|
RIGCDFName:
and .
with The reciprocal inverse Gaussian distribution can be computed in terms of the inverse Gaussian distribution by
The reciprocal inverse Gaussian distribution can be generalized with location and scale parameters in the usual way.
<SUBSET/EXCEPT/FOR qualification> where <x> is a variable or a parameter; <gamma> is number or parameter that specifies the first shape parameter; <mu> is number or parameter that specifies the second shape parameter; <loc> is number or parameter that specifies the location parameter; <scale> is number or parameter that specifies the scale parameter; <y> is a variable or a parameter (depending on what <x> is) where the computed reciprocal inverse Gaussian cdf value is stored; and where the <SUBSET/EXCEPT/FOR qualification> is optional. Note that the location and scale parameters are optional.
LET A = RIGCDF(A1,2,1) LET X2 = RIGCDF(X1,2,3) PLOT RIGCDF(X,2,1.5) FOR X = 0.1 0.1 5
"Statistical Distributions", Third Edition, Evans, Hastings, and Peacock, Wiley, 2000, pp. 114-116.
2003/12: Modified to treat as
a shape parameter instead of a location parameter.
Y1LABEL Probability
X1LABEL X
LABEL CASE ASIS
X1LABEL DISPLACEMENT 12
Y1LABEL DISPLACEMENT 12
MULTIPLOT SCALE FACTOR 2
MULTIPLOT 2 2
MULTIPLOT CORNER COORDINATES 0 0 100 95
TITLE GAMMA = 2, MU = 1
PLOT RIGCDF(X,2,1) FOR X = 0.01 0.01 5
TITLE GAMMA = 5, MU = 1
PLOT RIGCDF(X,5,1) FOR X = 0.01 0.01 5
TITLE GAMMA = 2, MU = 2
PLOT RIGCDF(X,2,2) FOR X = 0.01 0.01 5
TITLE GAMMA = 5, MU = 2
PLOT RIGCDF(X,5,2) FOR X = 0.01 0.01 5
END OF MULTIPLOT
JUSTIFICATION CENTER
MOVE 50 97
CASE ASIS
TEXT Reciprocal Inverse Gaussian CDF
Date created: 7/7/2004 |