![]() |
RIGPPFName:
![]()
with The percent point function is the inverse of the cumulative distribution function. The percent point function for the reciprocal inverse Gaussian distribution does not exist in simple, closed form. The reciprocal inverse Gaussian percent point function can be computed in terms of the inverse Gaussian percent point function by
![]() with IGPPF denoting the percent point function of the inverse Gaussian distribution. Dataplot uses this relationship to compute the reciprocal inverse gaussian percent point function. The reciprocal inverse Gaussian distribution can be generalized with location and scale parameters in the usual way.
<SUBSET/EXCEPT/FOR qualification> where <p> is a variable or a parameter; <gamma> is number or parameter that specifies the first shape parameter; <mu> is number or parameter that specifies the second shape parameter; <loc> is number or parameter that specifies the location parameter; <scale> is number or parameter that specifies the scale parameter; <y> is a variable or a parameter (depending on what <x> is) where the computed reciprocal inverse Gaussian ppf value is stored; and where the <SUBSET/EXCEPT/FOR qualification> is optional. Note that the location and scale parameters are optional.
LET A = RIGPPF(P1,2,1) PLOT RIGPPF(P,2,1.5) FOR P = 0 0.01 0.99
"Statistical Distributions", Third Edition, Evans, Hastings, and Peacock, Wiley, 2000, pp. 114-116.
2003/12: Modified to treat ![]() X1LABEL Probability Y1LABEL X LABEL CASE ASIS X1LABEL DISPLACEMENT 12 Y1LABEL DISPLACEMENT 12 MULTIPLOT SCALE FACTOR 2 MULTIPLOT 2 2 MULTIPLOT CORNER COORDINATES 0 0 100 95 TITLE GAMMA = 2, MU = 1 PLOT RIGPPF(P,2,1) FOR P = 0.01 0.01 TITLE GAMMA = 5, MU = 1 PLOT RIGPPF(P,5,1) FOR P = 0.01 0.01 TITLE GAMMA = 2, MU = 2 PLOT RIGPPF(P,2,2) FOR P = 0.01 0.01 TITLE GAMMA = 5, MU = 2 PLOT RIGPPF(P,5,2) FOR P = 0.01 0.01 END OF MULTIPLOT JUSTIFICATION CENTER MOVE 50 97 CASE ASIS TEXT Reciprocal Inverse Gaussian Percent Point ![]()
Date created: 7/7/2004 |