|
RATIO OF MEANS CONFIDENCE INTERVALName:
It is often desired to generate the confidence interval for this ratio. Note that computing a standard confidence interval for R does not generate satisfactory results. This is due to the fact that, assuming Y and X are independent,
However, \( E[1/\hat{X}] \) is not equal to \( 1/E[\hat{X}] \). There have been a number of approaches to this problem. This command supports three different methods. Fieller derived confidence intervals for the case where Y and X are distributed as bivariate normal. Define the quantities
The test statistic is
For Fieller's confidence limits, we first compute
If this quantity is less than or equal to \( t_{q}^2 \) then an unbounded interval results and Dataplot will not generate the confidence interval. Basically, this results if the confidence interval for X contains zero. If this quantity is less than or equal to \( t_{q}^2 \) then the following confidence interval is obtained
\( \mbox{Upper Limit} = \frac{(\bar{X} \bar{Y} - t_{q}^{2} \hat{\sigma}_{\bar{X} \bar{Y}}) + \sqrt{ (\bar{X} \bar{Y} - t_{q}^{2} \hat{\sigma}_{\bar{X} \bar{Y}})^2 - (\bar{X}^2 - t_{q}^{2} \hat{\sigma}_{\bar{X}}^{2}) (\bar{Y}^2 - t_{q}^{2} \hat{\sigma}_{\bar{Y}}^{2})}} {\bar{X}^2 - t_{q}^{2} \hat{\sigma}_{\bar{X}}^{2}} \) The large sample approximation method (this is called the Taylor or delta method in the Franz paper) generates the following confidence interval
\( \mbox{Upper Limit} = \hat{R} + t_{(\alpha/2,n-1)} \hat{R} \sqrt{C_{\bar{Y}\bar{Y}} + C_{\bar{X}\bar{X}} - 2 C_{\bar{Y}\bar{X}}} \) where
The log ratio method generates the following confidence interval
\( \mbox{Upper Limit} = \hat{R} \exp{(t_{(\alpha/2,n-1)} \sqrt{C_{\bar{Y} \bar{Y}} + C_{\bar{X} \bar{X}} - 2 C_{\bar{Y} \bar{X}}})} \) The large sample approximation and the log ratio method do not generate unbounded intervals. Also, the log ratio method can generate asymmetric intervals. Note that there is some disagreement in the literature about the appropriateness of these methods. For example, Franz argues that the unbounded intervals are a result of the denominator being close to zero with the consequence that the ratio can assume arbitrarily large values. Therefore any method that does not allow for unbounded intervals is not valid. On the other hand, Sherman argues that the unbounded Fieler intervals are simply nonsensical and advocates the use of the large sample approximation and log ratio methods. To specify the method to use, enter the command
<SUBSET/EXCEPT/FOR qualification> where <y1> is the first (numerator) response variable; <y2> is the second (denominator) response variable; and where the <SUBSET/EXCEPT/FOR qualification> is optional. The variables <y1> and <y2> must be of the same length and are assumed to be paired.
RATIO OF MEANS CONFIDENCE INTERVAL Y X SUBSET TAG > 2 RATIO OF MEANS CONFIDENCE INTERVAL Y1 Y2 SUBSET Y1 > 0
LET ALPHA = <value> These statistics can be used in a number of commands. For details, enter
E. C. Fieler (1940), "The Biological Standardization of Insulin," Supplement to the Journal of the Royal Statistical Society, Vol. 7, No. 1, pp. 1-64. E. C. Fieler (1940), "A Fundamental Formula in the Statistics of Biological Assays and Some Applications", Quarterly Journal of Pharmacy and Pharmacology, Vol. 17, pp. 117-123. E. C. Fieler (1940), "Some Problems in Interval Estimation," Journal of the Royal Statistical Society (B), Vol. 16, No. 2, pp. 175-185. Sherman, Maity, and Wang (2011), "Inferences for the Ratio: Fieller's Interval, Log Ratio, and Large Sample Based Confidence Intervals", AStA Adv Stat Anal 95:313–323. Cochran (1977), "Sampling Techniques," Wiley, New York. Lohr (2009), "Sampling: Design and Analysis," Second Edition, Brooks/Cole, Pacific Grove.
. Step 1: Define data (taken from Sherman article, original source
.
. Lehtonen and Pahkinen (2004), "Practical Methods for
. Design and Analysis of Complex Surveys," 2nd Edition,
. New York: Wiley.
.
read y x
4123 26881
760 4896
721 3730
142 556
187 1463
331 1946
127 834
219 932
end of data
.
. Step 2: Large sample interval
.
let alpha = 0.95
set write decimals 4
set ratio of means method large sample
let r1 = ratio of means y x
let r1ll = ratio of means lower confidence limit y x
let r1ul = ratio of means upper confidence limit y x
.
ratio of means confidence limit y x
pause
The following output is generated
PARAMETERS AND CONSTANTS--
R1 -- 0.1603
R1LL -- 0.1452
R1UL -- 0.1754
Confidence Limits for the Ratio of Means
(Large Sample Approximation Method)
Numerator Variable: Y
Denominator Variable: X
Summary Statistics for Numerator Variable:
Number of Observations: 8
Sample Mean: 826.2500
Sample Standard Deviation: 1355.6149
Sample Coefficient of Variation: 1.6407
Summary Statistics for Variable 2:
Number of Observations: 8
Sample Mean: 5154.7500
Sample Standard Deviation: 8909.8733
Sample Coefficient of Variation: 1.7285
Correlation: 0.9991
---------------------------------------------------------
Confidence Lower Upper
Value (%) Ratio Limit Limit
---------------------------------------------------------
50.000 0.1603 0.1558 0.1648
75.000 0.1603 0.1523 0.1683
90.000 0.1603 0.1482 0.1724
95.000 0.1603 0.1452 0.1754
99.000 0.1603 0.1380 0.1826
99.900 0.1603 0.1258 0.1948
99.990 0.1603 0.1102 0.2104
99.999 0.1603 0.0895 0.2311
.
set ratio of means method log ratio
let r2 = ratio of means y x
let r2ll = ratio of means lower confidence limit y x
let r2ul = ratio of means upper confidence limit y x
.
ratio of means confidence limit y x
pause
The following output is generated
PARAMETERS AND CONSTANTS--
R2 -- 0.1603
R2LL -- 0.1459
R2UL -- 0.1761
Confidence Limits for the Ratio of Means
(Log Ratio Method)
Numerator Variable: Y
Denominator Variable: X
Summary Statistics for Numerator Variable:
Number of Observations: 8
Sample Mean: 826.2500
Sample Standard Deviation: 1355.6149
Sample Coefficient of Variation: 1.6407
Summary Statistics for Variable 2:
Number of Observations: 8
Sample Mean: 5154.7500
Sample Standard Deviation: 8909.8733
Sample Coefficient of Variation: 1.7285
Correlation: 0.9991
---------------------------------------------------------
Confidence Lower Upper
Value (%) Ratio Limit Limit
---------------------------------------------------------
50.000 0.1603 0.1558 0.1649
75.000 0.1603 0.1525 0.1685
90.000 0.1603 0.1486 0.1728
95.000 0.1603 0.1459 0.1761
99.000 0.1603 0.1394 0.1842
99.900 0.1603 0.1293 0.1987
99.990 0.1603 0.1173 0.2191
99.999 0.1603 0.1031 0.2493
.
set ratio of means method fieler
let r3 = ratio of means y x
let r3ll = ratio of means lower confidence limit y x
let r3ul = ratio of means upper confidence limit y x
.
ratio of means confidence limit y x
The following output is generated
PARAMETERS AND CONSTANTS--
R3 -- 0.1603
R3LL --***************
R3UL --***************
***** WARNING: RATIO OF MEANS CONFIDENCE LIMITS--
FOR ALPHA ( 90.00000 ), THE FIELLER INTERVAL IS UNBOUNDED.
***** WARNING: RATIO OF MEANS CONFIDENCE LIMITS--
FOR ALPHA ( 95.00000 ), THE FIELLER INTERVAL IS UNBOUNDED.
***** WARNING: RATIO OF MEANS CONFIDENCE LIMITS--
FOR ALPHA ( 99.00000 ), THE FIELLER INTERVAL IS UNBOUNDED.
***** WARNING: RATIO OF MEANS CONFIDENCE LIMITS--
FOR ALPHA ( 99.90000 ), THE FIELLER INTERVAL IS UNBOUNDED.
***** WARNING: RATIO OF MEANS CONFIDENCE LIMITS--
FOR ALPHA ( 99.99000 ), THE FIELLER INTERVAL IS UNBOUNDED.
***** WARNING: RATIO OF MEANS CONFIDENCE LIMITS--
FOR ALPHA ( 99.99900 ), THE FIELLER INTERVAL IS UNBOUNDED.
Confidence Limits for the Ratio of Means
(Fieller Method)
Numerator Variable: Y
Denominator Variable: X
Summary Statistics for Numerator Variable:
Number of Observations: 8
Sample Mean: 826.2500
Sample Standard Deviation: 1355.6149
Sample Coefficient of Variation: 1.6407
Summary Statistics for Variable 2:
Number of Observations: 8
Sample Mean: 5154.7500
Sample Standard Deviation: 8909.8733
Sample Coefficient of Variation: 1.7285
Correlation: 0.9991
---------------------------------------------------------
Confidence Lower Upper
Value (%) Ratio Limit Limit
---------------------------------------------------------
50.000 0.1603 0.1568 0.1676
75.000 0.1603 0.1549 0.1892
90.000 0.1603 ** **
95.000 0.1603 ** **
99.000 0.1603 ** **
99.900 0.1603 ** **
99.990 0.1603 ** **
99.999 0.1603 ** **
Program 2:
. Step 1: Define data
.
read y x
0.1268825E+10 0.1246669E+10
0.1295448E+10 0.1246669E+10
0.1295448E+10 0.1268825E+10
0.1168487E+08 0.1014325E+08
0.1141398E+08 0.1014325E+08
0.1168487E+08 0.1141398E+08
0.3298360E+06 0.2902920E+06
0.3298360E+06 0.1718490E+06
0.2902920E+06 0.1718490E+06
0.2415666E+07 0.1637297E+07
0.2415666E+07 0.1347629E+07
0.1637297E+07 0.1347629E+07
0.9904356E+08 0.9530938E+08
0.1049126E+09 0.9530938E+08
0.1049126E+09 0.9904356E+08
0.4930919E+08 0.4662120E+08
0.4934958E+08 0.4662120E+08
0.4934958E+08 0.4930919E+08
0.1278483E+08 0.1232513E+08
0.1286868E+08 0.1232513E+08
0.1286868E+08 0.1278483E+08
0.7029193E+07 0.4878485E+07
0.7029193E+07 0.3244763E+07
0.4878485E+07 0.3244763E+07
0.1490000E+07 0.1040000E+07
0.1860000E+07 0.1040000E+07
0.1860000E+07 0.1490000E+07
0.2680523E+07 0.2601516E+07
0.2724237E+07 0.2601516E+07
0.2724237E+07 0.2680523E+07
0.8905137E+07 0.8303097E+07
0.8905137E+07 0.8271071E+07
0.8303097E+07 0.8271071E+07
0.6956520E+06 0.6798450E+06
0.6921780E+06 0.6798450E+06
0.6956520E+06 0.6921780E+06
0.3290000E+09 0.2890000E+09
0.3300000E+09 0.2890000E+09
0.3300000E+09 0.3290000E+09
0.7091179E+05 0.6553055E+05
0.7443393E+05 0.6553055E+05
0.7443393E+05 0.7091179E+05
0.8031739E+08 0.5416613E+08
0.8031739E+08 0.4975062E+08
0.5416613E+08 0.4975062E+08
0.6830980E+07 0.6738330E+07
0.6973430E+07 0.6738330E+07
0.6973430E+07 0.6830980E+07
0.2010000E+07 0.1980000E+07
0.2600000E+07 0.2010000E+07
0.2600000E+07 0.1980000E+07
0.3193846E+08 0.3059341E+08
0.3222820E+08 0.3059341E+08
0.3222820E+08 0.3193846E+08
0.1784258E+08 0.1460987E+08
0.1784258E+08 0.1099276E+08
0.1460987E+08 0.1099276E+08
0.3150562E+09 0.3052555E+09
0.3150562E+09 0.2994084E+09
0.3052555E+09 0.2994084E+09
0.7998000E+08 0.7574000E+08
0.8017000E+08 0.7574000E+08
0.8017000E+08 0.7998000E+08
0.3983000E+08 0.3886000E+08
0.4086000E+08 0.3886000E+08
0.4086000E+08 0.3983000E+08
0.2334030E+07 0.1387010E+07
0.2544590E+07 0.2334030E+07
0.2544590E+07 0.1387010E+07
0.3126721E+09 0.2310785E+09
0.2490103E+09 0.2310785E+09
0.3126721E+09 0.2490103E+09
0.1000900E+03 0.9977000E+02
0.1255000E+03 0.9977000E+02
0.1255000E+03 0.1000900E+03
0.9860323E+04 0.9400626E+04
0.9882525E+04 0.9400626E+04
0.9882525E+04 0.9860323E+04
0.2548997E+04 0.2482806E+04
0.2640000E+08 0.2510000E+08
0.2680000E+08 0.2510000E+08
0.2680000E+08 0.2640000E+08
end of data
.
set write decimals 4
.
. Step 2: Large sample interval
.
set ratio of means method large sample
ratio of means confidence limit y x
The following output is generated
Confidence Limits for the Ratio of Means
(Large Sample Approximation Method)
Numerator Variable: Y
Denominator Variable: X
Summary Statistics for Numerator Variable:
Number of Observations: 82
Sample Mean: 98726120.5989
Sample Standard Deviation: 251637033.8336
Sample Coefficient of Variation: 2.5488
Summary Statistics for Variable 2:
Number of Observations: 82
Sample Mean: 92451883.4744
Sample Standard Deviation: 243574789.7088
Sample Coefficient of Variation: 2.6346
Correlation: 0.9988
---------------------------------------------------------
Confidence Lower Upper
Value (%) Ratio Limit Limit
---------------------------------------------------------
50.000 1.0679 1.0557 1.0800
75.000 1.0679 1.0470 1.0887
90.000 1.0679 1.0380 1.0978
95.000 1.0679 1.0321 1.1036
99.000 1.0679 1.0205 1.1153
99.900 1.0679 1.0065 1.1292
99.990 1.0679 0.9943 1.1414
99.999 1.0679 0.9832 1.1525
.
set ratio of means method log ratio
ratio of means confidence limit y x
The following output is generated
Confidence Limits for the Ratio of Means
(Log Ratio Method)
Numerator Variable: Y
Denominator Variable: X
Summary Statistics for Numerator Variable:
Number of Observations: 82
Sample Mean: 98726120.5989
Sample Standard Deviation: 251637033.8336
Sample Coefficient of Variation: 2.5488
Summary Statistics for Variable 2:
Number of Observations: 82
Sample Mean: 92451883.4744
Sample Standard Deviation: 243574789.7088
Sample Coefficient of Variation: 2.6346
Correlation: 0.9988
---------------------------------------------------------
Confidence Lower Upper
Value (%) Ratio Limit Limit
---------------------------------------------------------
50.000 1.0679 1.0558 1.0801
75.000 1.0679 1.0472 1.0889
90.000 1.0679 1.0384 1.0982
95.000 1.0679 1.0327 1.1042
99.000 1.0679 1.0215 1.1163
99.900 1.0679 1.0082 1.1310
99.990 1.0679 0.9968 1.1440
99.999 1.0679 0.9865 1.1560
.
set ratio of means method fieler
ratio of means confidence limit y x
The following output is generated
***** WARNING: RATIO OF MEANS CONFIDENCE LIMITS--
FOR ALPHA ( 99.99000 ), THE FIELLER INTERVAL IS UNBOUNDED.
***** WARNING: RATIO OF MEANS CONFIDENCE LIMITS--
FOR ALPHA ( 99.99900 ), THE FIELLER INTERVAL IS UNBOUNDED.
Confidence Limits for the Ratio of Means
(Fieller Method)
Numerator Variable: Y
Denominator Variable: X
Summary Statistics for Numerator Variable:
Number of Observations: 82
Sample Mean: 98726120.5989
Sample Standard Deviation: 251637033.8336
Sample Coefficient of Variation: 2.5488
Summary Statistics for Variable 2:
Number of Observations: 82
Sample Mean: 92451883.4744
Sample Standard Deviation: 243574789.7088
Sample Coefficient of Variation: 2.6346
Correlation: 0.9988
---------------------------------------------------------
Confidence Lower Upper
Value (%) Ratio Limit Limit
---------------------------------------------------------
50.000 1.0679 1.0568 1.0818
75.000 1.0679 1.0499 1.0951
90.000 1.0679 1.0430 1.1148
95.000 1.0679 1.0386 1.1334
99.000 1.0679 1.0293 1.2096
99.900 1.0679 1.0154 6.5994
99.990 1.0679 ** **
99.999 1.0679 ** **
Date created: 02/04/2020 |
Last updated: 12/11/2023 Please email comments on this WWW page to [email protected]. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||