1, LAMBDA2
|
8. GENERALIZED EXPONENTIAL:
|
LAMBDA1, LAMBDA12, S
|
9. GENERALZIED TRAPEZOID:
|
A, B, C, D, ALPHA, NU1, NU3
|
10. GOMPERTZ-MAKEHAM:
|
CHI, LAMBDA, THETA or GAMMA, LAMBDA, K
|
11. LOG BETA:
|
ALPHA, BETA, C, D
|
12. LOG-SKEW-T:
|
NU, LAMBDA, SD
|
13. NON-CENTRAL BETA:
|
ALPHA, BETA, LAMBDA
|
14. NON-CENTRAL F:
|
NU1, NU2, LAMBDA
|
15. NORMAL MIXTURE:
|
U1, SD1, U2, SD2, P
|
16. TRAPEZOID:
|
A, B, C, D
|
17. TRUNCATED EXPONENTIAL:
|
X0, M, SD (X0 assumed known for PPCC)
|
18. TRUNCATED NORMAL:
|
MU, SD, A, B
|
19. TRUNCATED PARETO:
|
GAMMA, A, NU
|
20. UNEVEN TWO-SIDED POWER:
|
ALPHA, NU1, NU3, D bounded distribution
|
21. WAKEBY:
|
GAMMA, BETA, DELTA, ALPHA, CHI (CHI and ALPHA are the location
and scale parameters)
|
DISCRETE DISTRIBUTIONS:
1. BETA-BINOMIAL:
|
ALPHA, BETA, N
|
2. BETA GEOMETRIC:
|
ALPHA, BETA
|
3. BETA NEGATIVE BINOMIAL:
|
ALPHA, BETA, K
|
4. BINOMIAL:
|
P, N
|
5. BOREL-TANNER:
|
LAMBDA, K
|
6. CONSUL (GENERALIZED GEOMTRIC):
|
THETA, BETA or MU, BETA
|
7. DISCRETE UNIFORM:
|
N
|
8. DISCRETE WEIBULL:
|
Q, BETA
|
9. GEETA:
|
THETA, BETA or MU, BETA
|
10. GENERALIZED LOGARITHMIC SERIES:
|
THETA, BETA
|
11. GENERALIZED LOST GAMES:
|
P, J, A
|
12. GENERALIZED NEGATIVE BINOMIALS:
|
THETA, BETA, M
|
13. GEOMETRIC:
|
P
|
14. HERMITE:
|
ALPHA, BETA
|
15. HYPERGEOMETRIC:
|
L, K, N, M
|
16. KATZ:
|
ALPHA, BETA
|
17. LAGRANGE-POISSON:
|
LAMBDA, THETA
|
18. LEADS IN COIN TOSSING:
|
N
|
19. LOGARITHMIC SERIES:
|
THETA
|
20. LOST GAMES:
|
P, R
|
21. MATCHING:
|
K
|
22. NEGATIVE BIONOMIAL:
|
P, N
|
23. POISSON:
|
LAMBDA
|
24. POLYA-AEPPLI:
|
THETA, P
|
25. QUASI BINOMIAL TYPE I:
|
P, PHI
|
26. TRUNCATED GENE NEGATIVE BINOMIAL:
|
THETA, BETA, B, N
|
27. WARING:
|
C, A
|
28. YULE:
|
P
|
29. ZETA:
|
ALPHA
|
30. ZIPF:
|
ALPHA, N
|
Date created: 9/21/2011
Last updated: 9/21/2011
Please email comments on this WWW page to
[email protected].
|