|
PORPORTION CONFIDENCE LIMITSName:
In Dataplot, you define a success by entering the command
before entering the PROPORTION CONFIDENCE LIMITS command. That is, you specify the lower and upper values that define a success. Then the estimate for the proportion of successes is simply the number of points in the success region divided by the total number of points. In most applications, successes are defined by 1's and failures by 0's. The default limits are 0.5 and 1.5, so if your data is defined by 0 and 1 values the ANOP LIMITS command can be omitted. Several methods have been proposed for the confidence limits for a binomial proportion. The following methods are currently supported in Dataplot
NORMAL/EXACT> The default is the Wilson method. The Brown, Cai, and DasGupta paper studied the coverage properties of various methods. They specifically recommend the Wilson, the adjusted Wald, and the Jeffreys method as having the best coverage properties. Specifically, they recommend the Wilson and Jeffreys methods for n ≤ 40. For n > 40, these three methods have comparable performance. Although the normal approximation and exact binomial methods are not typically recommended, Dataplot provides them since they are still used in practice.
<SUBSET/EXCEPT/FOR qualification> where <y> is the response variable; and where the <SUBSET/EXCEPT/FOR qualification> is optional.
PROPORTION CONFIDENCE LIMITS Y
ANOP LIMITS 0.80 1.0
with BINPPF denoting the percent point function of the binomial distribution.
Brown, L. D. Cai, T. T. and DasGupta, A. (2001), "Interval estimation for a binomial proportion," Statistical Science, 16(2), 101-133. Wilson (1927), "Probable inference, the law of succession, and statistical inference," Journal of the American Statistical Association, Vol. 22, pp. 209-212. Snedecor and Cochran, 1989, "Statistical Methods," Eigth Edition, Iowa State University Press, pp. 121-124.
2017/11: Change method for determining the confidence interval
. Create a binary variable with 30 rows
. with 8 successes.
.
let n = 30
let nsuc = 8
let y = 0 for i = 1 1 n
let y = 1 for i = 1 1 nsuc
.
. Now do proportions confidence interval
.
set write decimals 6
set binomial method wilson
proportion confidence interval y
set binomial method adjusted wald
proportion confidence interval y
set binomial method jeffreys
proportion confidence interval y
set binomial method exact
proportion confidence interval y
set binomial method normal
proportion confidence interval y
This command generated the following output:
Two-Sided Confidence Limits for a Proportion
(Wilson Method)
Response Variable: Y
Sample:
Number of Observations: 30
Number of Successes: 8
Proportion of Successes: 0.266667
Standard Error: 0.080737
------------------------------------------
Confidence Lower Upper
Value (%) Limit Limit
------------------------------------------
50.000 0.215992 0.324313
75.000 0.185098 0.367950
90.000 0.157323 0.414615
95.000 0.141827 0.444480
99.000 0.116046 0.501805
99.900 0.092558 0.564537
99.990 0.077142 0.612690
99.999 0.066181 0.651056
Two-Sided Confidence Limits for a Proportion
(Adjusted Wald Method)
Response Variable: Y
Sample:
Number of Observations: 30
Number of Successes: 8
Proportion of Successes: 0.266667
Standard Error: 0.080737
------------------------------------------
Confidence Lower Upper
Value (%) Limit Limit
------------------------------------------
50.000 0.217582 0.326788
75.000 0.188962 0.376021
90.000 0.163909 0.432706
95.000 0.150238 0.471347
99.000 0.128339 0.551032
99.900 0.110551 0.646995
99.990 0.101710 0.727092
99.999 0.098343 0.794898
Two-Sided Confidence Limits for a Proportion
(Bayesian with Jeffreys Prior Method)
Response Variable: Y
Sample:
Number of Observations: 30
Number of Successes: 8
Proportion of Successes: 0.266667
Standard Error: 0.080737
------------------------------------------
Confidence Lower Upper
Value (%) Limit Limit
------------------------------------------
50.000 0.217637 0.325518
75.000 0.184464 0.367317
90.000 0.153145 0.412052
95.000 0.134941 0.440996
99.000 0.103386 0.497902
99.900 0.073387 0.563271
99.990 0.053383 0.616478
99.999 0.039406 0.661171
Two-Sided Confidence Limits for a Proportion
(Exact Binomial Method)
Response Variable: Y
Sample:
Number of Observations: 30
Number of Successes: 8
Proportion of Successes: 0.266667
Standard Error: 0.080737
------------------------------------------
Confidence Lower Upper
Value (%) Limit Limit
------------------------------------------
50.000 0.202418 0.342833
75.000 0.170298 0.385007
90.000 0.140185 0.429934
95.000 0.122795 0.458894
99.000 0.092892 0.515598
99.900 0.064818 0.580375
99.990 0.046392 0.632814
99.999 0.033699 0.676670
Two-Sided Confidence Limits for a Proportion
(Normal Approximation Method)
Response Variable: Y
Sample:
Number of Observations: 30
Number of Successes: 8
Proportion of Successes: 0.266667
Standard Error: 0.080737
------------------------------------------
Confidence Lower Upper
Value (%) Limit Limit
------------------------------------------
50.000 0.212210 0.321123
75.000 0.173791 0.359543
90.000 0.133866 0.399468
95.000 0.108424 0.424909
99.000 0.058701 0.474632
99.900 0.000998 0.532335
99.990 0.000000 0.580783
99.999 0.000000 0.623298
Date created: 06/05/2001 |
Last updated: 12/11/2023 Please email comments on this WWW page to [email protected]. | ||||||||||||||||||||||