|
RIGPPFName:
with The percent point function is the inverse of the cumulative distribution function. The percent point function for the reciprocal inverse Gaussian distribution does not exist in simple, closed form. The reciprocal inverse Gaussian percent point function can be computed in terms of the inverse Gaussian percent point function by
with IGPPF denoting the percent point function of the inverse Gaussian distribution. Dataplot uses this relationship to compute the reciprocal inverse gaussian percent point function. The reciprocal inverse Gaussian distribution can be generalized with location and scale parameters in the usual way.
<SUBSET/EXCEPT/FOR qualification> where <p> is a variable or a parameter; <gamma> is number or parameter that specifies the first shape parameter; <mu> is number or parameter that specifies the second shape parameter; <loc> is number or parameter that specifies the location parameter; <scale> is number or parameter that specifies the scale parameter; <y> is a variable or a parameter (depending on what <x> is) where the computed reciprocal inverse Gaussian ppf value is stored; and where the <SUBSET/EXCEPT/FOR qualification> is optional. Note that the location and scale parameters are optional.
LET A = RIGPPF(P1,2,1) PLOT RIGPPF(P,2,1.5) FOR P = 0 0.01 0.99
"Statistical Distributions", Third Edition, Evans, Hastings, and Peacock, Wiley, 2000, pp. 114-116.
2003/12: Modified to treat as
a shape parameter instead of a location parameter
X1LABEL Probability
Y1LABEL X
LABEL CASE ASIS
X1LABEL DISPLACEMENT 12
Y1LABEL DISPLACEMENT 12
MULTIPLOT SCALE FACTOR 2
MULTIPLOT 2 2
MULTIPLOT CORNER COORDINATES 0 0 100 95
TITLE GAMMA = 2, MU = 1
PLOT RIGPPF(P,2,1) FOR P = 0.01 0.01
TITLE GAMMA = 5, MU = 1
PLOT RIGPPF(P,5,1) FOR P = 0.01 0.01
TITLE GAMMA = 2, MU = 2
PLOT RIGPPF(P,2,2) FOR P = 0.01 0.01
TITLE GAMMA = 5, MU = 2
PLOT RIGPPF(P,5,2) FOR P = 0.01 0.01
END OF MULTIPLOT
JUSTIFICATION CENTER
MOVE 50 97
CASE ASIS
TEXT Reciprocal Inverse Gaussian Percent Point
Date created: 7/7/2004 |