![]() |
K SAMPLE PERMUATION TESTName:
The NITER computed statistics represent the reference distribution. The statistic for the original data is compared to this reference distribution. For example, the cut-offs for a two-sided 95% test are obtained from the 2.5% and 97.5% percentiles of the reference distribution. The permutation test is based on all possible permutations of the data. However, the number of permutations grows rapidly as the sample size increases. sampling a subset of all possible permutations provides a reasonable approximation for the permutation test. By default, Dataplot generates 4,000 iterations. To change this, enter the command
If <value> is less than 100, it will be set to 100. If <value> is greater than 100,000, it will be set to 100,000. The specified statistic should be one that can be computed from a single response variable with a corresponding group-id variable. This test is most commonly used with F statistic obtained from a one way analysis of variance. Permutation tests assume the observations are independent. However, no distributional assumptions are made about the response variable.
<SUBSET/EXCEPT/FOR qualification> where <stat> is the desired statistic; <y> is the response variable; <x> is the group-id variable; and where the <SUBSET/EXCEPT/FOR qualification> is optional. If LOWER TAILED is specified, a lower tailed test is performed. If UPPER TAILED is specified, an upper tailed test is performed. If neither LOWER TAILED or UPPER TAILED is specified, a two-tailed test is performed.
UPPER TAILED K SAMPLE ONE WAY ANOVA F STATISTIC PERMUATION TEST Y X UPPER TAILED K SAMPLE KRUSKAL WALLIS TEST PERMUATION TEST Y X
ONE WAY ANOVA SUM OF SQUARES TOTAL ONE WAY ANOVA SUM OF SQUARES TREATEMENT ONE WAY ANOVA SUM OF SQUARES ERROR ONE WAY ANOVA MEAN SQUARE ERROR ONE WAY ANOVA MEAN SQUARE TREATMENT KRUSKAL WALLIS TEST REPEATABILITY STANDARD DEVIATION REPRODUCIBILITY STANDARD DEVIATION ANDERSON DARLING K SAMPLE TEST COCHRAN VARIANCE OUTLIER TEST COCHRAN MINIMUM VARIANCE OUTLIER TEST SQUARED RANKS TEST MEDIAN TEST Of these, the ONE WAY ANOVA F STATISTIC and KRUSKAL WALLIS TEST statisics are probably the ones of most interest.
Note that although this example compares differences of means, you could use other location statistics such as the MEDIAN or BIWEIGHT LOCATION.
Knoble RANDPERM algorithm downloaded from: "http://coding.derkeiler.com/Archive/Fortran/comp.lang.fortran/ 2006-03/msg00748.html" Higgins (2004), "Introduction to Modern Nonparametric Statistics," Duxbury Press, Chapter 3.
set permutation test sample size 5000 set random number generator fibbonacci congruential seed 88807 . . Step 1: Create the data (from Higgins, p. 85) . read x y 1 6.08 1 22.29 1 7.51 1 34.36 1 23.68 2 30.45 2 22.71 2 44.52 2 31.47 2 36.81 3 32.04 3 28.03 3 32.74 3 23.84 3 29.64 end of data . . Step 2: Perform the permutation test . upper tailed k sample one way anova f statistic permutation test y xThe following output is generated K-Sample Permutation Test ONE WAY ANOVA F-VALUE Response Variable: Y Group-ID Variable: X Test: Number of Permutation Samples: 5000 Statistic Value: 3.78144 Test CDF Value: 0.95040 Test P-Value: 0.04960 Conclusions (Upper 1-Tailed Test) ------------------------------------------------------------ Null Significance Test Critical Hypothesis Level Statistic Region (>=) Conclusion ------------------------------------------------------------ 80.0% 3.78144 1.85538 REJECT 90.0% 3.78144 2.78072 REJECT 95.0% 3.78144 3.77866 REJECT 99.0% 3.78144 6.03793 ACCEPT . . Step 3: Plot the results . title offset 7 title case asis label case asis y1label Count x1label One Way Anova F-Statistic for Permutations let statval = round(statval,4) let p95 = round(p95,3) let p99 = round(p99,3) let pval = round(pvalueut,4) let statcdf = round(statcdf,4) . x2label color red x2label One Way Anova F-Statistic for Original Sample: ^statval x3label color blue x3label 95 Percentile: ^P95, 99 Percentile: ^P99 xlimits -5.0 10.0 let niter = 5000 skip 1 read dpst1f.dat z title Histogram of One Way Anova F Statistic for ^niter Permutationscr() ... (Pvalue: ^pval, CDF: ^statcdf) . histogram z . line color red line dash line thickness 0.3 drawdsds statval 20 statval 90 line thickness 0.1 line color blue line dash drawdsds p95 20 p95 90 drawdsds p99 20 p99 90 . . Step 4: Multiple comparisons . let xdist = distinct x let ndist = size xdist let icnt = 0 if ndist >= 3 loop for k = 1 1 ndist let xval1 = xdist(k) let jstrt = k + 1 loop for j = jstrt 1 ndist let xval2 = xdist(j) let ytemp1 = y let ytemp2 = y retain ytemp1 subset x = xval1 retain ytemp2 subset x = xval2 two sample mean permutation test ytemp1 ytemp2 let icnt = icnt + 1 let group1(icnt) = xval1 let group2(icnt) = xval2 let pvalmc(icnt) = pvalue2t delete ytemp1 ytemp2 end of loop end of loop end of if write1 ksamp_mc.out " Group-ID One Group-ID Two P-Value" write1 ksamp_mc.out "----------------------------------------------" write1 ksamp_mc.out group1 group2 pvalmcThe file "ksamp_mc.out" contains Group-ID One Group-ID Two P-Value ---------------------------------------------- 1.00000 2.00000 0.05840 1.00000 3.00000 0.11320 2.00000 3.00000 0.36960Program 2: set permutation test sample size 5000 set random number generator fibbonacci congruential seed 49217 . . Step 1: Create the data (from Higgins, p. 85) . read x y 1 6.08 1 22.29 1 7.51 1 34.36 1 23.68 2 30.45 2 22.71 2 44.52 2 31.47 2 36.81 3 32.04 3 28.03 3 32.74 3 23.84 3 29.64 end of data . . Step 2: Perform the permutation test . echo on upper tailed k sample one way anova f statistic permutation test y x upper tailed k sample kruskal wallis test permutation test y x kruskal wallis y x upper tailed k sample squared ranks test permutation test y x squared ranks y x upper tailed k sample anderson darling k sample test permutation test y x anderson darling k sample test y x upper tailed k sample cochran variance outlier test permutation test y x cochran variance outlier test y x upper tailed k sample median test permutation test y x median test y x echo offThe following output is generated **************************************************************************** ** upper tailed k sample one way anova f statistic permutation test y x ** **************************************************************************** K-Sample Permutation Test ONE WAY ANOVA F-VALUE Response Variable: Y Group-ID Variable: X Test: Number of Permutation Samples: 5000 Statistic Value: 3.78144 Test CDF Value: 0.94720 Test P-Value: 0.05280 Conclusions (Upper 1-Tailed Test) ------------------------------------------------------------ Null Significance Test Critical Hypothesis Level Statistic Region (>=) Conclusion ------------------------------------------------------------ 80.0% 3.78144 1.92732 REJECT 90.0% 3.78144 2.90249 REJECT 95.0% 3.78144 3.89597 ACCEPT 99.0% 3.78144 6.12665 ACCEPT ********************************************************************** ** upper tailed k sample kruskal wallis test permutation test y x ** ********************************************************************** K-Sample Permutation Test KRUSKALL WALLIS TEST Response Variable: Y Group-ID Variable: X Test: Number of Permutation Samples: 5000 Statistic Value: 4.16000 Test CDF Value: 0.86820 Test P-Value: 0.12500 Conclusions (Upper 1-Tailed Test) ------------------------------------------------------------ Null Significance Test Critical Hypothesis Level Statistic Region (>=) Conclusion ------------------------------------------------------------ 80.0% 4.16000 3.42000 REJECT 90.0% 4.16000 4.56000 ACCEPT 95.0% 4.16000 5.82000 ACCEPT 99.0% 4.16000 8.00000 ACCEPT ************************** ** kruskal wallis y x ** ************************** Kruskal-Wallis One Factor Test Response Variable: Y Group-ID Variable: X H0: Samples Come From Identical Populations Ha: Samples Do Not Come From Identical Populations Summary Statistics: Total Number of Observations: 15 Number of Groups: 3 Kruskal-Wallis Test Statistic Value: 4.16000 CDF of Test Statistic: 0.87507 P-Value: 0.12493 Percent Points of the Chi-Square Reference Distribution ----------------------------------- Percent Point Value ----------------------------------- 0.0 = 0.000 50.0 = 1.386 75.0 = 2.773 90.0 = 4.605 95.0 = 5.991 97.5 = 7.378 99.0 = 9.210 99.9 = 13.816 Conclusions (Upper 1-Tailed Test) ---------------------------------------------- Alpha CDF Critical Value Conclusion ---------------------------------------------- 10% 90% 4.605 Accept H0 5% 95% 5.991 Accept H0 2.5% 97.5% 7.378 Accept H0 1% 99% 9.210 Accept H0 Multiple Comparisons Table --------------------------------------------------------------------------------------- I J |Ri/Ni - Rj/Nj| 90% CV 95% CV 99% CV P-VALUE --------------------------------------------------------------------------------------- 1 2 5.60000 4.56488 5.58048 7.82344 0.00006 1 3 4.00000 4.56488 5.58048 7.82344 0.00088 2 3 1.60000 4.56488 5.58048 7.82344 0.06779 ********************************************************************* ** upper tailed k sample squared ranks test permutation test y x ** ********************************************************************* K-Sample Permutation Test SQUARED RANK TEST Response Variable: Y Group-ID Variable: X Test: Number of Permutation Samples: 5000 Statistic Value: 5.23351 Test CDF Value: 0.77720 Test P-Value: 0.22280 Conclusions (Upper 1-Tailed Test) ------------------------------------------------------------ Null Significance Test Critical Hypothesis Level Statistic Region (>=) Conclusion ------------------------------------------------------------ 80.0% 5.23351 5.48205 ACCEPT 90.0% 5.23351 6.52571 ACCEPT 95.0% 5.23351 7.77241 ACCEPT 99.0% 5.23351 9.57074 ACCEPT ************************* ** squared ranks y x ** ************************* Squared Ranks Test Response Variable: Y Group-ID Variable: X H0: Samples Have Equal Variability Ha: Samples Do Not Have Equal Variability Summary Statistics: Total Number of Observations: 15 Number of Groups: 3 Squared Ranks Test Statistic Value: 5.23351 CDF of Test Statistic: 0.92696 P-Value: 0.07304 Percent Points of the Chi-Square Reference Distribution ----------------------------------- Percent Point Value ----------------------------------- 0.0 = 0.000 50.0 = 1.386 75.0 = 2.773 90.0 = 4.605 95.0 = 5.991 97.5 = 7.378 99.0 = 9.210 99.9 = 13.816 Upper-Tailed Test: Chi-Square Approximation H0: Variances Are Equal; Ha: Variance Are Not Equal ------------------------------------------------------------ Null Significance Test Critical Hypothesis Level Statistic Value (>) Conclusion ------------------------------------------------------------ 80.0% 5.23351 3.21888 REJECT 90.0% 5.23351 4.60517 REJECT 95.0% 5.23351 5.99146 ACCEPT 99.0% 5.23351 9.21034 ACCEPT Multiple Comparisons Table --------------------------------------------------------------------------------------- I J |Si/Ni - Sj/Nj| 90% CV 95% CV 99% CV P-Value --------------------------------------------------------------------------------------- 1 2 63.20000 116.14987 171.14898 394.78593 0.25304 1 3 105.80000 116.14987 171.14898 394.78593 0.11705 2 3 42.60000 116.14987 171.14898 394.78593 0.39629 ********************************************************************************* ** upper tailed k sample anderson darling k sample test permutation test y x ** ********************************************************************************* K-Sample Permutation Test ANDERSON DARLING K-SAMPLE TEST Response Variable: Y Group-ID Variable: X Test: Number of Permutation Samples: 5000 Statistic Value: 1.76560 Test CDF Value: 0.92440 Test P-Value: 0.07560 Conclusions (Upper 1-Tailed Test) ------------------------------------------------------------ Null Significance Test Critical Hypothesis Level Statistic Region (>=) Conclusion ------------------------------------------------------------ 80.0% 1.76560 1.34619 REJECT 90.0% 1.76560 1.66064 REJECT 95.0% 1.76560 1.94778 ACCEPT 99.0% 1.76560 2.58359 ACCEPT ****************************************** ** anderson darling k sample test y x ** ****************************************** Anderson-Darling K-Sample Test for Common Groups Response Variable: Y Group-ID Variable: X H0: The Groups Are Homogeneous Ha: The Groups Are Not Homogeneous Summary Statistics: Total Number of Observations: 15 Number of Groups: 3 Minimum Batch Size: 5 Maximum Batch Size: 5 Test Statistic Value: 1.76560 Test Statistic Standard Error: 0.45946 Conclusions (Upper 1-Tailed Test) ------------------------------------------------------------------------ Null Null Significance Test Critical Hypothesis Hypothesis Level Statistic Region (>=) Conclusion ------------------------------------------------------------------------ Homogeneous 50.0% 1.76560 1.13711 REJECT Homogeneous 75.0% 1.76560 1.44702 REJECT Homogeneous 90.0% 1.76560 1.72594 REJECT Homogeneous 95.0% 1.76560 1.89286 ACCEPT Homogeneous 97.5% 1.76560 2.03764 ACCEPT Homogeneous 99.0% 1.76560 2.20598 ACCEPT Homogeneous 99.9% 1.76560 2.55696 ACCEPT ******************************************************************************** ** upper tailed k sample cochran variance outlier test permutation test y x ** ******************************************************************************** K-Sample Permutation Test COCHRAN VARIANCE OUTLIER TEST Response Variable: Y Group-ID Variable: X Test: Number of Permutation Samples: 5000 Statistic Value: 0.64473 Test CDF Value: 0.79260 Test P-Value: 0.20740 Conclusions (Upper 1-Tailed Test) ------------------------------------------------------------ Null Significance Test Critical Hypothesis Level Statistic Region (>=) Conclusion ------------------------------------------------------------ 80.0% 0.64473 0.64761 ACCEPT 90.0% 0.64473 0.69848 ACCEPT 95.0% 0.64473 0.82783 ACCEPT 99.0% 0.64473 0.88012 ACCEPT ***************************************** ** cochran variance outlier test y x ** ***************************************** Cochran Variance Outlier Test Response Variable: Y Group-ID Variable: X H0: Largest Variance is Not an Outlier Ha: Largest Variance is an Outlier Summary Statistics: Total Number of Observations: 15 Number of Groups: 3 Number of Groups with Positive Variance: 3 Group with Largest Variance: 1 Largest Variance: 141.84233 Sum of Variance: 880.01148 Cochran Test Statistic Value: 0.64473 CDF of Test Statistic: 0.82896 P-Value: 0.17104 Percent Points of the Reference Distribution ----------------------------------- Percent Point Value ----------------------------------- 0.1 = 0.40230 0.5 = 0.40308 1.0 = 0.40405 2.5 = 0.40698 5.0 = 0.41192 10.0 = 0.42201 25.0 = 0.45418 50.0 = 0.51726 75.0 = 0.60490 90.0 = 0.69343 95.0 = 0.74566 97.5 = 0.78836 99.0 = 0.83347 99.5 = 0.86083 99.9 = 0.90789 Conclusions (Upper 1-Tailed Test) ---------------------------------------------- Alpha CDF Critical Value Conclusion ---------------------------------------------- 10% 90% 0.69343 Accept H0 5% 95% 0.74566 Accept H0 2.5% 97.5% 0.78836 Accept H0 1% 99% 0.83347 Accept H0 ************************************************************** ** upper tailed k sample median test permutation test y x ** ************************************************************** K-Sample Permutation Test MEDIAN TEST Response Variable: Y Group-ID Variable: X Test: Number of Permutation Samples: 5000 Statistic Value: 3.75000 Test CDF Value: 0.70900 Test P-Value: 0.06440 Conclusions (Upper 1-Tailed Test) ------------------------------------------------------------ Null Significance Test Critical Hypothesis Level Statistic Region (>=) Conclusion ------------------------------------------------------------ 80.0% 3.75000 3.75000 REJECT 90.0% 3.75000 3.75000 REJECT 95.0% 3.75000 6.96429 ACCEPT 99.0% 3.75000 10.17857 ACCEPT *********************** ** median test y x ** *********************** Median Test Response Variable: Y Group-ID Variable: X H0: Samples Have Equal Medians Ha: At Least Two Samples Have Different Medians Summary Statistics: Original Number of Observations: 15 Number of Observations After Omitting Groups With Less Than Two Observations: 15 Number of Groups: 3 Grand Median: 30 Number of Points > the Grand Median: 7 Number of Points <= the Grand Median: 8 Median Test Statistic Value: 3.75000 CDF of Test Statistic: 0.84665 P-Value: 0.15335 Percent Points of the Chi-Square Reference Distribution ----------------------------------- Percent Point Value ----------------------------------- 0.0 = 0.000 50.0 = 1.386 75.0 = 2.773 90.0 = 4.605 95.0 = 5.991 97.5 = 7.378 99.0 = 9.210 99.9 = 13.816 Upper-Tailed Test: Chi-Square Approximation H0: Medians Are Equal; Ha: Medians Are Not Equal ------------------------------------------------------------ Null Significance Test Critical Hypothesis Level Statistic Value (>) Conclusion ------------------------------------------------------------ 90.0% 3.75000 4.60517 ACCEPT 95.0% 3.75000 5.99146 ACCEPT 97.5% 3.75000 7.37776 ACCEPT 99.0% 3.75000 9.21034 ACCEPT 99.9% 3.75000 13.81551 ACCEPT
Date created: 09/25/2023 |
Last updated: 09/25/2023 Please email comments on this WWW page to [email protected]. |