![]() |
CONFIDENCE LIMITSName:
with \( \bar{x} \), s, n, and t denoting the sample mean, the sample standard deviation, the sample size, and the percent point function of the t distribution, respectively. This confidence interval is based on the assumption that the underlying data is approximately normally distributed. However, this confidence interval is fairly robust against non-normality unless the sample size is small or the departure from normality is severe (in particular, the data is not too skewed).
<SUBSET/EXCEPT/FOR qualification> where <y> is the response variable; and where the <SUBSET/EXCEPT/FOR qualification> is optional. If LOWER is specified, a one-sided lower confidence limit is returned. If UPPER is specified, a one-sided upper confidence limit is returned. If neither is specified, a two-sided limit is returned. This syntax supports matrix arguments for the response variable.
<SUBSET/EXCEPT/FOR qualification> where <y1> .... <yk> is a list of 1 to 30 response variables; and where the <SUBSET/EXCEPT/FOR qualification> is optional. This syntax will generate a confidence interval for each of the response variables. The word MULTIPLOT is optional. That is,
is equivalent to
If LOWER is specified, a one-sided lower confidence limit is returned. If UPPER is specified, a one-sided upper confidence limit is returned. If neither is specified, a two-sided limit is returned. This syntax supports matrix arguments for the response variables.
<SUBSET/EXCEPT/FOR qualification> where <y> is the response variable; <x1> .... <xk> is a list of 1 to 6 group-id variables; and where the <SUBSET/EXCEPT/FOR qualification> is optional. This syntax performs a cross-tabulation of the <x1> ... <xk> and generates a confidence interval for each unique combination of the cross-tabulated values. For example, if X1 has 3 levels and X2 has 2 levels, six confidence intervals will be generated. If LOWER is specified, a one-sided lower confidence limit is returned. If UPPER is specified, a one-sided upper confidence limit is returned. If neither is specified, a two-sided limit is returned. This syntax does not support matrix arguments.
CONFIDENCE LIMITS Y1 SUBSET TAG > 2 MULTIPLE CONFIDENCE LIMITS Y1 TO Y5 REPLICATED CONFIDENCE LIMITS Y X
LET A = LOWER CONFIDENCE LIMIT Y The LET ALPHA = command is used to specify the significance level. In addition to the above LET command, built-in statistics are supported for about 20 different commands (enter HELP STATISTICS for details).
2010/3: Support for MULTIPLE and REPLICATION options 2010/3: Support for matrix options SKIP 25 READ ZARR13.DAT Y SET WRITE DECIMALS 5 CONFIDENCE LIMITS YThe following output is generated. Confidence Limits for the Mean (Two-Sided) Response Variable: Y Summary Statistics: Number of Observations: 195 Sample Mean: 9.26146 Sample Standard Deviation: 0.02278 Sample Standard Deviation of the Mean: 0.00163 ----------------------------------------------------------------- Confidence t t-Value X Lower Upper Value (%) Value SD(Mean) Limit Limit ----------------------------------------------------------------- 50.000 0.675 0.00110 9.26035 9.26256 75.000 1.153 0.00188 9.25957 9.26334 90.000 1.652 0.00269 9.25876 9.26415 95.000 1.972 0.00321 9.25824 9.26467 99.000 2.601 0.00424 9.25721 9.26570 99.900 3.341 0.00545 9.25600 9.26691 99.990 3.973 0.00648 9.25497 9.26794 99.999 4.536 0.00740 9.25405 9.26886Program 2: SKIP 25 READ GEAR.DAT Y X SET WRITE DECIMALS 5 REPLICATED CONFIDENCE LIMITS Y XThe following output is generated. Confidence Limits for the Mean (Two-Sided) Response Variable: Y Factor Variable 1: X 1.00000 Summary Statistics: Number of Observations: 10 Sample Mean: 0.99800 Sample Standard Deviation: 0.00434 Sample Standard Deviation of the Mean: 0.00137 ----------------------------------------------------------------- Confidence t t-Value X Lower Upper Value (%) Value SD(Mean) Limit Limit ----------------------------------------------------------------- 50.000 0.702 0.00096 0.99703 0.99896 75.000 1.229 0.00169 0.99630 0.99969 90.000 1.833 0.00251 0.99548 1.00051 95.000 2.262 0.00310 0.99489 1.00110 99.000 3.249 0.00446 0.99353 1.00246 99.900 4.779 0.00656 0.99143 1.00456 99.990 6.584 0.00904 0.98895 1.00704 99.999 8.794 0.01208 0.98591 1.01008 Confidence Limits for the Mean (Two-Sided) Response Variable: Y Factor Variable 1: X 2.00000 Summary Statistics: Number of Observations: 10 Sample Mean: 0.99910 Sample Standard Deviation: 0.00521 Sample Standard Deviation of the Mean: 0.00164 ----------------------------------------------------------------- Confidence t t-Value X Lower Upper Value (%) Value SD(Mean) Limit Limit ----------------------------------------------------------------- 50.000 0.702 0.00115 0.99794 1.00025 75.000 1.229 0.00202 0.99707 1.00112 90.000 1.833 0.00302 0.99607 1.00212 95.000 2.262 0.00373 0.99536 1.00283 99.000 3.249 0.00536 0.99373 1.00446 99.900 4.779 0.00788 0.99121 1.00698 99.990 6.584 0.01086 0.98823 1.00996 99.999 8.794 0.01450 0.98459 1.01360 Confidence Limits for the Mean (Two-Sided) Response Variable: Y Factor Variable 1: X 3.00000 Summary Statistics: Number of Observations: 10 Sample Mean: 0.99540 Sample Standard Deviation: 0.00397 Sample Standard Deviation of the Mean: 0.00125 ----------------------------------------------------------------- Confidence t t-Value X Lower Upper Value (%) Value SD(Mean) Limit Limit ----------------------------------------------------------------- 50.000 0.702 0.00088 0.99451 0.99628 75.000 1.229 0.00154 0.99385 0.99694 90.000 1.833 0.00230 0.99309 0.99770 95.000 2.262 0.00284 0.99255 0.99824 99.000 3.249 0.00408 0.99131 0.99948 99.900 4.779 0.00601 0.98938 1.00141 99.990 6.584 0.00828 0.98711 1.00368 99.999 8.794 0.01106 0.98433 1.00646 Confidence Limits for the Mean (Two-Sided) Response Variable: Y Factor Variable 1: X 4.00000 Summary Statistics: Number of Observations: 10 Sample Mean: 0.99820 Sample Standard Deviation: 0.00385 Sample Standard Deviation of the Mean: 0.00121 ----------------------------------------------------------------- Confidence t t-Value X Lower Upper Value (%) Value SD(Mean) Limit Limit ----------------------------------------------------------------- 50.000 0.702 0.00085 0.99734 0.99905 75.000 1.229 0.00149 0.99670 0.99969 90.000 1.833 0.00223 0.99596 1.00043 95.000 2.262 0.00275 0.99544 1.00095 99.000 3.249 0.00395 0.99424 1.00215 99.900 4.779 0.00582 0.99237 1.00402 99.990 6.584 0.00802 0.99017 1.00622 99.999 8.794 0.01071 0.98748 1.00891 Confidence Limits for the Mean (Two-Sided) Response Variable: Y Factor Variable 1: X 5.00000 Summary Statistics: Number of Observations: 10 Sample Mean: 0.99190 Sample Standard Deviation: 0.00757 Sample Standard Deviation of the Mean: 0.00239 ----------------------------------------------------------------- Confidence t t-Value X Lower Upper Value (%) Value SD(Mean) Limit Limit ----------------------------------------------------------------- 50.000 0.702 0.00168 0.99021 0.99358 75.000 1.229 0.00294 0.98895 0.99484 90.000 1.833 0.00439 0.98750 0.99629 95.000 2.262 0.00542 0.98647 0.99732 99.000 3.249 0.00778 0.98411 0.99968 99.900 4.779 0.01145 0.98044 1.00335 99.990 6.584 0.01578 0.97611 1.00768 99.999 8.794 0.02107 0.97082 1.01297 Confidence Limits for the Mean (Two-Sided) Response Variable: Y Factor Variable 1: X 6.00000 Summary Statistics: Number of Observations: 10 Sample Mean: 0.99879 Sample Standard Deviation: 0.00988 Sample Standard Deviation of the Mean: 0.00312 ----------------------------------------------------------------- Confidence t t-Value X Lower Upper Value (%) Value SD(Mean) Limit Limit ----------------------------------------------------------------- 50.000 0.702 0.00219 0.99660 1.00099 75.000 1.229 0.00384 0.99495 1.00264 90.000 1.833 0.00573 0.99306 1.00453 95.000 2.262 0.00707 0.99172 1.00587 99.000 3.249 0.01015 0.98864 1.00895 99.900 4.779 0.01494 0.98385 1.01374 99.990 6.584 0.02058 0.97821 1.01938 99.999 8.794 0.02749 0.97130 1.02629 Confidence Limits for the Mean (Two-Sided) Response Variable: Y Factor Variable 1: X 7.00000 Summary Statistics: Number of Observations: 10 Sample Mean: 1.00150 Sample Standard Deviation: 0.00787 Sample Standard Deviation of the Mean: 0.00249 ----------------------------------------------------------------- Confidence t t-Value X Lower Upper Value (%) Value SD(Mean) Limit Limit ----------------------------------------------------------------- 50.000 0.702 0.00175 0.99974 1.00325 75.000 1.229 0.00306 0.99843 1.00456 90.000 1.833 0.00456 0.99693 1.00606 95.000 2.262 0.00563 0.99586 1.00713 99.000 3.249 0.00809 0.99340 1.00959 99.900 4.779 0.01190 0.98959 1.01340 99.990 6.584 0.01640 0.98509 1.01790 99.999 8.794 0.02190 0.97959 1.02340 Confidence Limits for the Mean (Two-Sided) Response Variable: Y Factor Variable 1: X 8.00000 Summary Statistics: Number of Observations: 10 Sample Mean: 1.00039 Sample Standard Deviation: 0.00362 Sample Standard Deviation of the Mean: 0.00114 ----------------------------------------------------------------- Confidence t t-Value X Lower Upper Value (%) Value SD(Mean) Limit Limit ----------------------------------------------------------------- 50.000 0.702 0.00080 0.99959 1.00120 75.000 1.229 0.00141 0.99898 1.00181 90.000 1.833 0.00210 0.99829 1.00250 95.000 2.262 0.00259 0.99780 1.00299 99.000 3.249 0.00372 0.99667 1.00412 99.900 4.779 0.00548 0.99491 1.00588 99.990 6.584 0.00755 0.99284 1.00795 99.999 8.794 0.01008 0.99031 1.01048 Confidence Limits for the Mean (Two-Sided) Response Variable: Y Factor Variable 1: X 9.00000 Summary Statistics: Number of Observations: 10 Sample Mean: 0.99829 Sample Standard Deviation: 0.00413 Sample Standard Deviation of the Mean: 0.00130 ----------------------------------------------------------------- Confidence t t-Value X Lower Upper Value (%) Value SD(Mean) Limit Limit ----------------------------------------------------------------- 50.000 0.702 0.00091 0.99738 0.99921 75.000 1.229 0.00160 0.99669 0.99990 90.000 1.833 0.00239 0.99590 1.00069 95.000 2.262 0.00296 0.99533 1.00126 99.000 3.249 0.00425 0.99404 1.00255 99.900 4.779 0.00625 0.99204 1.00455 99.990 6.584 0.00861 0.98968 1.00691 99.999 8.794 0.01150 0.98679 1.00980 Confidence Limits for the Mean (Two-Sided) Response Variable: Y Factor Variable 1: X 10.00000 Summary Statistics: Number of Observations: 10 Sample Mean: 0.99479 Sample Standard Deviation: 0.00532 Sample Standard Deviation of the Mean: 0.00168 ----------------------------------------------------------------- Confidence t t-Value X Lower Upper Value (%) Value SD(Mean) Limit Limit ----------------------------------------------------------------- 50.000 0.702 0.00118 0.99361 0.99598 75.000 1.229 0.00207 0.99272 0.99687 90.000 1.833 0.00308 0.99171 0.99788 95.000 2.262 0.00381 0.99098 0.99861 99.000 3.249 0.00547 0.98932 1.00027 99.900 4.779 0.00805 0.98674 1.00285 99.990 6.584 0.01109 0.98370 1.00589 99.999 8.794 0.01482 0.97997 1.00962
|
Privacy
Policy/Security Notice
NIST is an agency of the U.S.
Commerce Department.
Date created: 04/15/2013 |