![]() |
KAPPPFName:
![]()
with k and h denoting the shape parameters and
The standard form of the distribution is defined as
<SUBSET/EXCEPT/FOR qualification> where <p> is a number, parameter, or variable in the range (0,1); <k> is a number, parameter, or variable that specifies the first shape parameter; <h> is a number, parameter, or variable that specifies the second shape parameter; <xi> is a number, parameter, or variable that specifies the location parameter; <alpha> is a number, parameter, or variable that specifies the scale parameter; <y> is a variable or a parameter (depending on what <x> is) where the computed kappa ppf value is stored; and where the <SUBSET/EXCEPT/FOR qualification> is optional. The <xi> and <alpha> parameters are optional.
LET X2 = KAPPPF(P1,K,H)
J. R. M. Hosking (2000), "Research Report: Fortran Routines for use with the Method of L-Moments", IBM Research Division, T. J. Watson Research Center, Yorktown Heights, NY 10598. Hoskings (1990), "L-moments: Analysis and Estimation of Distribution using Linear Combinations of Order Statistics", Journal of the Royal Statistical Society, Series B, 52, pp. 105-124.
LET KP = DATA -0.5 0.1 0.5 1.0 LET H1 = -0.5 LET H2 = 0.1 LET H3 = 1 LET H4 = 2 . MULTIPLOT 2 2 MULTIPLOT CORNER COORDINATES 0 0 95 95 MULTIPLOT SCALE FACTOR 2 TITLE CASE ASIS TITLE OFFSET 2 X3LABEL LINE COLOR BLACK RED BLUE GREEN . LOOP FOR KK = 1 1 4 LET K = KP(KK) TITLE K = ^K, H = -0.5, 0.1, 1, 2 PLOT KAPPPF(P,K,H1) FOR P = 0.02 0.01 0.98 AND PLOT KAPPPF(P,K,H2) FOR P = 0.02 0.01 0.98 AND PLOT KAPPPF(P,K,H3) FOR P = 0.02 0.01 0.98 AND PLOT KAPPPF(P,K,H4) FOR P = 0.02 0.01 0.98 END OF LOOP END OF MULTIPLOT . CASE ASIS JUSTIFICATION CENTER MOVE 50 97 TEXT Kappa PPF Functions ![]()
Date created: 7/7/2009 |