|
COMMON WEIBULL SHAPE PARAMETERName:
Before applying the test described here, each of the samples should be tested to ensure that they can in fact be adequately modeled with a 2-parameter Weibull distribution. If not, then applying this test is not meaningful. Given k samples, the test procedure is as follows.
<SUBSET/EXCEPT/FOR qualification> where <y> is a response variable; <tag> is a group-id variable; and where the <SUBSET/EXCEPT/FOR qualification> is optional. The response variable and the group-id variables should have the same number of observations.
<SUBSET/EXCEPT/FOR qualification> where <y1> ... <yk> is a list of 2 to 30 response variables; and where the <SUBSET/EXCEPT/FOR qualification> is optional. The response variables do not need to have equal sample sizes.
<SUBSET/EXCEPT/FOR qualification> where <y> is a response variable; <x1> ... <xk> is a list of 1 to 6 group-id variables; and where the <SUBSET/EXCEPT/FOR qualification> is optional. All variables should have the same number of observations.
REPLICATED COMMON WEIBULL SHAPE PARAMETER Y X1 X2 MULTIPLE COMMON WEIBULL SHAPE PARAMETER Y1 TO Y5 COMMON WEIBULL SHAPE PARAMETER Y X SUBSET X > 1
LET A = COMMON WEIBULL SHAPE TEST CDF Y X LET A = COMMON WEIBULL SHAPE TEST PVALUE Y X LET A = COMMON WEIBULL SHAPE TEST CV90 Y X LET A = COMMON WEIBULL SHAPE TEST CV95 Y X LET A = COMMON WEIBULL SHAPE TEST CV99 Y X Dataplot statistics can be used in a number of commands. For details, enter
where <value> is 0.90, 0.95, or 0.99. If this command is not given, the default value for alpha will be 0.95. The equation used to estimate the common shape parameter is given on page 238 of McCool. If a common shape parameter is estimated, then the corresponding scale parameters for each of the groups based on this common shape parameter are written to the file "dpst1f.dat".
Dataplot currently only supports the uncensored data case. Dataplot performs the simulations for the critical values dynamically, so it does not require equal sample sizes for the groups.
. Step 1: Read the data
.
skip 25
read mccool82.dat y1 y2 y3 y4 y5
let y x = stack y1 y2 y3 y4 y5
set write decimals 5
set minmax 1
.
. Step 2: Perform the command
.
common weibull shape test y x
The following output is generated.
Test for Common Weibull Shape Parameter
(For the 2-Parameter Weibull Distribution)
Response Variable: Y
Group-ID Variable: X
H0: Homogeneous Shape Parameters
Ha: Shape Parameters Are Not Homogeneous
Summary Statistics:
Total Number of Observations: 50
Number of Groups: 5
Number of Groups Used in Test: 5
Minimum Value of Shape Parameter: 1.93917
Maximum Value of Shape Parameter: 3.65176
Test Statistic Value: 1.88316
CDF of Test Statistic: 0.53140
P-Value: 0.46860
Estimate of Common Shape Parameter: 2.48034
Percent Points of the Reference Distribution
-----------------------------------
Percent Point Value
-----------------------------------
0.0 = 0.000
50.0 = 1.845
75.0 = 2.200
90.0 = 2.640
95.0 = 2.986
97.5 = 3.265
99.0 = 3.726
99.9 = 5.094
Conclusions (Upper 1-Tailed Test)
----------------------------------------------
Alpha CDF Critical Value Conclusion
----------------------------------------------
10% 90% 2.640 Accept H0
5% 95% 2.986 Accept H0
2.5% 97.5% 3.265 Accept H0
1% 99% 3.726 Accept H0
Confidence Interval for Common Shape Parameter
------------------------------------------
Confidence Lower Upper
Coefficient Limit Limit
------------------------------------------
50.00 2.12965 2.49122
80.00 1.97370 2.67145
90.00 1.88467 2.77648
95.00 1.80180 2.88262
99.00 1.65531 3.09005
99.90 1.50608 3.32405
------------------------------------------
.
. Step 3: Compute the test statistic
.
let statval = common weibull shape test y x
let statcdf = common weibull shape test cdf y x
let pval = common weibull shape test pvalue y x
let cv90 = common weibull shape test cv90 y x
.
print statval statcdf pval cv90
The following output is generated.
PARAMETERS AND CONSTANTS--
STATVAL -- 1.88316
STATCDF -- 0.53120
PVAL -- 0.46260
CV90 -- 2.63340
Date created: 09/11/2014 |
Last updated: 12/11/2023 Please email comments on this WWW page to [email protected]. | |||||||||||||||||||||||||||||||||||||||||