|
LBEPPFName:
with and denoting the shape parameters of the underlying beta distribution, c and d denoting the lower and upper limits of the log beta distribution, and BETPPF denoting the beta percent point function. The log beta distribution can be generalized with location and scale parameters in the usual way.
<SUBSET/EXCEPT/FOR qualification> where <p> is a number, parameter, or variable in the interval (0,1); <alpha> is a number, parameter, or variable that specifies the first shape parameter; <beta> is a number, parameter, or variable that specifies the second shape parameter; <c> is a number, parameter, or variable that specifies the third shape parameter; <d> is a number, parameter, or variable that specifies the fourth shape parameter; <loc> is a number, parameter, or variable that specifies the optional location parameter; <scale> is a number, parameter, or variable that specifies the optional scale parameter; <y> is a variable or a parameter (depending on what <p> is) where the computed log beta ppf value is stored; and where the <SUBSET/EXCEPT/FOR qualification> is optional. The location and scale parameters are optional (the default values are zero and one, respectively).
LET Y = LBEPPF(P,ALPHA,BETA,C,D) PLOT LBEPPF(P,6,6,1,3) FOR P = 0.01 0.01 0.99
title displacement 2 y1label displacement 17 x1label displacement 12 case asis title case asis label case asis x1label Probability y1label X . let c = 1 let d = 3 . multiplot corner coordinates 0 0 100 95 multiplot scale factor 2 multiplot 2 2 . title Alpha = 3, Beta = 3 plot lbeppf(p,3,3,c,d) for p = 0.01 0.01 0.99 . title Alpha = 5, Beta = 2 plot lbeppf(p,5,2,c,d) for p = 0.01 0.01 0.99 . title Alpha = 2, Beta = 5 plot lbeppf(p,2,5,c,d) for p = 0.01 0.01 0.99 . title Alpha = 5, Beta = 1 plot lbeppf(p,5,1,c,d) for p = 0.01 0.01 0.99 . end of multiplot . justification center move 50 97 text Log Beta Percent Point Functions
Date created: 8/23/2006 |