![]() |
SDEPDFName:
![]()
For
The standard skew double exponential distribution can be
generalized with a location parameter,
![]() in the above formula. The skew double exponential distribution is also known as the skew Laplace distribution.
<SUBSET/EXCEPT/FOR qualification> where <x> is a variable or a parameter; <lambda> is a number of parameter that specifies the value of the shape parameter; <loc> is an optional number or parameter that specifies the value of the location parameter; <scale> is an optional positive number or parameter that specifies the value of the scale parameter; <y> is a variable or a parameter (depending on what <x> is) where the computed skew double exponential pdf value is stored; and where the <SUBSET/EXCEPT/FOR qualification> is optional.
LET Y = SDEPDF(X1,LAMBDA) PLOT SDEPDF(X,LAMBDA) FOR X = -5 0.01 5
LET Y = SKEW DOUBLE EXPONENTIAL RANDOM NUMBERS FOR I = 1 1 N To generate a skew double exponential probability plot or a skew double exponential Kolmogorov-Smirnov or chi-square goodness of fit test, enter the following commands
SKEW DOUBLE EXPONENTIAL PROBABILITY PLOT Y SKEW DOUBLE EXPONENTIAL KOLMOGOROV SMIRNOV GOODNESS OF FIT Y SKEW DOUBLE EXPONENTIAL CHI-SQUARE GOODNESS OF FIT Y To generate a PPCC or Kolmogorov-Smirnov plot, enter the following commands
LET LAMBDA2 = <value> SKEW DOUBLE EXPONENTIAL PPCC PLOT Y SKEW DOUBLE EXPONENTIAL KS PLOT Y The default values for LAMBDA1 and LAMBDA2 are 0 and 10.
"A Class of Distributions Which Includes the Normal Ones", Azzalini, Scandinavian Journal of Statistics, 12, 171-178.
Y1LABEL Probability X1LABEL X LABEL CASE ASIS TITLE CASE ASIS CASE ASIS Y1LABEL DISPLACEMENT 12 X1LABEL DISPLACEMENT 12 MULTIPLOT 2 2 MULTIPLOT CORNER COORDINATES 0 0 100 95 MULTIPLOT SCALE FACTOR 2 TITLE Lambda = 0 PLOT SDEPDF(X,0) FOR X = -5 0.1 5 TITLE Lambda = 1 PLOT SDEPDF(X,1) FOR X = -5 0.1 5 TITLE Lambda = 5 PLOT SDEPDF(X,5) FOR X = -5 0.1 5 TITLE Lambda = 10 PLOT SDEPDF(X,10) FOR X = -5 0.1 5 END OF MULTIPLOT MOVE 50 97 JUSTIFICATIONC CENTER TEXT Skew Double Exponential Distribution ![]()
Date created: 7/7/2004 |