2.
Measurement Process Characterization
2.5. Uncertainty analysis 2.5.5. Propagation of error considerations
|
|||
Case: Y=f(X,Z) |
Standard deviations of reported values that are functions of
measurements on two variables are reproduced from a paper by H. Ku
(Ku).
The reported value, Y is a function of averages of N measurements on two variables. |
\( \bar{X} \) and \( \bar{Z} \) are averages of \(N\) measurements |
\(s_x\) = standard deviation of \(X\)
Note: Covariance term is to be included only if there is a reliable estimate |
\( \large{ Y = A \bar{X} + B \bar{Z} } \)
|
\( \large{ \frac{1}{\sqrt{N}} \sqrt{A^2 s_x^2 + B^2 s_z^2 + 2AB s_{xz}} } \)
|
\( \large{ Y = \frac{\bar{X}}{\bar{Z}} } \)
|
\( \large{ \frac{1}{\sqrt{N}} \frac{\bar{X}}{\bar{Z}} \sqrt{\frac{s_x^2}{(\bar{X})^2} + \frac{s_z^2}{(\bar{Z})^2} - 2\frac{s_{xz}}{\bar{X} \bar{Z}}} } \)
|
\( \large{ Y = \frac{\bar{X}}{\bar{X} + \bar{Z}} } \)
|
\( \large{ \left( \frac{Y}{\bar{X}}\right)^2 \frac{1}{\sqrt{N}} \sqrt{(\bar{X})^2 s_z^2 + (\bar{Z})^2 s_x^2 - 2 \bar{X} \bar{Z} s_{xz}}} \)
|
\( \large{ Y = \bar{X} \bar{Z} } \)
|
\( \large{ \frac{\bar{X} \bar{Z}}{\sqrt{N}} \sqrt{\frac{s_x^2}{\bar{X}^2} + \frac{s_z^2}{\bar{Z}^2} + 2 \frac{s_{xz}}{\bar{X} \bar{Z}} } } \)
|
\( \large{ Y = c(\bar{X})^a (\bar{Z})^b } \)
|
\( \large{ \frac{Y}{\sqrt{N}} \sqrt{ a^2 \frac{s_x^2}{\bar{X}^2} + b^2 \frac{s_z^2}{\bar{Z}^2} + 2ab \frac{s_{xz}}{\bar{X} \bar{Z}} } } \)
Note: this is an approximation. The exact result could be obtained starting from the exact formula for the standard deviation of a product derived by Goodman (1960). |