|
KAPPPFName:
with k and h denoting the shape parameters and \( \xi \) and \( \alpha \) denoting the location and scale parameters, respectively. The standard form of the distribution is defined as \( \xi \) = 0 and \( \alpha \) = 1.
<SUBSET/EXCEPT/FOR qualification> where <p> is a number, parameter, or variable in the range (0,1); <k> is a number, parameter, or variable that specifies the first shape parameter; <h> is a number, parameter, or variable that specifies the second shape parameter; <xi> is a number, parameter, or variable that specifies the location parameter; <alpha> is a number, parameter, or variable that specifies the scale parameter; <y> is a variable or a parameter (depending on what <x> is) where the computed kappa ppf value is stored; and where the <SUBSET/EXCEPT/FOR qualification> is optional. The <xi> and <alpha> parameters are optional.
LET X2 = KAPPPF(P1,K,H)
J. R. M. Hosking (2000), "Research Report: Fortran Routines for use with the Method of L-Moments", IBM Research Division, T. J. Watson Research Center, Yorktown Heights, NY 10598. Hoskings (1990), "L-moments: Analysis and Estimation of Distribution using Linear Combinations of Order Statistics", Journal of the Royal Statistical Society, Series B, 52, pp. 105-124.
LET KP = DATA -0.5 0.1 0.5 1.0
LET H1 = -0.5
LET H2 = 0.1
LET H3 = 1
LET H4 = 2
.
MULTIPLOT 2 2
MULTIPLOT CORNER COORDINATES 0 0 95 95
MULTIPLOT SCALE FACTOR 2
TITLE CASE ASIS
TITLE OFFSET 2
X3LABEL
LINE COLOR BLACK RED BLUE GREEN
.
LOOP FOR KK = 1 1 4
LET K = KP(KK)
TITLE K = ^K, H = -0.5, 0.1, 1, 2
PLOT KAPPPF(P,K,H1) FOR P = 0.02 0.01 0.98 AND
PLOT KAPPPF(P,K,H2) FOR P = 0.02 0.01 0.98 AND
PLOT KAPPPF(P,K,H3) FOR P = 0.02 0.01 0.98 AND
PLOT KAPPPF(P,K,H4) FOR P = 0.02 0.01 0.98
END OF LOOP
END OF MULTIPLOT
.
CASE ASIS
JUSTIFICATION CENTER
MOVE 50 97
TEXT Kappa PPF Functions
|
Privacy
Policy/Security Notice
NIST is an agency of the U.S.
Commerce Department.
Date created: 07/07/2009 | ||||||||||||||||