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5. Process Improvement 

5.1. Introduction

This section
describes
the basic
concepts of
the Design
of
Experiments
(DOE)

This section introduces the basic concepts, terminology, goals
and procedures underlying the proper statistical design of
experiments. Design of experiments is abbreviated as DOE
throughout this chapter.

Topics covered are:

What is experimental design or DOE?
What are the goals or uses of DOE?
What are the steps in DOE?
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5.1.1. What is experimental design?

Experimental
Design (or
DOE)
economically
maximizes
information

In an experiment, we deliberately change one or more process
variables (or factors) in order to observe the effect the changes have
on one or more response variables. The (statistical) design of
experiments (DOE) is an efficient procedure for planning experiments
so that the data obtained can be analyzed to yield valid and objective
conclusions. 

DOE begins with determining the objectives of an experiment and
selecting the process factors for the study. An Experimental Design is
the laying out of a detailed experimental plan in advance of doing the
experiment. Well chosen experimental designs maximize the amount
of "information" that can be obtained for a given amount of
experimental effort. 

The statistical theory underlying DOE generally begins with the
concept of process models.

Process Models for DOE

Black box
process
model

It is common to begin with a process model of the `black box' type,
with several discrete or continuous input factors that can be
controlled--that is, varied at will by the experimenter--and one or
more measured output responses. The output responses are assumed
continuous. Experimental data are used to derive an empirical
(approximation) model linking the outputs and inputs. These
empirical models generally contain first and second-order terms.

Often the experiment has to account for a number of uncontrolled
factors that may be discrete, such as different machines or operators,
and/or continuous such as ambient temperature or humidity. Figure
1.1 illustrates this situation.

Schematic
for a typical
process with
controlled
inputs,
outputs,
discrete
uncontrolled
factors and
continuous
uncontrolled
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factors

FIGURE 1.1  A `Black Box' Process Model Schematic

Models for
DOE's

The most common empirical models fit to the experimental data take
either a linear form or quadratic form.

Linear model A linear model with two factors, X1 and X2, can be written as

Here, Y is the response for given levels of the main effects X1 and X2
and the X1X2 term is included to account for a possible interaction
effect between X1 and X2. The constant 0 is the response of Y when
both main effects are 0.

For a more complicated example, a linear model with three factors
X1, X2, X3 and one response, Y, would look like (if all possible terms
were included in the model)

The three terms with single "X's" are the main effects terms. There are
k(k-1)/2 = 3*2/2 = 3 two-way interaction terms and 1 three-way
interaction term (which is often omitted, for simplicity). When the
experimental data are analyzed, all the unknown " " parameters are
estimated and the coefficients of the "X" terms are tested to see which



5.1.1. What is experimental design?

http://www.itl.nist.gov/div898/handbook/pri/section1/pri11.htm[6/27/2012 2:23:29 PM]

ones are significantly different from 0.

Quadratic
model

A second-order (quadratic) model (typically used in response surface
DOE's with suspected curvature) does not include the three-way
interaction term but adds three more terms to the linear model,
namely

.

Note: Clearly, a full model could include many cross-product (or
interaction) terms involving squared X's. However, in general these
terms are not needed and most DOE software defaults to leaving them
out of the model.
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5.1.2. What are the uses of DOE?

DOE is a
multipurpose
tool that can
help in many
situations

Below are seven examples illustrating situations in which experimental design can
be used effectively:

Choosing Between Alternatives
Selecting the Key Factors Affecting a Response
Response Surface Modeling to:

Hit a Target
Reduce Variability
Maximize or Minimize a Response
Make a Process Robust (i.e., the process gets the "right" results even
though there are uncontrollable "noise" factors)
Seek Multiple Goals

Regression Modeling

Choosing Between Alternatives (Comparative Experiment)

A common
use is
planning an
experiment
to gather
data to make
a decision
between two
or more
alternatives

Supplier A vs. supplier B? Which new additive is the most effective? Is catalyst `x'
an improvement over the existing catalyst? These and countless other choices
between alternatives can be presented to us in a never-ending parade. Often we have
the choice made for us by outside factors over which we have no control. But in
many cases we are also asked to make the choice. It helps if one has valid data to
back up one's decision.

The preferred solution is to agree on a measurement by which competing choices
can be compared, generate a sample of data from each alternative, and compare
average results. The 'best' average outcome will be our preference. We have
performed a comparative experiment!

Types of
comparitive
studies

Sometimes this comparison is performed under one common set of conditions. This
is a comparative study with a narrow scope - which is suitable for some initial
comparisons of possible alternatives. Other comparison studies, intended to validate
that one alternative is perferred over a wide range of conditions, will purposely and
systematically vary the background conditions under which the primary comparison
is made in order to reach a conclusion that will be proven valid over a broad scope.
We discuss experimental designs for each of these types of comparisons in Sections
5.3.3.1 and 5.3.3.2.

Selecting the Key Factors Affecting a Response (Screening Experiments)

Selecting the
few that

Often there are many possible factors, some of which may be critical and others
which may have little or no effect on a response. It may be desirable, as a goal by
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matter from
the many
possible
factors

itself, to reduce the number of factors to a relatively small set (2-5) so that attention
can be focussed on controlling those factors with appropriate specifications, control
charts, etc.

Screening experiments are an efficient way, with a minimal number of runs, of
determining the important factors. They may also be used as a first step when the
ultimate goal is to model a response with a response surface. We will discuss
experimental designs for screening a large number of factors in Sections 5.3.3.3,
5.3.3.4 and 5.3.3.5.

Response Surface Modeling a Process

Some
reasons to
model a
process

Once one knows the primary variables (factors) that affect the responses of interest,
a number of additional objectives may be pursued. These include:

Hitting a Target
Maximizing or Minimizing a Response
Reducing Variation
Making a Process Robust
Seeking Multiple Goals

What each of these purposes have in common is that experimentation is used to fit a
model that may permit a rough, local approximation to the actual surface. Given that
the particular objective can be met with such an approximate model, the
experimental effort is kept to a minimum while still achieving the immediate goal.

These response surface modeling objectives will now be briefly expanded upon.

Hitting a Target

Often we
want to "fine
tune" a
process to
consistently
hit a target

This is a frequently encountered goal for an experiment.

One might try out different settings until the desired target is `hit' consistently. For
example, a machine tool that has been recently overhauled may require some setup
`tweaking' before it runs on target. Such action is a small and common form of
experimentation. However, rather than experimenting in an ad hoc manner until we
happen to find a setup that hits the target, one can fit a model estimated from a
small experiment and use this model to determine the necessary adjustments to hit
the target.

More complex forms of experimentation, such as the determination of the correct
chemical mix of a coating that will yield a desired refractive index for the dried coat
(and simultaneously achieve specifications for other attributes), may involve many
ingredients and be very sensitive to small changes in the percentages in the mix.
Fitting suitable models, based on sequentially planned experiments, may be the only
way to efficiently achieve this goal of hitting targets for multiple responses
simultaneously.

Maximizing or Minimizing a Response

Optimizing a
process
output is a
common

Many processes are being run at sub-optimal settings, some of them for years, even
though each factor has been optimized individually over time. Finding settings that
increase yield or decrease the amount of scrap and rework represent opportunities
for substantial financial gain. Often, however, one must experiment with multiple
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goal inputs to achieve a better output. Section 5.3.3.6 on second-order designs plus
material in Section 5.5.3 will be useful for these applications.

FIGURE 1.1  Pathway up the process response surface to an `optimum'

Reducing Variation

Processes
that are on
target, on
the average,
may still
have too
much
variability

A process may be performing with unacceptable consistency, meaning its internal
variation is too high.

Excessive variation can result from many causes. Sometimes it is due to the lack of
having or following standard operating procedures. At other times, excessive
variation is due to certain hard-to-control inputs that affect the critical output
characteristics of the process. When this latter situation is the case, one may
experiment with these hard-to-control factors, looking for a region where the surface
is flatter and the process is easier to manage. To take advantage of such flatness in
the surface, one must use designs - such as the second-order designs of Section
5.3.3.6 - that permit identification of these features. Contour or surface plots are
useful for elucidating the key features of these fitted models. See also 5.5.3.1.4.

Graph of
data before
variation
reduced
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It might be possible to reduce the variation by altering the setpoints (recipe) of the
process, so that it runs in a more `stable' region.

Graph of
data after
process
variation
reduced

Finding this new recipe could be the subject of an experiment, especially if there are
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many input factors that could conceivably affect the output.

Making a Process Robust

The less a
process or
product is
affected by
external
conditions,
the better it
is - this is
called
"Robustness"

An item designed and made under controlled conditions will be later `field tested' in
the hands of the customer and may prove susceptible to failure modes not seen in
the lab or thought of by design. An example would be the starter motor of an
automobile that is required to operate under extremes of external temperature. A
starter that performs under such a wide range is termed `robust' to temperature.

Designing an item so that it is robust calls for a special experimental effort. It is
possible to stress the item in the design lab and so determine the critical components
affecting its performance. A different gauge of armature wire might be a solution to
the starter motor, but so might be many other alternatives. The correct combination
of factors can be found only by experimentation.

Seeking Multiple Goals

Sometimes
we have
multiple
outputs and
we have to
compromise
to achieve
desirable
outcomes -
DOE can
help here

A product or process seldom has just one desirable output characteristic. There are
usually several, and they are often interrelated so that improving one will cause a
deterioration of another. For example: rate vs. consistency; strength vs. expense; etc.

Any product is a trade-off between these various desirable final characteristics.
Understanding the boundaries of the trade-off allows one to make the correct
choices. This is done by either constructing some weighted objective function
(`desirability function') and optimizing it, or examining contour plots of responses
generated by a computer program, as given below.

Sample
contour plot
of deposition
rate and
capability

FIGURE 1.4  Overlaid contour plot of Deposition Rate and Capability (Cp)

Regression Modeling
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Regression
models
(Chapter 4)
are used to
fit more
precise
models

Sometimes we require more than a rough approximating model over a local region.
In such cases, the standard designs presented in this chapter for estimating first- or
second-order polynomial models may not suffice. Chapter 4 covers the topic of
experimental design and analysis for fitting general models for a single explanatory
factor. If one has multiple factors, and either a nonlinear model or some other
special model, the computer-aided designs of Section 5.5.2 may be useful.
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5.1. Introduction 

5.1.3. What are the steps of DOE?

Key steps for
DOE

Obtaining good results from a DOE involves these seven
steps:

1. Set objectives
2. Select process variables
3. Select an experimental design
4. Execute the design
5. Check that the data are consistent with the

experimental assumptions 
6. Analyze and interpret the results
7. Use/present the results (may lead to further runs or

DOE's).

A checklist of
practical
considerations

Important practical considerations in planning and running
experiments are

Check performance of gauges/measurement devices
first.
Keep the experiment as simple as possible.
Check that all planned runs are feasible.
Watch out for process drifts and shifts during the
run.
Avoid unplanned changes (e.g., swap operators at
halfway point).
Allow some time (and back-up material) for
unexpected events.
Obtain buy-in from all parties involved.
Maintain effective ownership of each step in the
experimental plan.
Preserve all the raw data--do not keep only summary
averages!
Record everything that happens.
Reset equipment to its original state after the
experiment.

 The Sequential or Iterative Approach to DOE

Planning to
do a sequence
of small
experiments is

It is often a mistake to believe that `one big experiment
will give the answer.'

A more useful approach to experimental design is to

http://www.itl.nist.gov/div898/handbook/index.htm
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often better
than relying
on one big
experiment to
give you all
the answers

recognize that while one experiment might provide a
useful result, it is more common to perform two or three,
or maybe more, experiments before a complete answer is
attained. In other words, an iterative approach is best and,
in the end, most economical. Putting all one's eggs in one
basket is not advisable.

Each stage
provides
insight for
next stage

The reason an iterative approach frequently works best is
because it is logical to move through stages of
experimentation, each stage providing insight as to how the
next experiment should be run.

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/


5.2. Assumptions

http://www.itl.nist.gov/div898/handbook/pri/section2/pri2.htm[6/27/2012 2:23:32 PM]

 

5. Process Improvement 

5.2. Assumptions

We should
check the
engineering
and model-
building
assumptions
that are
made in
most DOE's

In all model building we make assumptions, and we also
require certain conditions to be approximately met for
purposes of estimation. This section looks at some of the
engineering and mathematical assumptions we typically
make. These are:

Are the measurement systems capable for all of your
responses?
Is your process stable?
Are your responses likely to be approximated well by
simple polynomial models?
Are the residuals (the difference between the model
predictions and the actual observations) well behaved?
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5.2.1. Is the measurement system capable?

Metrology
capabilities
are a key
factor in
most
experiments

It is unhelpful to find, after you have finished all the
experimental runs, that the measurement devices you have at
your disposal cannot measure the changes you were hoping
to see. Plan to check this out before embarking on the
experiment itself. Measurement process characterization is
covered in Chapter 2.

SPC check
of
measurement
devices

In addition, it is advisable, especially if the experimental
material is planned to arrive for measurement over a
protracted period, that an SPC (i.e., quality control) check is
kept on all measurement devices from the start to the
conclusion of the whole experimental project. Strange
experimental outcomes can often be traced to `hiccups' in
the metrology system.
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5.2.2. Is the process stable?

Plan to
examine
process
stability as
part of
your
experiment

Experimental runs should have control runs that are made at
the `standard' process setpoints, or at least at some standard
operating recipe. The experiment should start and end with
such runs. A plot of the outcomes of these control runs will
indicate if the underlying process itself has drifted or shifted
during the experiment.

It is desirable to experiment on a stable process. However, if
this cannot be achieved, then the process instability must be
accounted for in the analysis of the experiment. For example,
if the mean is shifting with time (or experimental trial run),
then it will be necessary to include a trend term in the
experimental model (i.e., include a time variable or a run
number variable).
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5.2.3. Is there a simple model?

Polynomial
approximation
models only
work for
smoothly
varying
outputs

In this chapter we restrict ourselves to the case for which the
response variable(s) are continuous outputs denoted as Y.
Over the experimental range, the outputs must not only be
continuous, but also reasonably smooth. A sharp falloff in Y
values is likely to be missed by the approximating
polynomials that we use because these polynomials assume a
smoothly curving underlying response surface.

Piecewise
smoothness
requires
separate
experiments

If the surface under investigation is known to be only
piecewise smooth, then the experiments will have to be
broken up into separate experiments, each investigating the
shape of the separate sections. A surface that is known to be
very jagged (i.e., non-smooth) will not be successfully
approximated by a smooth polynomial.

Examples of
piecewise
smooth and
jagged
responses

     Piecewise Smooth                                       Jagged
FIGURE 2.1  Examples of Piecewise 

Smooth and Jagged Responses
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5.2.4. Are the model residuals well-behaved?

Residuals are
the
differences
between the
observed and
predicted
responses

Residuals are estimates of experimental error obtained by subtracting the observed
responses from the predicted responses.

The predicted response is calculated from the chosen model, after all the unknown
model parameters have been estimated from the experimental data.

Examining residuals is a key part of all statistical modeling, including DOE's.
Carefully looking at residuals can tell us whether our assumptions are reasonable
and our choice of model is appropriate.

Residuals are
elements of
variation
unexplained
by fitted
model

Residuals can be thought of as elements of variation unexplained by the fitted
model. Since this is a form of error, the same general assumptions apply to the
group of residuals that we typically use for errors in general: one expects them to be
(roughly) normal and (approximately) independently distributed with a mean of 0
and some constant variance.

Assumptions
for residuals

These are the assumptions behind ANOVA and classical regression analysis. This
means that an analyst should expect a regression model to err in predicting a
response in a random fashion; the model should predict values higher than actual
and lower than actual with equal probability. In addition, the level of the error
should be independent of when the observation occurred in the study, or the size of
the observation being predicted, or even the factor settings involved in making the
prediction. The overall pattern of the residuals should be similar to the bell-shaped
pattern observed when plotting a histogram of normally distributed data.

We emphasize the use of graphical methods to examine residuals.

Departures
indicate
inadequate
model

Departures from these assumptions usually mean that the residuals contain structure
that is not accounted for in the model. Identifying that structure and adding term(s)
representing it to the original model leads to a better model.

Tests for Residual Normality

Plots for
examining
residuals

Any graph suitable for displaying the distribution of a set of data is suitable for
judging the normality of the distribution of a group of residuals.  The three most
common types are:

1. histograms,
2. normal probability plots, and
3. dot plots.

http://www.itl.nist.gov/div898/handbook/index.htm
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Histogram

The histogram is a frequency plot obtained by placing the data in regularly spaced
cells and plotting each cell frequency versus the center of the cell. Figure 2.2
illustrates an approximately normal distribution of residuals produced by a model for
a calibration process. We have superimposed a normal density function on the
histogram.

Small sample
sizes

Sample sizes of residuals are generally small (<50) because experiments have
limited treatment combinations, so a histogram is not be the best choice for judging
the distribution of residuals. A more sensitive graph is the normal probability plot.

Normal
probability
plot

The steps in forming a normal probability plot are:

Sort the residuals into ascending order.

Calculate the cumulative probability of each residual using the formula:

P(i-th residual) = i/(N+1)

with P denoting the cumulative probability of a point, i is the order of the
value in the list and N is the number of entries in the list.

Plot the calculated p-values versus the residual value on normal probability
paper.

The normal probability plot should produce an approximately straight line if the
points come from a normal distribution.

Sample Figure 2.3 below illustrates the normal probability graph created from the same
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normal
probability
plot with
overlaid dot
plot

group of residuals used for Figure 2.2.

This graph includes the addition of a dot plot. The dot plot is the collection of points
along the left y-axis. These are the values of the residuals. The purpose of the dot
plot is to provide an indication the distribution of the residuals.

"S" shaped
curves
indicate
bimodal
distribution

Small departures from the straight line in the normal probability plot are common,
but a clearly "S" shaped curve on this graph suggests a bimodal distribution of
residuals. Breaks near the middle of this graph are also indications of abnormalities
in the residual distribution.

NOTE: Studentized residuals are residuals converted to a scale approximately
representing the standard deviation of an individual residual from the center of the
residual distribution. The technique used to convert residuals to this form produces a
Student's t distribution of values.

Independence of Residuals Over Time

Run sequence
plot

If the order of the observations in a data table represents the order of execution of
each treatment combination, then a plot of the residuals of those observations versus
the case order or time order of the observations will test for any time dependency.
These are referred to as run sequence plots.

Sample run
sequence plot
that exhibits
a time trend

http://www.itl.nist.gov/div898/handbook/eda/section3/runseqpl.htm
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Sample run
sequence plot
that does not
exhibit a time
trend

Interpretation
of the sample
run sequence
plots

The residuals in Figure 2.4 suggest a time trend, while those in Figure 2.5 do not.
Figure 2.4 suggests that the system was drifting slowly to lower values as the
investigation continued. In extreme cases a drift of the equipment will produce
models with very poor ability to account for the variability in the data (low R2).
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If the investigation includes centerpoints, then plotting them in time order may
produce a more clear indication of a time trend if one exists. Plotting the raw
responses in time sequence can also sometimes detect trend changes in a process
that residual plots might not detect.

Plot of Residuals Versus Corresponding Predicted Values

Check for
increasing
residuals as
size of fitted
value
increases

Plotting residuals versus the value of a fitted response should produce a distribution
of points scattered randomly about 0, regardless of the size of the fitted value. Quite
commonly, however, residual values may increase as the size of the fitted value
increases. When this happens, the residual cloud becomes "funnel shaped" with the
larger end toward larger fitted values; that is, the residuals have larger and larger
scatter as the value of the response increases. Plotting the absolute values of the
residuals instead of the signed values will produce a "wedge-shaped" distribution; a
smoothing function is added to each graph which helps to show the trend.

Sample
residuals
versus fitted
values plot
showing
increasing
residuals

Sample
residuals
versus fitted
values plot
that does not
show
increasing
residuals
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Interpretation
of the
residuals
versus fitted
values plots

A residual distribution such as that in Figure 2.6 showing a trend to higher absolute
residuals as the value of the response increases suggests that one should transform
the response, perhaps by modeling its logarithm or square root, etc., (contractive
transformations). Transforming a response in this fashion often simplifies its
relationship with a predictor variable and leads to simpler models. Later sections
discuss transformation in more detail. Figure 2.7 plots the residuals after a
transformation on the response variable was used to reduce the scatter. Notice the
difference in scales on the vertical axes.

Independence of Residuals from Factor Settings

Sample
residuals
versus factor
setting plot
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Sample
residuals
versus factor
setting plot
after adding
a quadratic
term

Interpreation
of residuals
versus factor
setting plots

Figure 2.8 shows that the size of the residuals changed as a function of a predictor's
settings. A graph like this suggests that the model needs a higher-order term in that
predictor or that one should transform the predictor using a logarithm or square root,
for example. Figure 2.9 shows the residuals for the same response after adding a
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quadratic term. Notice the single point widely separated from the other residuals in
Figure 2.9. This point is an "outlier." That is, its position is well within the range of
values used for this predictor in the investigation, but its result was somewhat lower
than the model predicted. A signal that curvature is present is a trace resembling a
"frown" or a "smile" in these graphs.

Sample
residuals
versus factor
setting plot
lacking one
or more
higher-order
terms

Interpretation
of plot

The example given in Figures 2.8 and 2.9 obviously involves five levels of the
predictor. The experiment utilized a response surface design. For the simple factorial
design that includes center points, if the response model being considered lacked one
or more higher-order terms, the plot of residuals versus factor settings might appear
as in Figure 2.10.

Graph
indicates
prescence of
curvature

While the graph gives a definite signal that curvature is present, identifying the
source of that curvature is not possible due to the structure of the design. Graphs
generated using the other predictors in that situation would have very similar
appearances.

Additional
discussion of
residual
analysis

Note: Residuals are an important subject discussed repeatedly in this Handbook. For
example, graphical residual plots are discussed in Chapter 1 and the general
examination of residuals as a part of model building is discussed in Chapter 4.
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5.3. Choosing an experimental design

Contents of
Section 3

This section describes in detail the process of choosing an
experimental design to obtain the results you need. The basic
designs an engineer needs to know about are described in
detail.

Note that
this section
describes
the basic
designs
used for
most
engineering
and
scientific
applications

1. Set objectives
2. Select process variables and levels
3. Select experimental design

1. Completely randomized designs
2. Randomized block designs

1. Latin squares
2. Graeco-Latin squares
3. Hyper-Graeco-Latin squares

3. Full factorial designs
1. Two-level full factorial designs
2. Full factorial example
3. Blocking of full factorial designs

4. Fractional factorial designs
1. A 23-1 half-fraction design
2. How to construct a 23-1  design
3. Confounding
4. Design resolution
5. Use of fractional factorial designs
6. Screening designs
7. Fractional factorial designs summary

tables
5. Plackett-Burman designs
6. Response surface (second-order) designs

1. Central composite designs
2. Box-Behnken designs
3. Response surface design comparisons
4. Blocking a response surface design

7. Adding center points
8. Improving fractional design resolution

1. Mirror-image foldover designs
2. Alternative foldover designs

9. Three-level full factorial designs
10. Three-level, mixed level and fractional factorial

designs
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5.3.1. What are the objectives?

Planning
an
experiment
begins with
carefully
considering
what the
objectives
(or goals)
are

The objectives for an experiment are best determined by a
team discussion. All of the objectives should be written down,
even the "unspoken" ones.

The group should discuss which objectives are the key ones,
and which ones are "nice but not really necessary".
Prioritization of the objectives helps you decide which
direction to go with regard to the selection of the factors,
responses and the particular design. Sometimes prioritization
will force you to start over from scratch when you realize that
the experiment you decided to run does not meet one or more
critical objectives.

Types of
designs

Examples of goals were given earlier in Section 5.1.2, in
which we described four broad categories of experimental
designs, with various objectives for each. These were:

Comparative designs to:
choose between alternatives, with narrow scope,
suitable for an initial comparison (see Section
5.3.3.1)
choose between alternatives, with broad scope,
suitable for a confirmatory comparison (see
Section 5.3.3.2)

Screening designs to identify which factors/effects are
important

when you have 2 - 4 factors and can perform a
full factorial (Section 5.3.3.3)
when you have more than 3 factors and want to
begin with as small a design as possible (Section
5.3.3.4 and 5.3.3.5)
when you have some qualitative factors, or you
have some quantitative factors that are known to
have a non-monotonic effect (Section 3.3.3.10)

Note that some authors prefer to restrict the term
screening design to the case where you are trying to
extract the most important factors from a large (say >
5) list of initial factors (usually a fractional factorial
design). We include the case with a smaller number of
factors, usually a full factorial design, since the basic
purpose and analysis is similar.
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Response Surface modeling to achieve one or more of
the following objectives:

hit a target
maximize or minimize a response
reduce variation by locating a region where the
process is easier to manage
make a process robust (note: this objective may
often be accomplished with screening designs
rather than with response surface designs - see
Section 5.5.6)

Regression modeling
to estimate a precise model, quantifying the
dependence of response variable(s) on process
inputs.

Based on
objective,
where to
go next

After identifying the objective listed above that corresponds
most closely to your specific goal, you can

proceed to the next section in which we discuss
selecting experimental factors

and then

select the appropriate design named in section 5.3.3 that
suits your objective (and follow the related links).
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5.3.2. How do you select and scale the process
variables?

Guidelines
to assist the
engineering
judgment
process of
selecting
process
variables
for a DOE

Process variables include both inputs and outputs - i.e., factors and
responses. The selection of these variables is best done as a team effort.
The team should

Include all important factors (based on engineering judgment).
Be bold, but not foolish, in choosing the low and high factor
levels.
Check the factor settings for impractical or impossible
combinations - i.e., very low pressure and very high gas flows.
Include all relevant responses.
Avoid using only responses that combine two or more
measurements of the process. For example, if interested in
selectivity (the ratio of two etch rates), measure both rates, not
just the ratio.

Be careful
when
choosing
the
allowable
range for
each factor

We have to choose the range of the settings for input factors, and it is
wise to give this some thought beforehand rather than just try extreme
values. In some cases, extreme values will give runs that are not
feasible; in other cases, extreme ranges might move one out of a
smooth area of the response surface into some jagged region, or close to
an asymptote.

Two-level
designs
have just a 
"high" and
a "low"
setting for
each factor

The most popular experimental designs are two-level designs. Why
only two levels? There are a number of good reasons why two is the
most common choice amongst engineers: one reason is that it is ideal
for screening designs, simple and economical; it also gives most of the
information required to go to a multilevel response surface experiment
if one is needed.

Consider
adding
some center
points to
your two-
level design

The term "two-level design" is something of a misnomer, however, as
it is recommended to include some center points during the experiment
(center points are located in the middle of the design `box').

Notation for 2-Level Designs

http://www.itl.nist.gov/div898/handbook/index.htm
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Matrix
notation for
describing
an
experiment

The standard layout for a 2-level design uses +1 and -1 notation to
denote the "high level" and the "low level" respectively, for each factor.
For example, the matrix below

  Factor 1 (X1) Factor 2 (X2)
Trial 1 -1 -1
Trial 2 +1 -1
Trial 3 -1 +1
Trial 4 +1 +1

describes an experiment in which 4 trials (or runs) were conducted with
each factor set to high or low during a run according to whether the
matrix had a +1 or -1 set for the factor during that trial. If the
experiment had more than 2 factors, there would be an additional
column in the matrix for each additional factor.

Note: Some authors shorten the matrix notation for a two-level design
by just recording the plus and minus signs, leaving out the "1's".

Coding the
data

The use of +1 and -1 for the factor settings is called coding the data.
This aids in the interpretation of the coefficients fit to any experimental
model. After factor settings are coded, center points have the value "0".
Coding is described in more detail in the DOE glossary.

The Model or Analysis Matrix

Design
matrices

If we add an "I" column and an "X1*X2" column to the matrix of 4
trials for a two-factor experiment described earlier, we obtain what is
known as the model or analysis matrix for this simple experiment,
which is shown below. The model matrix for a three-factor experiment
is shown later in this section.

I X1 X2 X1*X2
+1 -1 -1 +1
+1 +1 -1 -1
+1 -1 +1 -1
+1 +1 +1 +1

Model for
the
experiment

The model for this experiment is

and the "I" column of the design matrix has all 1's to provide for the 0
term. The X1*X2 column is formed by multiplying the "X1" and "X2"
columns together, row element by row element. This column gives
interaction term for each trial.

Model in
matrix
notation

In matrix notation, we can summarize this experiment by

Y = X  + experimental error

http://www.itl.nist.gov/div898/handbook/pri/section3/pri3311.htm#Design
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for which Xis the 4 by 4 design matrix of 1's and -1's shown above,  is
the vector of unknown model coefficients  and Y is a
vector consisting of the four trial response observations.

Orthogonal Property of Scaling in a 2-Factor Experiment

Coding
produces
orthogonal
columns

Coding is sometime called "orthogonal coding" since all the columns
of a coded 2-factor design matrix (except the "I" column) are typically
orthogonal. That is, the dot product for any pair of columns is zero. For
example, for X1 and X2: (-1)(-1) + (+1)(-1) + (-1)(+1) + (+1)(+1) = 0.

http://www.itl.nist.gov/div898/handbook/search.htm
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5.3.3. How do you select an experimental
design?

A design is
selected
based on the
experimental
objective
and the
number of
factors

The choice of an experimental design depends on the
objectives of the experiment and the number of factors to be
investigated.

Experimental Design Objectives

Types of
designs are
listed here
according to
the
experimental
objective
they meet

Types of designs are listed here according to the
experimental objective they meet.

Comparative objective: If you have one or several
factors under investigation, but the primary goal of
your experiment is to make a conclusion about one a-
priori important factor, (in the presence of, and/or in
spite of the existence of the other factors), and the
question of interest is whether or not that factor is
"significant", (i.e., whether or not there is a significant
change in the response for different levels of that
factor), then you have a comparative problem and you
need a comparative design solution.

Screening objective: The primary purpose of the
experiment is to select or screen out the few important
main effects from the many less important ones. These
screening designs are also termed main effects
designs.

Response Surface (method) objective: The
experiment is designed to allow us to estimate
interaction and even quadratic effects, and therefore
give us an idea of the (local) shape of the response
surface we are investigating. For this reason, they are
termed response surface method (RSM) designs. RSM
designs are used to:

Find improved or optimal process settings
Troubleshoot process problems and weak points
Make a product or process more robust against

http://www.itl.nist.gov/div898/handbook/index.htm
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external and non-controllable influences.
"Robust" means relatively insensitive to these
influences.

Optimizing responses when factors are proportions
of a mixture objective: If you have factors that are
proportions of a mixture and you want to know what
the "best" proportions of the factors are so as to
maximize (or minimize) a response, then you need a
mixture design.

Optimal fitting of a regression model objective: If
you want to model a response as a mathematical
function (either known or empirical) of a few
continuous factors and you desire "good" model
parameter estimates (i.e., unbiased and minimum
variance), then you need a regression design.

Mixture and
regression
designs

Mixture designs are discussed briefly in section 5 (Advanced
Topics) and regression designs for a single factor are
discussed in chapter 4. Selection of designs for the
remaining 3 objectives is summarized in the following table.

Summary
table for
choosing an
experimental
design for
comparative,
screening,
and
response
surface
designs

TABLE 3.1  Design Selection Guideline
Number

of
Factors

Comparative
Objective

Screening
Objective

Response
Surface

Objective

1

1-factor
completely
randomized

design

_ _

2 - 4 Randomized
block design

Full or
fractional
factorial

Central
composite or
Box-Behnken

5 or
more

Randomized
block design

Fractional
factorial or
Plackett-
Burman

Screen first to
reduce number

of factors

Resources
and degree
of control
over wrong
decisions

Choice of a design from within these various types depends
on the amount of resources available and the degree of
control over making wrong decisions (Type I and Type II
errors for testing hypotheses) that the experimenter desires.

Save some
runs for
center points
and "redos"
that might

It is a good idea to choose a design that requires somewhat
fewer runs than the budget permits, so that center point runs
can be added to check for curvature in a 2-level screening
design and backup resources are available to redo runs that
have processing mishaps.

http://www.itl.nist.gov/div898/handbook/pmd/section3/pmd33.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda35.htm#TESTS
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be needed
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5.3.3.1. Completely randomized designs

These designs
are for
studying the
effects of one
primary factor
without the
need to take
other nuisance
factors into
account

Here we consider completely randomized designs that
have one primary factor. The experiment compares the
values of a response variable based on the different levels
of that primary factor.

For completely randomized designs, the levels of the
primary factor are randomly assigned to the experimental
units. By randomization, we mean that the run sequence of
the experimental units is determined randomly. For
example, if there are 3 levels of the primary factor with
each level to be run 2 times, then there are 6 factorial
possible run sequences (or 6! ways to order the
experimental trials). Because of the replication, the
number of unique orderings is 90 (since 90 =
6!/(2!*2!*2!)). An example of an unrandomized design
would be to always run 2 replications for the first level,
then 2 for the second level, and finally 2 for the third
level. To randomize the runs, one way would be to put 6
slips of paper in a box with 2 having level 1, 2 having
level 2, and 2 having level 3. Before each run, one of the
slips would be drawn blindly from the box and the level
selected would be used for the next run of the experiment.

Randomization
typically
performed by
computer
software

In practice, the randomization is typically performed by a
computer program. However, the randomization can also
be generated from random number tables or by some
physical mechanism (e.g., drawing the slips of paper).

Three key
numbers

All completely randomized designs with one primary
factor are defined by 3 numbers:

k = number of factors (= 1 for these designs) 
L = number of levels 
n = number of replications

and the total sample size (number of runs) is N = k x L x
n.

Balance Balance dictates that the number of replications be the
same at each level of the factor (this will maximize the
sensitivity of subsequent statistical t (or F) tests).

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/pri/pri.htm
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Typical
example of a
completely
randomized
design

A typical example of a completely randomized design is
the following:

k = 1 factor (X1) 
L = 4 levels of that single factor (called "1", "2",
"3", and "4") 
n = 3 replications per level 
N = 4 levels * 3 replications per level = 12 runs

A sample
randomized
sequence of
trials

The randomized sequence of trials might look like:

X1
3
1
4
2
2
1
3
4
1
2
4
3

Note that in this example there are 12!/(3!*3!*3!*3!) =
369,600 ways to run the experiment, all equally likely to
be picked by a randomization procedure.

Model for a
completely
randomized
design

The model for the response is

Yi,j =  + Ti + random error

with

Yi,j being any observation for which X1 = i
(i and j denote the level of the factor and the
replication within the level of the factor,
respectively)

 (or mu) is the general location parameter 
Ti is the effect of having treatment level i

Estimates and Statistical Tests

Estimating
and testing
model factor

Estimate for  :      = the average of all the data

Estimate for Ti :      - 
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levels
with  = average of all Y for which X1 = i.

Statistical tests for levels of X1 are shown in the section on
one-way ANOVA in Chapter 7.

http://www.itl.nist.gov/div898/handbook/prc/section4/prc42.htm
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5.3.3.2. Randomized block designs

Blocking to
"remove" the
effect of
nuisance
factors

For randomized block designs, there is one factor or
variable that is of primary interest. However, there are also
several other nuisance factors.

Nuisance factors are those that may affect the measured
result, but are not of primary interest. For example, in
applying a treatment, nuisance factors might be the specific
operator who prepared the treatment, the time of day the
experiment was run, and the room temperature. All
experiments have nuisance factors. The experimenter will
typically need to spend some time deciding which nuisance
factors are important enough to keep track of or control, if
possible, during the experiment.

Blocking used
for nuisance
factors that
can be
controlled

When we can control nuisance factors, an important
technique known as blocking can be used to reduce or
eliminate the contribution to experimental error contributed
by nuisance factors. The basic concept is to create
homogeneous blocks in which the nuisance factors are held
constant and the factor of interest is allowed to vary.
Within blocks, it is possible to assess the effect of different
levels of the factor of interest without having to worry
about variations due to changes of the block factors, which
are accounted for in the analysis.

Definition of
blocking
factors

A nuisance factor is used as a blocking factor if every level
of the primary factor occurs the same number of times with
each level of the nuisance factor. The analysis of the
experiment will focus on the effect of varying levels of the
primary factor within each block of the experiment.

Block for a
few of the
most
important
nuisance
factors

The general rule is:

"Block what you can, randomize what you cannot."

Blocking is used to remove the effects of a few of the most
important nuisance variables. Randomization is then used
to reduce the contaminating effects of the remaining
nuisance variables.

Table of
randomized

One useful way to look at a randomized block experiment
is to consider it as a collection of completely randomized

http://www.itl.nist.gov/div898/handbook/index.htm
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block designs experiments, each run within one of the blocks of the total
experiment.

Randomized Block Designs (RBD)
Name of
Design

Number of
Factors

k

Number of
Runs

n

2-factor RBD 2 L1 * L2

3-factor RBD 3 L1 * L2 * L3

4-factor RBD 4 L1 * L2 * L3 * L4

. . .
k-factor RBD k L1 * L2 * ... * Lk

with

L1 = number of levels (settings) of factor 1 
L2 = number of levels (settings) of factor 2 
L3 = number of levels (settings) of factor 3 
L4 = number of levels (settings) of factor 4

   .
   .
   .
   

Lk = number of levels (settings) of factor k

Example of a Randomized Block Design

Example of a
randomized
block design

Suppose engineers at a semiconductor manufacturing
facility want to test whether different wafer implant
material dosages have a significant effect on resistivity
measurements after a diffusion process taking place in a
furnace. They have four different dosages they want to try
and enough experimental wafers from the same lot to run
three wafers at each of the dosages.

Furnace run
is a nuisance
factor

The nuisance factor they are concerned with is "furnace
run" since it is known that each furnace run differs from
the last and impacts many process parameters.

Ideal would
be to
eliminate
nuisance
furnace factor

An ideal way to run this experiment would be to run all the
4x3=12 wafers in the same furnace run. That would
eliminate the nuisance furnace factor completely. However,
regular production wafers have furnace priority, and only a
few experimental wafers are allowed into any furnace run
at the same time.

Non-Blocked
method

A non-blocked way to run this experiment would be to run
each of the twelve experimental wafers, in random order,
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one per furnace run. That would increase the experimental
error of each resistivity measurement by the run-to-run
furnace variability and make it more difficult to study the
effects of the different dosages. The blocked way to run
this experiment, assuming you can convince manufacturing
to let you put four experimental wafers in a furnace run,
would be to put four wafers with different dosages in each
of three furnace runs. The only randomization would be
choosing which of the three wafers with dosage 1 would go
into furnace run 1, and similarly for the wafers with
dosages 2, 3 and 4.

Description of
the
experiment

Let X1 be dosage "level" and X2 be the blocking factor
furnace run. Then the experiment can be described as
follows:

k = 2 factors (1 primary factor X1 and 1 blocking
factor X2) 
L1 = 4 levels of factor X1 
L2 = 3 levels of factor X2 
n = 1 replication per cell 
N =L1 * L2 = 4 * 3 = 12 runs

Design trial
before
randomization

Before randomization, the design trials look like:

X1 X2
1 1
1 2
1 3
2 1
2 2
2 3
3 1
3 2
3 3
4 1
4 2
4 3

Matrix
representation

An alternate way of summarizing the design trials would
be to use a 4x3 matrix whose 4 rows are the levels of the
treatment X1 and whose columns are the 3 levels of the
blocking variable X2. The cells in the matrix have indices
that match the X1, X2 combinations above.

By extension, note that the trials for any K-factor
randomized block design are simply the cell indices of a K
dimensional matrix.
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Model for a Randomized Block Design

Model for a
randomized
block design

The model for a randomized block design with one
nuisance variable is

Yi,j =  + Ti + Bj + random error

where

Yi,j is any observation for which X1 = i and X2 = j 
X1 is the primary factor 
X2 is the blocking factor 

 is the general location parameter (i.e., the mean) 
Ti is the effect for being in treatment i (of factor X1) 
Bj is the effect for being in block j (of factor X2)

Estimates for a Randomized Block Design

Estimating
factor effects
for a
randomized
block design

Estimate for  :      = the average of all the data

Estimate for Ti :      - 

with  = average of all Y for which X1 = i.

Estimate for Bj :      - 

with  = average of all Y for which X2 = j.

http://www.itl.nist.gov/div898/handbook/search.htm
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5.3.3.2.1. Latin square and related designs

Latin square
(and related)
designs are
efficient
designs to
block from 2
to 4 nuisance
factors

Latin square designs, and the related Graeco-Latin square
and Hyper-Graeco-Latin square designs, are a special type of
comparative design.

There is a single factor of primary interest, typically called
the treatment factor, and several nuisance factors. For Latin
square designs there are 2 nuisance factors, for Graeco-Latin
square designs there are 3 nuisance factors, and for Hyper-
Graeco-Latin square designs there are 4 nuisance factors.

Nuisance
factors used
as blocking
variables

The nuisance factors are used as blocking variables.

1. For Latin square designs, the 2 nuisance factors are
divided into a tabular grid with the property that each
row and each column receive each treatment exactly
once.

2. As with the Latin square design, a Graeco-Latin square
design is a kxk tabular grid in which k is the number of
levels of the treatment factor. However, it uses 3
blocking variables instead of the 2 used by the standard
Latin square design.

3. A Hyper-Graeco-Latin square design is also a kxk
tabular grid with k denoting the number of levels of the
treatment factor. However, it uses 4 blocking variables
instead of the 2 used by the standard Latin square
design.

Advantages
and
disadvantages
of Latin
square
designs

The advantages of Latin square designs are:

1. They handle the case when we have several nuisance
factors and we either cannot combine them into a
single factor or we wish to keep them separate.

2. They allow experiments with a relatively small number
of runs.

The disadvantages are:

1. The number of levels of each blocking variable must

http://www.itl.nist.gov/div898/handbook/index.htm
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equal the number of levels of the treatment factor.

2. The Latin square model assumes that there are no
interactions between the blocking variables or between
the treatment variable and the blocking variable.

Note that Latin square designs are equivalent to specific
fractional factorial designs (e.g., the 4x4 Latin square design
is equivalent to a 43-1fractional factorial design).

Summary of
designs

Several useful designs are described in the table below.

Some Useful Latin Square, Graeco-Latin Square and
Hyper-Graeco-Latin Square Designs

Name of
Design

Number of
Factors

k

Number of
Runs

N

3-by-3 Latin Square 3 9
4-by-4 Latin Square 3 16
5-by-5 Latin Square 3 25
     
3-by-3 Graeco-Latin Square 4 9
4-by-4 Graeco-Latin Square 4 16
5-by-5 Graeco-Latin Square 4 25
     
4-by-4 Hyper-Graeco-Latin Square 5 16
5-by-5 Hyper-Graeco-Latin Square 5 25

Model for Latin Square and Related Designs

Latin square
design model
and estimates
for effect
levels

The model for a response for a latin square design is

with

Yijk denoting any observation for which
X1 = i, X2 = j, X3 = k 
X1 and X2 are blocking factors 
X3 is the primary factor

      denoting the general location parameter 
Ri     denoting the effect for block i 
Cj     denoting the effect for block j 
Tk     denoting the effect for treatment k

Models for Graeco-Latin and Hyper-Graeco-Latin squares
are the obvious extensions of the Latin square model, with
additional blocking variables added.
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Estimates for Latin Square Designs

Estimates Estimate for :  = the average of all the data
Estimate for Ri:  - 

 = average of all Y for which X1 = i

Estimate for Cj:  - 

 = average of all Y for which X2 = j

Estimate for Tk:  - 

 = average of all Y for which X3 = k

Randomize as
much as
design allows

Designs for Latin squares with 3-, 4-, and 5-level factors are
given next. These designs show what the treatment
combinations should be for each run. When using any of
these designs, be sure to randomize the treatment units and
trial order, as much as the design allows.

For example, one recommendation is that a Latin square
design be randomly selected from those available, then
randomize the run order.

Latin Square Designs for 3-, 4-, and 5-Level Factors

Designs for
3-level
factors (and 2
nuisance or
blocking
factors)

3-Level Factors
X1 X2 X3
row

blocking
factor

column
blocking

factor

treatment
factor

1 1 1
1 2 2
1 3 3
2 1 3
2 2 1
2 3 2
3 1 2
3 2 3
3 3 1

with

k = 3 factors (2 blocking factors and 1 primary factor) 
L1 = 3 levels of factor X1 (block) 
L2 = 3 levels of factor X2 (block) 
L3 = 3 levels of factor X3 (primary) 
N = L1 * L2 = 9 runs



5.3.3.2.1. Latin square and related designs

http://www.itl.nist.gov/div898/handbook/pri/section3/pri3321.htm[6/27/2012 2:23:43 PM]

This can alternatively be represented as

A B C
C A B
B C A

Designs for
4-level
factors (and 2
nuisance or
blocking
factors)

4-Level Factors
X1 X2 X3
row

blocking
factor

column
blocking

factor

treatment
factor

1 1 1
1 2 2
1 3 4
1 4 3
2 1 4
2 2 3
2 3 1
2 4 2
3 1 2
3 2 4
3 3 3
3 4 1
4 1 3
4 2 1
4 3 2
4 4 4

with

k = 3 factors (2 blocking factors and 1 primary factor) 
L1 = 4 levels of factor X1 (block) 
L2 = 4 levels of factor X2 (block) 
L3 = 4 levels of factor X3 (primary) 
N = L1 * L2 = 16 runs

This can alternatively be represented as

A B D C
D C A B
B D C A
C A B D

Designs for 5-Level Factors
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5-level
factors (and 2
nuisance or
blocking
factors)

X1 X2 X3
row

blocking
factor

column
blocking

factor

treatment
factor

1 1 1
1 2 2
1 3 3
1 4 4
1 5 5
2 1 3
2 2 4
2 3 5
2 4 1
2 5 2
3 1 5
3 2 1
3 3 2
3 4 3
3 5 4
4 1 2
4 2 3
4 3 4
4 4 5
4 5 1
5 1 4
5 2 5
5 3 1
5 4 2
5 5 3

with

k = 3 factors (2 blocking factors and 1 primary factor) 
L1 = 5 levels of factor X1 (block) 
L2 = 5 levels of factor X2 (block) 
L3 = 5 levels of factor X3 (primary) 
N = L1 * L2 = 25 runs

This can alternatively be represented as

A B C D E
C D E A B
E A B C D
B C D E A
D E A B C
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Further
information

More details on Latin square designs can be found in Box,
Hunter, and Hunter (1978).
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5.3.3.2.2. Graeco-Latin square designs

These
designs
handle 3
nuisance
factors

Graeco-Latin squares, as described on the previous page, are
efficient designs to study the effect of one treatment factor in
the presence of 3 nuisance factors. They are restricted,
however, to the case in which all the factors have the same
number of levels.

Randomize
as much as
design
allows

Designs for 3-, 4-, and 5-level factors are given on this page.
These designs show what the treatment combinations would
be for each run. When using any of these designs, be sure to
randomize the treatment units and trial order, as much as
the design allows.

For example, one recommendation is that a Graeco-Latin
square design be randomly selected from those available, then
randomize the run order.

Graeco-Latin Square Designs for 3-, 4-, and 5-Level
Factors

Designs for
3-level
factors

3-Level Factors
X1 X2 X3 X4
row

blocking
factor

column
blocking

factor

blocking
factor

treatment
factor

1 1 1 1
1 2 2 2
1 3 3 3
2 1 2 3
2 2 3 1
2 3 1 2
3 1 3 2
3 2 1 3
3 3 2 1

with

k = 4 factors (3 blocking factors and 1 primary factor) 
L1 = 3 levels of factor X1 (block) 

http://www.itl.nist.gov/div898/handbook/index.htm
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L2 = 3 levels of factor X2 (block) 
L3 = 3 levels of factor X3 (primary) 
L4 = 3 levels of factor X4 (primary) 
N = L1 * L2 = 9 runs

This can alternatively be represented as (A, B, and C
represent the treatment factor and 1, 2, and 3 represent the
blocking factor):

A1 B2 C3
C2 A3 B1
B3 C1 A2

Designs for
4-level
factors

4-Level Factors
X1 X2 X3 X4
row

blocking
factor

column
blocking

factor

blocking
factor

treatment
factor

1 1 1 1
1 2 2 2
1 3 3 3
1 4 4 4
2 1 2 4
2 2 1 3
2 3 4 2
2 4 3 1
3 1 3 2
3 2 4 1
3 3 1 4
3 4 2 3
4 1 4 3
4 2 3 4
4 3 2 1
4 4 1 2

with

k = 4 factors (3 blocking factors and 1 primary factor) 
L1 = 3 levels of factor X1 (block) 
L2 = 3 levels of factor X2 (block) 
L3 = 3 levels of factor X3 (primary) 
L4 = 3 levels of factor X4 (primary) 
N = L1 * L2 = 16 runs

This can alternatively be represented as (A, B, C, and D
represent the treatment factor and 1, 2, 3, and 4 represent the
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blocking factor):

A1 B2 C3 D4
D2 C1 B4 A3
B3 A4 D1 C2
C4 D3 A2 B1

Designs for
5-level
factors

5-Level Factors
X1 X2 X3 X4
row

blocking
factor

column
blocking

factor

blocking
factor

treatment
factor

1 1 1 1
1 2 2 2
1 3 3 3
1 4 4 4
1 5 5 5
2 1 2 3
2 2 3 4
2 3 4 5
2 4 5 1
2 5 1 2
3 1 3 5
3 2 4 1
3 3 5 2
3 4 1 3
3 5 2 4
4 1 4 2
4 2 5 3
4 3 1 4
4 4 2 5
4 5 3 1
5 1 5 4
5 2 1 5
5 3 2 1
5 4 3 2
5 5 4 3

with

k = 4 factors (3 blocking factors and 1 primary factor) 
L1 = 3 levels of factor X1 (block) 
L2 = 3 levels of factor X2 (block) 
L3 = 3 levels of factor X3 (primary) 
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L4 = 3 levels of factor X4 (primary) 
N = L1 * L2 = 25 runs

This can alternatively be represented as (A, B, C, D, and E
represent the treatment factor and 1, 2, 3, 4, and 5 represent
the blocking factor):

A1 B2 C3 D4 E5
C2 D3 E4 A5 B1
E3 A4 B5 C1 D2
B4 C5 D1 E2 A3
D5 E1 A2 B3 C4

Further
information

More designs are given in Box, Hunter, and Hunter (1978).
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5.3.3.2.3. Hyper-Graeco-Latin square designs

These
designs
handle 4
nuisance
factors

Hyper-Graeco-Latin squares, as described earlier, are efficient
designs to study the effect of one treatment factor in the
presence of 4 nuisance factors. They are restricted, however,
to the case in which all the factors have the same number of
levels.

Randomize
as much as
design
allows

Designs for 4- and 5-level factors are given on this page.
These designs show what the treatment combinations should
be for each run. When using any of these designs, be sure to
randomize the treatment units and trial order, as much as
the design allows.

For example, one recommendation is that a hyper-Graeco-
Latin square design be randomly selected from those
available, then randomize the run order.

Hyper-Graeco-Latin Square Designs for 4- and 5-Level
Factors

Designs for
4-level
factors
(there are
no 3-level
factor
Hyper-
Graeco
Latin
square
designs)

4-Level Factors
X1 X2 X3 X4 X5
row

blocking
factor

column
blocking

factor

blocking
factor

blocking
factor

treatment
factor

1 1 1 1 1
1 2 2 2 2
1 3 3 3 3
1 4 4 4 4
2 1 4 2 3
2 2 3 1 4
2 3 2 4 1
2 4 1 3 2
3 1 2 3 4
3 2 1 4 3
3 3 4 1 2
3 4 3 2 1

http://www.itl.nist.gov/div898/handbook/index.htm
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4 1 3 4 2
4 2 4 3 1
4 3 1 2 4
4 4 2 1 3

with

k = 5 factors (4 blocking factors and 1 primary factor) 
L1 = 4 levels of factor X1 (block) 
L2 = 4 levels of factor X2 (block) 
L3 = 4 levels of factor X3 (primary) 
L4 = 4 levels of factor X4 (primary) 
L5 = 4 levels of factor X5 (primary) 
N = L1 * L2 = 16 runs

This can alternatively be represented as (A, B, C, and D
represent the treatment factor and 1, 2, 3, and 4 represent the
blocking factors):

A11 B22 C33 D44
C42 D31 A24 B13
D23 C14 B41 A32
B34 A43 D12 C21

Designs for
5-level
factors

5-Level Factors
X1 X2 X3 X4 X5
row

blocking
factor

column
blocking

factor

blocking
factor

blocking
factor

treatment
factor

1 1 1 1 1
1 2 2 2 2
1 3 3 3 3
1 4 4 4 4
1 5 5 5 5
2 1 2 3 4
2 2 3 4 5
2 3 4 5 1
2 4 5 1 2
2 5 1 2 3
3 1 3 5 2
3 2 4 1 3
3 3 5 2 4
3 4 1 3 5
3 5 2 4 1
4 1 4 2 5
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4 2 5 3 1
4 3 1 4 2
4 4 2 5 3
4 5 3 1 4
5 1 5 4 3
5 2 1 5 4
5 3 2 1 5
5 4 3 2 1
5 5 4 3 2

with

k = 5 factors (4 blocking factors and 1 primary factor) 
L1 = 5 levels of factor X1 (block) 
L2 = 5 levels of factor X2 (block) 
L3 = 5 levels of factor X3 (primary) 
L4 = 5 levels of factor X4 (primary) 
L5 = 5 levels of factor X5 (primary) 
N = L1 * L2 = 25 runs

This can alternatively be represented as (A, B, C, D, and E
represent the treatment factor and 1, 2, 3, 4, and 5 represent
the blocking factors):

A11 B22 C33 D44 E55
D23 E34 A45 B51 C12
B35 C41 D52 E31 A24
E42 A53 B14 C25 D31
C54 D15 E21 A32 B43

Further
information

More designs are given in Box, Hunter, and Hunter (1978).
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5.3.3.3. Full factorial designs

Full factorial designs in two levels

A design in
which every
setting of
every factor
appears with
every setting
of every other
factor is a
full factorial
design

A common experimental design is one with all input factors
set at two levels each. These levels are called `high' and
`low' or `+1' and `-1', respectively. A design with all
possible high/low combinations of all the input factors is
called a full factorial design in two levels.

If there are k factors, each at 2 levels, a full factorial
design has 2k runs. 

TABLE 3.2  Number of Runs for a 2k Full Factorial
Number of Factors Number of Runs

2 4
3 8
4 16
5 32
6 64
7 128

Full factorial
designs not
recommended
for 5 or more
factors

As shown by the above table, when the number of factors is
5 or greater, a full factorial design requires a large number
of runs and is not very efficient. As recommended in the
Design Guideline Table, a fractional factorial design or a
Plackett-Burman design is a better choice for 5 or more
factors.

http://www.itl.nist.gov/div898/handbook/index.htm
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5.3.3.3.1. Two-level full factorial designs

Description

Graphical
representation
of a two-level
design with 3
factors

Consider the two-level, full factorial design for three factors,
namely the 23 design. This implies eight runs (not counting
replications or center point runs). Graphically, we can
represent the 23 design by the cube shown in Figure 3.1. The
arrows show the direction of increase of the factors. The
numbers `1' through `8' at the corners of the design box
reference the `Standard Order' of runs (see Figure 3.1).

FIGURE 3.1  A 23 two-level, full factorial design; factors
X1, X2, X3

The design
matrix

In tabular form, this design is given by:

TABLE 3.3  A 23 two-level, full factorial
design table showing runs in `Standard

Order'
run X1 X2 X3

1 -1 -1 -1

http://www.itl.nist.gov/div898/handbook/index.htm
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2 1 -1 -1
3 -1 1 -1
4 1 1 -1
5 -1 -1 1
6 1 -1 1
7 -1 1 1
8 1 1 1

The left-most column of Table 3.3, numbers 1 through 8,
specifies a (non-randomized) run order called the `Standard
Order.' These numbers are also shown in Figure 3.1. For
example, run 1 is made at the `low' setting of all three
factors.

 Standard Order for a 2k Level Factorial Design

Rule for
writing a 2k

full factorial
in "standard
order"

We can readily generalize the 23 standard order matrix to a
2-level full factorial with k factors. The first (X1) column
starts with -1 and alternates in sign for all 2k runs. The
second (X2) column starts with -1 repeated twice, then
alternates with 2 in a row of the opposite sign until all 2k

places are filled. The third (X3) column starts with -1
repeated 4 times, then 4 repeats of +1's and so on. In general,
the i-th column (Xi) starts with 2i-1 repeats of -1 folowed by
2i-1 repeats of +1.

Example of a 23 Experiment

Analysis
matrix for the
3-factor
complete
factorial

An engineering experiment called for running three factors;
namely, Pressure (factor X1), Table speed (factor X2) and
Down force (factor X3), each at a `high' and `low' setting, on
a production tool to determine which had the greatest effect
on product uniformity. Two replications were run at each
setting. A (full factorial) 23 design with 2 replications calls
for 8*2=16 runs.

TABLE 3.4 Model or Analysis Matrix for a 23

Experiment
Model Matrix Response

Variables

I X1 X2 X1*X2 X3 X1*X3 X2*X3 X1*X2*X3
Rep

1
Rep

2

+1 -1 -1 +1 -1 +1 +1 -1 -3 -1
+1 +1 -1 -1 -1 -1 +1 +1  0 -1
+1 -1 +1 -1 -1 +1 -1 +1 -1  0
+1 +1 +1 +1 -1 -1 -1 -1 +2 +3
+1 -1 -1 +1 +1 -1 -1 +1 -1  0
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+1 +1 -1 -1 +1 +1 -1 -1 +2 +1
+1 -1 +1 -1 +1 -1 +1 -1 +1 +1
+1 +1 +1 +1 +1 +1 +1 +1 +6 +5

The block with the 1's and -1's is called the Model Matrix or
the Analysis Matrix. The table formed by the columns X1,
X2 and X3 is called the Design Table or Design Matrix.

Orthogonality Properties of Analysis Matrices for 2-
Factor Experiments

Eliminate
correlation
between
estimates of
main effects
and
interactions

When all factors have been coded so that the high value is
"1" and the low value is "-1", the design matrix for any full
(or suitably chosen fractional) factorial experiment has
columns that are all pairwise orthogonal and all the columns
(except the "I" column) sum to 0.

The orthogonality property is important because it eliminates
correlation between the estimates of the main effects and
interactions.

http://www.itl.nist.gov/div898/handbook/search.htm
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5.3.3.3.2. Full factorial example

A Full Factorial Design Example

An example of
a full factorial
design with 3
factors

The following is an example of a full factorial design with
3 factors that also illustrates replication, randomization, and
added center points.

Suppose that we wish to improve the yield of a polishing
operation. The three inputs (factors) that are considered
important to the operation are Speed (X1), Feed (X2), and
Depth (X3). We want to ascertain the relative importance of
each of these factors on Yield (Y).

Speed, Feed and Depth can all be varied continuously along
their respective scales, from a low to a high setting. Yield is
observed to vary smoothly when progressive changes are
made to the inputs. This leads us to believe that the ultimate
response surface for Y will be smooth.

Table of factor
level settings

TABLE 3.5  High (+1), Low (-1), and Standard (0)
Settings for a Polishing Operation

  Low (-1) Standard (0) High (+1) Units
Speed 16 20 24 rpm
Feed 0.001 0.003 0.005 cm/sec
Depth 0.01 0.015 0.02 cm/sec

Factor Combinations

Graphical
representation
of the factor
level settings

We want to try various combinations of these settings so as
to establish the best way to run the polisher. There are eight
different ways of combining high and low settings of
Speed, Feed, and Depth. These eight are shown at the
corners of the following diagram.

FIGURE 3.2  A 23 Two-level, Full Factorial Design;
Factors X1, X2, X3. (The arrows show the direction of

increase of the factors.)

http://www.itl.nist.gov/div898/handbook/index.htm
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23 implies 8
runs

Note that if we have k factors, each run at two levels, there
will be 2k different combinations of the levels. In the
present case, k = 3 and 23 = 8.

Full Model Running the full complement of all possible factor
combinations means that we can estimate all the main and
interaction effects. There are three main effects, three two-
factor interactions, and a three-factor interaction, all of
which appear in the full model as follows:

A full factorial design allows us to estimate all eight `beta'
coefficients .

Standard order

Coded
variables in
standard order

The numbering of the corners of the box in the last figure
refers to a standard way of writing down the settings of an
experiment called `standard order'. We see standard order
displayed in the following tabular representation of the
eight-cornered box. Note that the factor settings have been
coded, replacing the low setting by -1 and the high setting
by 1.

Factor settings
in tabular
form

TABLE 3.6  A 23 Two-level, Full Factorial
Design Table Showing Runs in `Standard

Order'
  X1 X2 X3
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1 -1 -1 -1
2 +1 -1 -1
3 -1 +1 -1
4 +1 +1 -1
5 -1 -1 +1
6 +1 -1 +1
7 -1 +1 +1
8 +1 +1 +1

Replication

Replication
provides
information on
variability

Running the entire design more than once makes for easier
data analysis because, for each run (i.e., `corner of the
design box') we obtain an average value of the response as
well as some idea about the dispersion (variability,
consistency) of the response at that setting.

Homogeneity
of variance

One of the usual analysis assumptions is that the response
dispersion is uniform across the experimental space. The
technical term is `homogeneity of variance'. Replication
allows us to check this assumption and possibly find the
setting combinations that give inconsistent yields, allowing
us to avoid that area of the factor space.

Factor settings
in standard
order with
replication

We now have constructed a design table for a two-level full
factorial in three factors, replicated twice.

TABLE 3.7  The 23 Full Factorial
Replicated Twice and Presented in

Standard Order
  Speed, X1 Feed, X2 Depth, X3
1 16, -1 .001, -1 .01, -1
2 24, +1 .001, -1 .01, -1
3 16, -1 .005, +1 .01, -1
4 24, +1 .005, +1 .01, -1
5 16, -1 .001, -1 .02, +1
6 24, +1 .001, -1 .02, +1
7 16, -1 .005, +1 .02, +1
8 24, +1 .005, +1 .02, +1
9 16, -1 .001, -1 .01, -1
10 24, +1 .001, -1 .01, -1
11 16, -1 .005, +1 .01, -1
12 24, +1 .005, +1 .01, -1
13 16, -1 .001, -1 .02, +1
14 24, +1 .001, -1 .02, +1
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15 16, -1 .005, +1 .02, +1
16 24, +1 .005, +1 .02, +1

Randomization

No
randomization
and no center
points

If we now ran the design as is, in the order shown, we
would have two deficiencies, namely:

1. no randomization, and
2. no center points.

Randomization
provides
protection
against
extraneous
factors
affecting the
results

The more freely one can randomize experimental runs, the
more insurance one has against extraneous factors possibly
affecting the results, and hence perhaps wasting our
experimental time and effort. For example, consider the
`Depth' column: the settings of Depth, in standard order,
follow a `four low, four high, four low, four high' pattern.

Suppose now that four settings are run in the day and four
at night, and that (unknown to the experimenter) ambient
temperature in the polishing shop affects Yield. We would
run the experiment over two days and two nights and
conclude that Depth influenced Yield, when in fact ambient
temperature was the significant influence. So the moral is:
Randomize experimental runs as much as possible.

Table of factor
settings in
randomized
order

Here's the design matrix again with the rows randomized.
The old standard order column is also shown for
comparison and for re-sorting, if desired, after the runs are
in.

TABLE 3.8  The 23 Full Factorial
Replicated Twice with Random Run Order

Indicated
Random
Order

Standard
Order X1 X2 X3

1 5 -1 -1 +1
2 15 -1 +1 +1
3 9 -1 -1 -1
4 7 -1 +1 +1
5 3 -1 +1 -1
6 12 +1 +1 -1
7 6 +1 -1 +1
8 4 +1 +1 -1
9 2 +1 -1 -1

10 13 -1 -1 +1
11 8 +1 +1 +1
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12 16 +1 +1 +1
13 1 -1 -1 -1
14 14 +1 -1 +1
15 11 -1 +1 -1
16 10 +1 -1 -1

Table showing
design matrix
with
randomization
and center
points

This design would be improved by adding at least 3
centerpoint runs placed at the beginning, middle and end of
the experiment. The final design matrix is shown below:

TABLE 3.9  The 23 Full Factorial
Replicated Twice with Random Run Order

Indicated and Center Point Runs Added
Random
Order

Standard
Order X1 X2 X3

1   0 0 0
2 5 -1 -1 +1
3 15 -1 +1 +1
4 9 -1 -1 -1
5 7 -1 +1 +1
6 3 -1 +1 -1
7 12 +1 +1 -1
8 6 +1 -1 +1
9   0 0 0

10 4 +1 +1 -1
11 2 +1 -1 -1
12 13 -1 -1 +1
13 8 +1 +1 +1
14 16 +1 +1 +1
15 1 -1 -1 -1
16 14 +1 -1 +1
17 11 -1 +1 -1
18 10 +1 -1 -1
19   0 0 0
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5.3.3.3.3. Blocking of full factorial designs

Eliminate the
influence of
extraneous
factors by
"blocking"

We often need to eliminate the influence of extraneous
factors when running an experiment. We do this by
"blocking".

Previously, blocking was introduced when randomized
block designs were discussed. There we were concerned
with one factor in the presence of one of more nuisance
factors. In this section we look at a general approach that
enables us to divide 2-level factorial experiments into
blocks.

For example, assume we anticipate predictable shifts will
occur while an experiment is being run. This might happen
when one has to change to a new batch of raw materials
halfway through the experiment. The effect of the change in
raw materials is well known, and we want to eliminate its
influence on the subsequent data analysis.

Blocking in a
23 factorial
design

In this case, we need to divide our experiment into two
halves (2 blocks), one with the first raw material batch and
the other with the new batch. The division has to balance
out the effect of the materials change in such a way as to
eliminate its influence on the analysis, and we do this by
blocking.

Example Example: An eight-run 23 full factorial has to be blocked
into two groups of four runs each. Consider the design `box'
for the 23 full factorial. Blocking can be achieved by
assigning the first block to the dark-shaded corners and the
second block to the open circle corners.

Graphical
representation
of blocking
scheme

FIGURE 3.3 Blocking Scheme for a 23 Using Alternate
Corners

http://www.itl.nist.gov/div898/handbook/index.htm
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Three-factor
interaction
confounded
with the block
effect

This works because we are in fact assigning the `estimation'
of the (unwanted) blocking effect to the three-factor
interaction, and because of the special property of two-level
designs called orthogonality. That is, the three-factor
interaction is "confounded" with the block effect as will be
seen shortly.

Orthogonality Orthogonality guarantees that we can always estimate the
effect of one factor or interaction clear of any influence due
to any other factor or interaction. Orthogonality is a very
desirable property in DOE and this is a major reason why
two-level factorials are so popular and successful.

Table
showing
blocking
scheme

Formally, consider the 23 design table with the three-factor
interaction column added.

TABLE 3.10 Two Blocks for a 23 Design
SPEED

X1
FEED

X2
DEPTH

X3 X1*X2*X3
BLOCK

-1 -1 -1 -1 I
+1 -1 -1 +1 II
-1 +1 -1 +1 II
+1 +1 -1 -1 I
-1 -1 +1 +1 II
+1 -1 +1 -1 I
-1 +1 +1 -1 I
+1 +1 +1 +1 II

Block by
assigning the
"Block effect"

Rows that have a `-1' in the three-factor interaction column
are assigned to `Block I' (rows 1, 4, 6, 7), while the other
rows are assigned to `Block II' (rows 2, 3, 5, 8). Note that
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to a high-
order
interaction

the Block I rows are the open circle corners of the design
`box' above; Block II are dark-shaded corners.

Most DOE
software will
do blocking
for you

The general rule for blocking is: use one or a combination
of high-order interaction columns to construct blocks. This
gives us a formal way of blocking complex designs. Apart
from simple cases in which you can design your own
blocks, your statistical/DOE software will do the blocking if
asked, but you do need to understand the principle behind
it.

Block effects
are
confounded
with higher-
order
interactions

The price you pay for blocking by using high-order
interaction columns is that you can no longer distinguish the
high-order interaction(s) from the blocking effect - they
have been `confounded,' or `aliased.' In fact, the blocking
effect is now the sum of the blocking effect and the high-
order interaction effect. This is fine as long as our
assumption about negligible high-order interactions holds
true, which it usually does.

Center points
within a block

Within a block, center point runs are assigned as if the
block were a separate experiment - which in a sense it is.
Randomization takes place within a block as it would for
any non-blocked DOE.

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/


5.3.3.4. Fractional factorial designs

http://www.itl.nist.gov/div898/handbook/pri/section3/pri334.htm[6/27/2012 2:23:52 PM]

 

5. Process Improvement 
5.3. Choosing an experimental design 
5.3.3. How do you select an experimental design? 

5.3.3.4. Fractional factorial designs

Full
factorial
experiments
can require
many runs

The ASQC (1983) Glossary & Tables for Statistical Quality
Control defines fractional factorial design in the following
way: "A factorial experiment in which only an adequately
chosen fraction of the treatment combinations required for
the complete factorial experiment is selected to be run."

A carefully
chosen
fraction of
the runs
may be all
that is
necessary

Even if the number of factors, k, in a design is small, the 2k

runs specified for a full factorial can quickly become very
large. For example, 26 = 64 runs is for a two-level, full
factorial design with six factors. To this design we need to
add a good number of centerpoint runs and we can thus
quickly run up a very large resource requirement for runs
with only a modest number of factors.

Later
sections
will show
how to
choose the
"right"
fraction for
2-level
designs -
these are
both
balanced
and
orthogonal

The solution to this problem is to use only a fraction of the
runs specified by the full factorial design. Which runs to
make and which to leave out is the subject of interest here. In
general, we pick a fraction such as ½, ¼, etc. of the runs
called for by the full factorial. We use various strategies that
ensure an appropriate choice of runs. The following sections
will show you how to choose an appropriate fraction of a full
factorial design to suit your purpose at hand. Properly chosen
fractional factorial designs for 2-level experiments have the
desirable properties of being both balanced and orthogonal.

2-Level
fractional
factorial
designs
emphasized

Note: We will be emphasizing fractions of two-level designs
only. This is because two-level fractional designs are, in
engineering at least, by far the most popular fractional
designs. Fractional factorials where some factors have three
levels will be covered briefly in Section 5.3.3.10.
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5.3.3.4.1. A 23-1 design (half of a 23)

We can run a
fraction of a
full factorial
experiment
and still be
able to
estimate main
effects

Consider the two-level, full factorial design for three
factors, namely the 23 design. This implies eight runs (not
counting replications or center points). Graphically, as
shown earlier, we can represent the 23 design by the
following cube:

FIGURE 3.4  A 23 Full Factorial Design; 
Factors X1, X2, X3. (The arrows show the direction of
increase of the factors. Numbers `1' through `8' at the

corners of the design cube reference the `Standard
Order' of runs) 

Tabular
representation
of the design

In tabular form, this design (also showing eight
observations `yj' 
(j = 1,...,8) is given by

TABLE 3.11  A 23 Two-level, Full Factorial Design
Table Showing Runs in `Standard Order,' Plus

Observations (yj)

  X1 X2 X3 Y
1 -1 -1 -1 y1 = 33
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2 +1 -1 -1 y2 = 63

3 -1 +1 -1 y3 = 41

4 +1 +1 -1 Y4 = 57

5 -1 -1 +1 y5 = 57

6 +1 -1 +1 y6 = 51

7 -1 +1 +1 y7 = 59

8 +1 +1 +1 y8 = 53

Responses in
standard
order

The right-most column of the table lists `y1' through `y8' to
indicate the responses measured for the experimental runs
when listed in standard order. For example, `y1' is the
response (i.e., output) observed when the three factors were
all run at their `low' setting. The numbers entered in the "y"
column will be used to illustrate calculations of effects.

Computing X1
main effect

From the entries in the table we are able to compute all
`effects' such as main effects, first-order `interaction'
effects, etc. For example, to compute the main effect
estimate `c1' of factor X1, we compute the average response
at all runs with X1 at the `high' setting, namely (1/4)(y2 +
y4 + y6 + y8), minus the average response of all runs with
X1 set at `low,' namely (1/4)(y1 + y3 + y5 + y7). That is,

c1 = (1/4) (y2 + y4 + y6 + y8) - (1/4)(y1 + y3 + y5 +
y7) or 
c1 = (1/4)(63+57+51+53 ) - (1/4)(33+41+57+59) =
8.5

Can we
estimate X1
main effect
with four
runs?

Suppose, however, that we only have enough resources to
do four runs. Is it still possible to estimate the main effect
for X1? Or any other main effect? The answer is yes, and
there are even different choices of the four runs that will
accomplish this.

Example of
computing the
main effects
using only
four runs

For example, suppose we select only the four light
(unshaded) corners of the design cube. Using these four
runs (1, 4, 6 and 7), we can still compute c1 as follows:

c1 = (1/2) (y4 + y6) - (1/2) (y1 + y7) or 
c1 = (1/2) (57+51) - (1/2) (33+59) = 8.

Simarly, we would compute c2, the effect due to X2, as

c2 = (1/2) (y4 + y7) - (1/2) (y1 + y6) or 
c2 = (1/2) (57+59) - (1/2) (33+51) = 16.
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Finally, the computation of c3 for the effect due to X3
would be

c3 = (1/2) (y6 + y7) - (1/2) (y1 + y4) or 
c3 = (1/2) (51+59) - (1/2) (33+57) = 10.

Alternative
runs for
computing
main effects

We could also have used the four dark (shaded) corners of
the design cube for our runs and obtained similiar, but
slightly different, estimates for the main effects. In either
case, we would have used half the number of runs that the
full factorial requires. The half fraction we used is a new
design written as 23-1. Note that 23-1 = 23/2 = 22 = 4,
which is the number of runs in this half-fraction design. In
the next section, a general method for choosing fractions
that "work" will be discussed.

Example of
how
fractional
factorial
experiments
often arise in
industry

 Example: An engineering experiment calls for running
three factors, namely Pressure, Table speed, and Down
force, each at a `high' and a `low' setting, on a production
tool to determine which has the greatest effect on product
uniformity. Interaction effects are considered negligible, but
uniformity measurement error requires that at least two
separate runs (replications) be made at each process setting.
In addition, several `standard setting' runs (centerpoint runs)
need to be made at regular intervals during the experiment
to monitor for process drift. As experimental time and
material are limited, no more than 15 runs can be planned.

A full factorial 23 design, replicated twice, calls for 8x2 =
16 runs, even without centerpoint runs, so this is not an
option. However a 23-1 design replicated twice requires
only 4x2 = 8 runs, and then we would have 15-8 = 7 spare
runs: 3 to 5 of these spare runs can be used for centerpoint
runs and the rest saved for backup in case something goes
wrong with any run. As long as we are confident that the
interactions are negligbly small (compared to the main
effects), and as long as complete replication is required,
then the above replicated 23-1 fractional factorial design
(with center points) is a very reasonable choice.

On the other hand, if interactions are potentially large (and
if the replication required could be set aside), then the usual
23 full factorial design (with center points) would serve as a
good design.
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5.3.3.4.2. Constructing the 23-1 half-fraction
design

Construction
of a 23-1

half fraction
design by
staring with
a 22 full
factorial
design

First note that, mathematically, 23-1 = 22. This gives us the
first step, which is to start with a regular 22 full factorial
design. That is, we start with the following design table.

TABLE 3.12  A Standard
Order 22 Full Factorial

Design Table
  X1 X2
1 -1 -1
2 +1 -1
3 -1 +1
4 +1 +1

Assign the
third factor
to the
interaction
column of a
22 design

This design has four runs, the right number for a half-
fraction of a 23, but there is no column for factor X3. We
need to add a third column to take care of this, and we do it
by adding the X1*X2 interaction column. This column is, as
you will recall from full factorial designs, constructed by
multiplying the row entry for X1 with that of X2 to obtain the
row entry for X1*X2.

TABLE 3.13  A 22 Design
Table Augmented with the
X1*X2 Interaction Column

`X1*X2'
  X1 X2 X1*X2
1 -1 -1 +1
2 +1 -1 -1
3 -1 +1 -1
4 +1 +1 +1

Design table
with X3 set
to X1*X2

We may now substitute `X3' in place of `X1*X2' in this
table.
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TABLE 3.15  A 23-1 Design
Table with Column X3 set

to X1*X2
  X1 X2 X3
1 -1 -1 +1
2 +1 -1 -1
3 -1 +1 -1
4 +1 +1 +1

Design table
with X3 set
to -X1*X2

Note that the rows of Table 3.14 give the dark-shaded
corners of the design in Figure 3.4. If we had set X3 = -
X1*X2 as the rule for generating the third column of our 23-

1 design, we would have obtained:

TABLE 3.15  A 23-1 Design
Table with Column X3 set

to - X1*X2
  X1 X2 X3
1 -1 -1 -1
2 +1 -1 +1
3 -1 +1 +1
4 +1 +1 -1

Main effect
estimates
from
fractional
factorial not
as good as
full factorial

This design gives the light-shaded corners of the box of
Figure 3.4. Both 23-1 designs that we have generated are
equally good, and both save half the number of runs over the
original 23 full factorial design. If c1, c2, and c3 are our
estimates of the main effects for the factors X1, X2, X3 (i.e.,
the difference in the response due to going from "low" to
"high" for an effect), then the precision of the estimates c1,
c2, and c3 are not quite as good as for the full 8-run factorial
because we only have four observations to construct the
averages instead of eight; this is one price we have to pay
for using fewer runs.

Example Example: For the `Pressure (P), Table speed (T), and Down
force (D)' design situation of the previous example, here's a
replicated 23-1 in randomized run order, with five
centerpoint runs (`000') interspersed among the runs. This
design table was constructed using the technique discussed
above, with D = P*T.

Design table
for the
example

TABLE 3.16  A 23-1 Design Replicated
Twice, with Five Centerpoint Runs Added

  Pattern P T D
Center
Point
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1 000 0 0 0 1
2 +-- +1 -1 -1 0
3 -+- -1 +1 -1 0
4 000 0 0 0 1
5 +++ +1 +1 +1 0
6 --+ -1 -1 +1 0
7 000 0 0 0 1
8 +-- +1 -1 -1 0
9 --+ -1 -1 +1 0
10 000 0 0 0 1
11 +++ +1 +1 +1 0
12 -+- -1 +1 -1 0
13 000 0 0 0 1

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/


5.3.3.4.3. Confounding (also called aliasing)

http://www.itl.nist.gov/div898/handbook/pri/section3/pri3343.htm[6/27/2012 2:23:56 PM]

 

5. Process Improvement 
5.3. Choosing an experimental design 
5.3.3. How do you select an experimental design? 
5.3.3.4. Fractional factorial designs 

5.3.3.4.3. Confounding (also called aliasing)

Confounding
means we
have lost the
ability to
estimate
some effects
and/or
interactions

One price we pay for using the design table column X1*X2 to
obtain column X3 in Table 3.14 is, clearly, our inability to obtain
an estimate of the interaction effect for X1*X2 (i.e., c12) that is
separate from an estimate of the main effect for X3. In other
words, we have confounded the main effect estimate for factor
X3 (i.e., c3) with the estimate of the interaction effect for X1 and
X2 (i.e., with c12). The whole issue of confounding is
fundamental to the construction of fractional factorial designs,
and we will spend time discussing it below.

Sparsity of
effects
assumption

In using the 23-1 design, we also assume that c12 is small
compared to c3; this is called a `sparsity of effects' assumption.
Our computation of c3 is in fact a computation of c3 + c12. If the
desired effects are only confounded with non-significant
interactions, then we are OK.

A Notation and Method for Generating Confounding or
Aliasing

A short way
of writing
factor
column
multiplication

A short way of writing `X3 = X1*X2' (understanding that we are
talking about multiplying columns of the design table together)
is: `3 = 12' (similarly 3 = -12 refers to X3 = -X1*X2). Note that
`12' refers to column multiplication of the kind we are using to
construct the fractional design and any column multiplied by
itself gives the identity column of all 1's.

Next we multiply both sides of 3=12 by 3 and obtain 33=123, or
I=123 since 33=I (or a column of all 1's). Playing around with
this "algebra", we see that 2I=2123, or 2=2123, or 2=1223, or
2=13 (since 2I=2, 22=I, and 1I3=13). Similarly, 1=23.

Definition of
"design
generator" or
"generating
relation" and
"defining
relation"

I=123 is called a design generator or a generating relation for
this 23-1design (the dark-shaded corners of Figure 3.4). Since
there is only one design generator for this design, it is also the
defining relation for the design. Equally, I=-123 is the design
generator (and defining relation) for the light-shaded corners of
Figure 3.4. We call I=123 the defining relation for the 23-1

design because with it we can generate (by "multiplication") the
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complete confounding pattern for the design. That is, given
I=123, we can generate the set of {1=23, 2=13, 3=12, I=123},
which is the complete set of aliases, as they are called, for this
23-1 fractional factorial design. With I=123, we can easily
generate all the columns of the half-fraction design 23-1.

Principal
fraction

Note: We can replace any design generator by its negative
counterpart and have an equivalent, but different fractional
design. The fraction generated by positive design generators is
sometimes called the principal fraction.

All main
effects of 23-1

design
confounded
with two-
factor
interactions

The confounding pattern described by 1=23, 2=13, and 3=12
tells us that all the main effects of the 23-1 design are confounded
with two-factor interactions. That is the price we pay for using
this fractional design. Other fractional designs have different
confounding patterns; for example, in the typical quarter-fraction
of a 26 design, i.e., in a 26-2 design, main effects are confounded
with three-factor interactions (e.g., 5=123) and so on. In the case
of 5=123, we can also readily see that 15=23 (etc.), which alerts
us to the fact that certain two-factor interactions of a 26-2 are
confounded with other two-factor interactions.

A useful
summary
diagram for a
fractional
factorial
design

Summary: A convenient summary diagram of the discussion so
far about the 23-1 design is as follows:

 FIGURE 3.5  Essential Elements of a 23-1 Design 

The next section will add one more item to the above box, and
then we will be able to select the right two-level fractional
factorial design for a wide range of experimental tasks.
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5.3.3.4.4. Fractional factorial design
specifications and design resolution

Generating
relation and
diagram for
the 28-3

fractional
factorial
design

We considered the 23-1 design in the previous section and
saw that its generator written in "I = ... " form is {I = +123}.
Next we look at a one-eighth fraction of a 28 design, namely
the 28-3 fractional factorial design. Using a diagram similar
to Figure 3.5, we have the following:

FIGURE 3.6  Specifications for a 28-3 Design 

28-3 design
has 32 runs

Figure 3.6 tells us that a 28-3 design has 32 runs, not
including centerpoint runs, and eight factors. There are three
generators since this is a 1/8 = 2-3 fraction (in general, a 2k-p

fractional factorial needs p generators which define the
settings for p additional factor columns to be added to the
2k-p full factorial design columns - see the following
detailed description for the 28-3 design).

How to Construct a Fractional Factorial Design From
the Specification

Rule for
constructing
a fractional
factorial
design

In order to construct the design, we do the following:

1. Write down a full factorial design in standard order
for k-p factors (8-3 = 5 factors for the example

5
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above). In the specification above we start with a 2
full factorial design. Such a design has 25 = 32 rows.

2. Add a sixth column to the design table for factor 6,
using 6 = 345 (or 6 = -345) to manufacture it (i.e.,
create the new column by multiplying the indicated
old columns together).

3. Do likewise for factor 7 and for factor 8, using the
appropriate design generators given in Figure 3.6.

4. The resultant design matrix gives the 32 trial runs for
an 8-factor fractional factorial design. (When actually
running the experiment, we would of course
randomize the run order.

Design
generators

We note further that the design generators, written in `I = ...'
form, for the principal 28-3 fractional factorial design are:

{ I = + 3456; I = + 12457; I = +12358 }.

These design generators result from multiplying the "6 =
345" generator by "6" to obtain "I = 3456" and so on for the
other two generqators.

"Defining
relation" for
a fractional
factorial
design

The total collection of design generators for a factorial
design, including all new generators that can be formed as
products of these generators, is called a defining relation.
There are seven "words", or strings of numbers, in the
defining relation for the 28-3 design, starting with the
original three generators and adding all the new "words" that
can be formed by multiplying together any two or three of
these original three words. These seven turn out to be I =
3456 = 12457 = 12358 = 12367 = 12468 = 3478 = 5678. In
general, there will be (2p -1) words in the defining relation
for a 2k-p fractional factorial.

Definition of
"Resolution"

The length of the shortest word in the defining relation is
called the resolution of the design. Resolution describes the
degree to which estimated main effects are aliased (or
confounded) with estimated 2-level interactions, 3-level
interactions, etc.

Notation for
resolution
(Roman
numerals)

The length of the shortest word in the defining relation for
the 28-3 design is four. This is written in Roman numeral
script, and subscripted as . Note that the 23-1 design has
only one word, "I = 123" (or "I = -123"), in its defining
relation since there is only one design generator, and so this
fractional factorial design has resolution three; that is, we
may write .
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Diagram for
a 28-3

design
showing
resolution

Now Figure 3.6 may be completed by writing it as:

FIGURE 3.7  Specifications for a 28-3, Showing
Resolution IV 

Resolution
and
confounding

The design resolution tells us how badly the design is
confounded. Previously, in the 23-1 design, we saw that the
main effects were confounded with two-factor interactions.
However, main effects were not confounded with other main
effects. So, at worst, we have 3=12, or 2=13, etc., but we do
not have 1=2, etc. In fact, a resolution II design would be
pretty useless for any purpose whatsoever!

Similarly, in a resolution IV design, main effects are
confounded with at worst three-factor interactions. We can
see, in Figure 3.7, that 6=345. We also see that 36=45,
34=56, etc. (i.e., some two-factor interactions are
confounded with certain other two-factor interactions) etc.;
but we never see anything like 2=13, or 5=34, (i.e., main
effects confounded with two-factor interactions).

The
complete
first-order
interaction
confounding
for the given
28-3 design

The complete confounding pattern, for confounding of up to
two-factor interactions, arising from the design given in
Figure 3.7 is

34 = 56 = 78 
35 = 46 
36 = 45 
37 = 48 
38 = 47 
57 = 68 
58 = 67

All of these relations can be easily verified by multiplying
the indicated two-factor interactions by the generators. For
example, to verify that 38= 47, multiply both sides of
8=1235 by 3 to get 38=125. Then, multiply 7=1245 by 4 to
get 47=125. From that it follows that 38=47. 
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One or two
factors
suspected of
possibly
having
significant
first-order
interactions
can be
assigned in
such a way
as to avoid
having them
aliased

For this  fractional factorial design, 15 two-factor
interactions are aliased (confounded) in pairs or in a group
of three. The remaining 28 - 15 = 13 two-factor interactions
are only aliased with higher-order interactions (which are
generally assumed to be negligible). This is verified by
noting that factors "1" and "2" never appear in a length-4
word in the defining relation. So, all 13 interactions
involving "1" and "2" are clear of aliasing with any other
two factor interaction.

If one or two factors are suspected of possibly having
significant first-order interactions, they can be assigned in
such a way as to avoid having them aliased.

Higher
resoulution
designs have
less severe
confounding,
but require
more runs

A resolution IV design is "better" than a resolution III design
because we have less-severe confounding pattern in the `IV'
than in the `III' situation; higher-order interactions are less
likely to be significant than low-order interactions.

A higher-resolution design for the same number of factors
will, however, require more runs and so it is `worse' than a
lower order design in that sense.

Resolution V
designs for 8
factors

Similarly, with a resolution V design, main effects would be
confounded with four-factor (and possibly higher-order)
interactions, and two-factor interactions would be
confounded with certain three-factor interactions. To obtain
a resolution V design for 8 factors requires more runs than
the 28-3 design. One option, if estimating all main effects
and two-factor interactions is a requirement, is a 
design. However, a 48-run alternative (John's 3/4 fractional
factorial) is also available.

There are
many
choices of
fractional
factorial
designs -
some may
have the
same
number of
runs and
resolution,
but different
aliasing
patterns.

Note: There are other  fractional designs that can be
derived starting with different choices of design generators
for the "6", "7" and "8" factor columns. However, they are
either equivalent (in terms of the number of words of length
of length of four) to the fraction with generators 6 = 345, 7 =
1245, 8 = 1235 (obtained by relabeling the factors), or they
are inferior to the fraction given because their defining
relation contains more words of length four (and therefore
more confounded two-factor interactions). For example, the 

 design with generators 6 = 12345, 7 = 135, and 8 = 245
has five length-four words in the defining relation (the
defining relation is I = 123456 = 1357 = 2458 = 2467 =
1368 = 123478 = 5678). As a result, this design would
confound more two factor-interactions (23 out of 28 possible
two-factor interactions are confounded, leaving only "12",
"14", "23", "27" and "34" as estimable two-factor
interactions).

Diagram of As an example of an equivalent "best"  fractional
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an
alternative
way for
generating
the 28-3

design

factorial design, obtained by "relabeling", consider the
design specified in Figure 3.8.

FIGURE 3.8  Another Way of Generating the 28-3 Design

This design is equivalent to the design specified in Figure
3.7 after relabeling the factors as follows: 1 becomes 5, 2
becomes 8, 3 becomes 1, 4 becomes 2, 5 becomes 3, 6
remains 6, 7 becomes 4 and 8 becomes 7.

Minimum
aberration

A table given later in this chapter gives a collection of
useful fractional factorial designs that, for a given k and p,
maximize the possible resolution and minimize the number
of short words in the defining relation (which minimizes
two-factor aliasing). The term for this is "minimum
aberration".

Design Resolution Summary

Commonly
used design
Resolutions

The meaning of the most prevalent resolution levels is as
follows:

Resolution III Designs

Main effects are confounded (aliased) with two-factor
interactions.

Resolution IV Designs

No main effects are aliased with two-factor interactions, but
two-factor interactions are aliased with each other.

Resolution V Designs

No main effect or two-factor interaction is aliased with any
other main effect or two-factor interaction, but two-factor
interactions are aliased with three-factor interactions.
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5.3.3.4.5. Use of fractional factorial designs

Use low-
resolution
designs for
screening
among main
effects and use
higher-
resolution
designs when
interaction
effects and
response
surfaces need
to be
investigated

The basic purpose of a fractional factorial design is to
economically investigate cause-and-effect relationships of
significance in a given experimental setting. This does not
differ in essence from the purpose of any experimental
design. However, because we are able to choose fractions
of a full design, and hence be more economical, we also
have to be aware that different factorial designs serve
different purposes.

Broadly speaking, with designs of resolution three, and
sometimes four, we seek to screen out the few important
main effects from the many less important others. For this
reason, these designs are often termed main effects
designs, or screening designs.

On the other hand, designs of resolution five, and higher,
are used for focusing on more than just main effects in an
experimental situation. These designs allow us to estimate
interaction effects and such designs are easily augmented
to complete a second-order design - a design that permits
estimation of a full second-order (quadratic) model.

Different
purposes for
screening/RSM
designs

Within the screening/RSM strategy of design, there are a
number of functional purposes for which designs are used.
For example, an experiment might be designed to
determine how to make a product better or a process more
robust against the influence of external and non-
controllable influences such as the weather. Experiments
might be designed to troubleshoot a process, to determine
bottlenecks, or to specify which component(s) of a product
are most in need of improvement. Experiments might also
be designed to optimize yield, or to minimize defect
levels, or to move a process away from an unstable
operating zone. All these aims and purposes can be
achieved using fractional factorial designs and their
appropriate design enhancements.
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5.3.3.4.6. Screening designs

Screening
designs are
an efficient
way to
identify
significant
main effects

The term `Screening Design' refers to an experimental plan
that is intended to find the few significant factors from a list
of many potential ones. Alternatively, we refer to a design as
a screening design if its primary purpose is to identify
significant main effects, rather than interaction effects, the
latter being assumed an order of magnitude less important.

Use
screening
designs
when you
have many
factors to
consider

Even when the experimental goal is to eventually fit a
response surface model (an RSM analysis), the first
experiment should be a screening design when there are
many factors to consider.

Screening
designs are
usually
resolution
III or IV

Screening designs are typically of resolution III. The reason is
that resolution III designs permit one to explore the effects of
many factors with an efficient number of runs.

Sometimes designs of resolution IV are also used for
screening designs. In these designs, main effects are
confounded with, at worst, three-factor interactions. This is
better from the confounding viewpoint, but the designs
require more runs than a resolution III design.

Plackett-
Burman
designs

Another common family of screening designs is the Plackett-
Burman set of designs, so named after its inventors. These
designs are of resolution III and will be described later.

Economical
plans for
determing
significant
main effects

In short, screening designs are economical experimental plans
that focus on determining the relative significance of many
main effects.

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/pri/pri.htm
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/


5.3.3.4.7. Summary tables of useful fractional factorial designs

http://www.itl.nist.gov/div898/handbook/pri/section3/pri3347.htm[6/27/2012 2:24:00 PM]

 

5. Process Improvement 
5.3. Choosing an experimental design 
5.3.3. How do you select an experimental design? 
5.3.3.4. Fractional factorial designs 

5.3.3.4.7. Summary tables of useful fractional
factorial designs

Useful
fractional
factorial
designs for
up to 10
factors are
summarized
here

There are very useful summaries of two-level fractional
factorial designs for up to 11 factors, originally published in
the book Statistics for Experimenters by G.E.P. Box, W.G.
Hunter, and J.S. Hunter (New York, John Wiley & Sons,
1978). and also given in the book Design and Analysis of
Experiments, 5th edition by Douglas C. Montgomery (New
York, John Wiley & Sons, 2000).

Generator
column
notation can
use either
numbers or
letters for
the factor
columns

They differ in the notation for the design generators. Box,
Hunter, and Hunter use numbers (as we did in our earlier
discussion) and Montgomery uses capital letters according to
the following scheme:

Notice the absence of the letter I. This is usually reserved for
the intercept column that is identically 1. As an example of
the letter notation, note that the design generator "6 = 12345"
is equivalent to "F = ABCDE".

Details of
the design
generators,
the defining
relation, the
confounding
structure,
and the
design
matrix

TABLE 3.17 catalogs these useful fractional factorial designs
using the notation previously described in FIGURE 3.7.

Clicking on the  specification for a given design
provides details (courtesy of Dataplot files) of the design
generators, the defining relation, the confounding structure
(as far as main effects and two-level interactions are
concerned), and the design matrix. The notation used follows
our previous labeling of factors with numbers, not letters.

Click on the
design
specification
in the table
below and a

TABLE 3.17  Summary of Useful Fractional Factorial
Designs

Number of
Factors, k

Design
Specification

Number of Runs 
N
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text file with
details
about the
design can
be viewed
or saved

     

3 2III
3-1 4

4 2IV
4-1 8

5 2V
5-1 16

5 2III
5-2 8

6 2VI
6-1 32

6 2IV
6-2 16

6 2III
6-3 8

7 2VII
7-1 64

7 2IV
7-2 32

7 2IV
7-3 16

7 2III
7-4 8

8 2VIII
8-1 128

8 2V
8-2 64

8 2IV
8-3 32

8 2IV
8-4 16

9 2VI
9-2 128

9 2IV
9-3 64

9 2IV
9-4 32

9 2III
9-5 16

10 2V
10-3 128

10 2IV
10-4 64

10 2IV
10-5 32

10 2III
10-6 16

11 2V
11-4 128

11 2IV
11-5 64

11 2IV
11-6 32

11 2III
11-7 16

15 2III
15-11 16

31 2III
31-26 32
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5.3.3.5. Plackett-Burman designs

Plackett-
Burman
designs

In 1946, R.L. Plackett and J.P. Burman published their now famous paper "The Design
of Optimal Multifactorial Experiments" in Biometrika (vol. 33). This paper described the
construction of very economical designs with the run number a multiple of four (rather
than a power of 2). Plackett-Burman designs are very efficient screening designs when
only main effects are of interest.

These
designs
have run
numbers
that are a
multiple of
4

Plackett-Burman (PB) designs are used for screening experiments because, in a PB
design, main effects are, in general, heavily confounded with two-factor interactions. The
PB design in 12 runs, for example, may be used for an experiment containing up to 11
factors.

12-Run
Plackett-
Burnam
design

TABLE 3.18  Plackett-Burman Design in 12 Runs for up to 11
Factors

  Pattern X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11
1 +++++++++++ +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1
2 -+-+++---+- -1 +1 -1 +1 +1 +1 -1 -1 -1 +1 -1
3 --+-+++---+ -1 -1 +1 -1 +1 +1 +1 -1 -1 -1 +1
4 +--+-+++--- +1 -1 -1 +1 -1 +1 +1 +1 -1 -1 -1
5 -+--+-+++-- -1 +1 -1 -1 +1 -1 +1 +1 +1 -1 -1
6 --+--+-+++- -1 -1 +1 -1 -1 +1 -1 +1 +1 +1 -1
7 ---+--+-+++ -1 -1 -1 +1 -1 -1 +1 -1 +1 +1 +1
8 +---+--+-++ +1 -1 -1 -1 +1 -1 -1 +1 -1 +1 +1
9 ++---+--+-+ +1 +1 -1 -1 -1 +1 -1 -1 +1 -1 +1

10 +++---+--+- +1 +1 +1 -1 -1 -1 +1 -1 -1 +1 -1
11 -+++---+--+ -1 +1 +1 +1 -1 -1 -1 +1 -1 -1 +1
12 +-+++---+-- +1 -1 +1 +1 +1 -1 -1 -1 +1 -1 -1

Saturated
Main Effect
designs

PB designs also exist for 20-run, 24-run, and 28-run (and higher) designs. With a 20-run
design you can run a screening experiment for up to 19 factors, up to 23 factors in a 24-
run design, and up to 27 factors in a 28-run design. These Resolution III designs are
known as Saturated Main Effect designs because all degrees of freedom are utilized to
estimate main effects. The designs for 20 and 24 runs are shown below.

20-Run TABLE 3.19  A 20-Run Plackett-Burman Design
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Plackett-
Burnam
design

  X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 X18 X19
1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1 +1
2 -1 +1 -1 -1 +1 +1 +1 +1 -1 +1 -1 +1 -1 -1 -1 -1 +1 +1 -1
3 -1 -1 +1 -1 -1 +1 +1 +1 +1 -1 +1 -1 +1 -1 -1 -1 -1 +1 +1
4 +1 -1 -1 +1 -1 -1 +1 +1 +1 +1 -1 +1 -1 +1 -1 -1 -1 -1 +1
5 +1 +1 -1 -1 +1 -1 -1 +1 +1 +1 +1 -1 +1 -1 +1 -1 -1 -1 -1
6 -1 +1 +1 -1 -1 +1 -1 -1 +1 +1 +1 +1 -1 +1 -1 +1 -1 -1 -1
7 -1 -1 +1 +1 -1 -1 +1 -1 -1 +1 +1 +1 +1 -1 +1 -1 +1 -1 -1
8 -1 -1 -1 +1 +1 -1 -1 +1 -1 -1 +1 +1 +1 +1 -1 +1 -1 +1 -1
9 -1 -1 -1 -1 +1 +1 -1 -1 +1 -1 -1 +1 +1 +1 +1 -1 +1 -1 +1

10 +1 -1 -1 -1 -1 +1 +1 -1 -1 +1 -1 -1 +1 +1 +1 +1 -1 +1 -1
11 -1 +1 -1 -1 -1 -1 +1 +1 -1 -1 +1 -1 -1 +1 +1 +1 +1 -1 +1
12 +1 -1 +1 -1 -1 -1 -1 +1 +1 -1 -1 +1 -1 -1 +1 +1 +1 +1 -1
13 -1 +1 -1 +1 -1 -1 -1 -1 +1 +1 -1 -1 +1 -1 -1 +1 +1 +1 +1
14 +1 -1 +1 -1 +1 -1 -1 -1 -1 +1 +1 -1 -1 +1 -1 -1 +1 +1 +1
15 +1 +1 -1 +1 -1 +1 -1 -1 -1 -1 +1 +1 -1 -1 +1 -1 -1 +1 +1
16 +1 +1 +1 -1 +1 -1 +1 -1 -1 -1 -1 +1 +1 -1 -1 +1 -1 -1 +1
17 +1 +1 +1 +1 -1 +1 -1 +1 -1 -1 -1 -1 +1 +1 -1 -1 +1 -1 -1
18 -1 +1 +1 +1 +1 -1 +1 -1 +1 -1 -1 -1 -1 +1 +1 -1 -1 +1 -1
19 -1 -1 +1 +1 +1 +1 -1 +1 -1 +1 -1 -1 -1 -1 +1 +1 -1 -1 +1
20 +1 -1 -1 +1 +1 +1 +1 -1 +1 -1 +1 -1 -1 -1 -1 +1 +1 -1 -1

24-Run
Plackett-
Burnam
design

TABLE 3.20 A 24-Run Plackett-Burman Design
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 X18 X19 X20 X21 X22 X23

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 -1 1 1 1 1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1

3 -1 -1 1 1 1 1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 -1 -1

4 -1 -1 -1 1 1 1 1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 -1

5 -1 -1 -1 -1 1 1 1 1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1 -1

6 -1 -1 -1 -1 -1 1 1 1 1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1

7 1 -1 -1 -1 -1 -1 1 1 1 1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 1 -1

8 -1 1 -1 -1 -1 -1 -1 1 1 1 1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 1

9 1 -1 1 -1 -1 -1 -1 -1 1 1 1 1 -1 1 -1 1 1 -1 -1 1 1 -1 -1

10 -1 1 -1 1 -1 -1 -1 -1 -1 1 1 1 1 -1 1 -1 1 1 -1 -1 1 1 -1

11 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 1 1 1 -1 1 -1 1 1 -1 -1 1 1

12 1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 1 1 1 -1 1 -1 1 1 -1 -1 1

13 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 1 1 1 -1 1 -1 1 1 -1 -1

14 -1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 1 1 1 -1 1 -1 1 1 -1

15 -1 -1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 1 1 1 -1 1 -1 1 1

16 1 -1 -1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 1 1 1 -1 1 -1 1

17 1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 1 1 1 -1 1 -1

18 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 1 1 1 -1 1

19 1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 1 1 1 -1

20 -1 1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 1 1 1

21 1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 1 1

22 1 1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1 1

23 1 1 1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 -1 1

24 1 1 1 1 -1 1 -1 1 1 -1 -1 1 1 -1 -1 1 -1 1 -1 -1 -1 -1 -1
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No defining
relation

These designs do not have a defining relation since interactions are not identically equal
to main effects. With the  designs, a main effect column Xi is either orthogonal to
XiXj or identical to plus or minus XiXj. For Plackett-Burman designs, the two-factor
interaction column XiXj is correlated with every Xk (for k not equal to i or j).

Economical
for
detecting
large main
effects

However, these designs are very useful for economically detecting large main effects,
assuming all interactions are negligible when compared with the few important main
effects.
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Response
surface
models may
involve just
main effects
and
interactions
or they may
also have
quadratic
and possibly
cubic terms
to account
for curvature

Earlier, we described the response surface method (RSM) objective.
Under some circumstances, a model involving only main effects
and interactions may be appropriate to describe a response surface
when

1. Analysis of the results revealed no evidence of "pure
quadratic" curvature in the response of interest (i.e., the
response at the center approximately equals the average of
the responses at the factorial runs).

2. The design matrix originally used included the limits of the
factor settings available to run the process.

Equations for
quadratic
and cubic
models

In other circumstances, a complete description of the process
behavior might require a quadratic or cubic model:

Quadratic 

Cubic 

These are the full models, with all possible terms, rarely would all
of the terms be needed in an application.

Quadratic
models
almost
always
sufficient for
industrial
applications

If the experimenter has defined factor limits appropriately and/or
taken advantage of all the tools available in multiple regression
analysis (transformations of responses and factors, for example),
then finding an industrial process that requires a third-order model
is highly unusual. Therefore, we will only focus on designs that are
useful for fitting quadratic models. As we will see, these designs
often provide lack of fit detection that will help determine when a
higher-order model is needed.

http://www.itl.nist.gov/div898/handbook/index.htm
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General
quadratic
surface types

Figures 3.9 to 3.12 identify the general quadratic surface types that
an investigator might encounter  
  
 

FIGURE 3.9  A Response
Surface "Peak" 

FIGURE 3.10   A Response
Surface "Hillside" 

FIGURE 3.11   A Response
Surface "Rising Ridge"

FIGURE 3.12  A Response
Surface "Saddle"

Factor Levels for Higher-Order Designs

Possible
behaviors of
responses as
functions of
factor
settings

Figures 3.13 through 3.15 illustrate possible behaviors of responses
as functions of factor settings. In each case, assume the value of the
response increases from the bottom of the figure to the top and that
the factor settings increase from left to right.

FIGURE 3.13 
Linear Function

FIGURE 3.14 
Quadratic Function

FIGURE 3.15 
Cubic Function

A two-level
experiment
with center
points can
detect, but
not fit,
quadratic

If a response behaves as in Figure 3.13, the design matrix to
quantify that behavior need only contain factors with two levels --
low and high. This model is a basic assumption of simple two-level
factorial and fractional factorial designs. If a response behaves as in
Figure 3.14, the minimum number of levels required for a factor to
quantify that behavior is three. One might logically assume that
adding center points to a two-level design would satisfy that
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effects requirement, but the arrangement of the treatments in such a matrix
confounds all quadratic effects with each other. While a two-level
design with center points cannot estimate individual pure quadratic
effects, it can detect them effectively.

Three-level
factorial
design

A solution to creating a design matrix that permits the estimation of
simple curvature as shown in Figure 3.14 would be to use a three-
level factorial design. Table 3.21 explores that possibility.

Four-level
factorial
design

Finally, in more complex cases such as illustrated in Figure 3.15,
the design matrix must contain at least four levels of each factor to
characterize the behavior of the response adequately.

3-level
factorial
designs can
fit quadratic
models but
they require
many runs
when there
are more
than 4
factors

TABLE 3.21 Three-level Factorial Designs
Number

of
Factors

Treatment
Combinations
3k Factorial

Number of Coefficients
Quadratic Empirical

Model

2 9 6
3 27 10
4 81 15
5 243 21
6 729 28

Fractional
factorial
designs
created to
avoid such a
large number
of runs

Two-level factorial designs quickly become too large for practical
application as the number of factors investigated increases. This
problem was the motivation for creating `fractional factorial'
designs. Table 3.21 shows that the number of runs required for a 3k

factorial becomes unacceptable even more quickly than for 2k

designs. The last column in Table 3.21 shows the number of terms
present in a quadratic model for each case.

Number of
runs large
even for
modest
number of
factors

With only a modest number of factors, the number of runs is very
large, even an order of magnitude greater than the number of
parameters to be estimated when k isn't small. For example, the
absolute minimum number of runs required to estimate all the
terms present in a four-factor quadratic model is 15: the intercept
term, 4 main effects, 6 two-factor interactions, and 4 quadratic
terms.

The corresponding 3k design for k = 4 requires 81 runs.

Complex
alias
structure and
lack of
rotatability
for 3-level
fractional
factorial

Considering a fractional factorial at three levels is a logical step,
given the success of fractional designs when applied to two-level
designs. Unfortunately, the alias structure for the three-level
fractional factorial designs is considerably more complex and
harder to define than in the two-level case.

Additionally, the three-level factorial designs suffer a major flaw in
their lack of `rotatability.'
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designs

Rotatability of Designs

"Rotatability"
is a desirable
property not
present in 3-
level
factorial
designs

In a rotatable design, the variance of the predicted values of y is a
function of the distance of a point from the center of the design and
is not a function of the direction the point lies from the center.
Before a study begins, little or no knowledge may exist about the
region that contains the optimum response. Therefore, the
experimental design matrix should not bias an investigation in any
direction.

Contours of
variance of
predicted
values are
concentric
circles

In a rotatable design, the contours associated with the variance of
the predicted values are concentric circles. Figures 3.16 and 3.17
(adapted from Box and Draper, `Empirical Model Building and
Response Surfaces,' page 485) illustrate a three-dimensional plot
and contour plot, respectively, of the `information function'
associated with a 32 design.

Information
function

The information function is:

with V denoting the variance (of the predicted value ).

Each figure clearly shows that the information content of the design
is not only a function of the distance from the center of the design
space, but also a function of direction.

Graphs of
the
information
function for a
rotatable
quadratic
design

Figures 3.18 and 3.19 are the corresponding graphs of the
information function for a rotatable quadratic design. In each of
these figures, the value of the information function depends only on
the distance of a point from the center of the space. 

FIGURE 3.16  Three-
Dimensional Illustration for the

Information Function of a 32

Design

FIGURE 3.17  
Contour Map of the

Information Function for a
32 Design
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FIGURE 3.18  Three-
Dimensional Illustration of the

Information Function for a
Rotatable Quadratic Design for

Two Factors

FIGURE 3.19  Contour Map
of the Information Function
for a Rotatable Quadratic
Design for Two Factors

Classical Quadratic Designs

Central
composite
and Box-
Behnken
designs

Introduced during the 1950's, classical quadratic designs fall into
two broad categories: Box-Wilson central composite designs and
Box-Behnken designs. The next sections describe these design
classes and their properties.

http://www.itl.nist.gov/div898/handbook/search.htm
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5.3.3.6.1. Central Composite Designs (CCD)

Box-Wilson Central Composite Designs

CCD designs
start with a
factorial or
fractional
factorial
design (with
center points)
and add
"star" points
to estimate
curvature

A Box-Wilson Central Composite Design, commonly
called `a central composite design,' contains an imbedded
factorial or fractional factorial design with center points
that is augmented with a group of `star points' that allow
estimation of curvature. If the distance from the center of
the design space to a factorial point is ±1 unit for each
factor, the distance from the center of the design space to a
star point is ±  with | | > 1. The precise value of 
depends on certain properties desired for the design and on
the number of factors involved.

Similarly, the number of centerpoint runs the design is to
contain also depends on certain properties required for the
design.

Diagram of
central
composite
design
generation for
two factors

FIGURE 3.20  Generation of a Central Composite
Design for Two Factors

A CCD design
with k factors
has 2k star
points

A central composite design always contains twice as many
star points as there are factors in the design. The star points
represent new extreme values (low and high) for each
factor in the design. Table 3.22 summarizes the properties
of the three varieties of central composite designs. Figure
3.21 illustrates the relationships among these varieties.

Description of TABLE 3.22   Central Composite Designs

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/pri/pri.htm
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3 types of
CCD designs,
which depend
on where the
star points
are placed

Central
Composite 
     Design

Type

Terminology Comments

Circumscribed CCC

CCC designs are the
original form of the central
composite design. The star
points are at some distance 

 from the center based on
the properties desired for
the design and the number
of factors in the design.
The star points establish
new extremes for the low
and high settings for all
factors. Figure 5 illustrates
a CCC design. These
designs have circular,
spherical, or hyperspherical
symmetry and require 5
levels for each factor.
Augmenting an existing
factorial or resolution V
fractional factorial design
with star points can
produce this design.

 Inscribed CCI

For those situations in
which the limits specified
for factor settings are truly
limits, the CCI design uses
the factor settings as the
star points and creates a
factorial or fractional
factorial design within
those limits (in other
words, a CCI design is a
scaled down CCC design
with each factor level of
the CCC design divided by 

 to generate the CCI
design). This design also
requires 5 levels of each
factor.

 Face
Centered CCF

In this design the star
points are at the center of
each face of the factorial
space, so  = ± 1. This
variety requires 3 levels of
each factor. Augmenting an
existing factorial or
resolution V design with
appropriate star points can
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also produce this design.

Pictorial
representation
of where the
star points
are placed for
the 3 types of
CCD designs

 
FIGURE 3.21  Comparison of the Three Types of

Central Composite Designs

Comparison
of the 3
central
composite
designs

The diagrams in Figure 3.21 illustrate the three types of
central composite designs for two factors. Note that the
CCC explores the largest process space and the CCI
explores the smallest process space. Both the CCC and
CCI are rotatable designs, but the CCF is not. In the CCC
design, the design points describe a circle circumscribed
about the factorial square. For three factors, the CCC
design points describe a sphere around the factorial cube.

Determining  in Central Composite Designs

The value of 
 is chosen to

maintain
rotatability

To maintain rotatability, the value of  depends on the
number of experimental runs in the factorial portion of the
central composite design:

If the factorial is a full factorial, then
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However, the factorial portion can also be a fractional
factorial design of resolution V.

Table 3.23 illustrates some typical values of  as a
function of the number of factors.

Values of 
depending on
the number of
factors in the
factorial part
of the design

TABLE 3.23  Determining  for
Rotatability

Number of
Factors

Factorial
Portion

Scaled Value for  
Relative to ±1

2 22 22/4 = 1.414
3 23 23/4 = 1.682
4 24 24/4 = 2.000
5 25-1 24/4 = 2.000
5 25 25/4 = 2.378
6 26-1 25/4 = 2.378
6 26 26/4 = 2.828

Orthogonal
blocking

The value of  also depends on whether or not the design
is orthogonally blocked. That is, the question is whether or
not the design is divided into blocks such that the block
effects do not affect the estimates of the coefficients in the
2nd order model.

Example of
both
rotatability
and
orthogonal
blocking for
two factors

Under some circumstances, the value of  allows
simultaneous rotatability and orthogonality. One such
example for k = 2 is shown below:

BLOCK X1 X2
     

1 -1 -1
1 1 -1
1 -1 1
1 1 1
1 0 0
1 0 0
2 -1.414 0
2 1.414 0
2 0  -1.414
2 0 1.414
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2 0 0
2 0 0

Additional
central
composite
designs

Examples of other central composite designs will be given
after Box-Behnken designs are described.
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5.3.3.6.2. Box-Behnken designs

An
alternate
choice for
fitting
quadratic
models
that
requires 3
levels of
each
factor and
is
rotatable
(or
"nearly"
rotatable)

The Box-Behnken design is an independent quadratic design
in that it does not contain an embedded factorial or fractional
factorial design. In this design the treatment combinations are
at the midpoints of edges of the process space and at the
center. These designs are rotatable (or near rotatable) and
require 3 levels of each factor. The designs have limited
capability for orthogonal blocking compared to the central
composite designs.

Figure 3.22 illustrates a Box-Behnken design for three factors.

Box-
Behnken
design for
3 factors

FIGURE 3.22  A Box-Behnken Design for Three Factors 

Geometry
of the
design

The geometry of this design suggests a sphere within the
process space such that the surface of the sphere protrudes
through each face with the surface of the sphere tangential to
the midpoint of each edge of the space.

http://www.itl.nist.gov/div898/handbook/index.htm
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Examples of Box-Behnken designs are given on the next page.
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5.3.3.6.3. Comparisons of response surface designs

Choosing a Response Surface Design

Various
CCD
designs and
Box-
Behnken
designs are
compared
and their
properties
discussed

Table 3.24 contrasts the structures of four common quadratic designs
one might use when investigating three factors. The table combines
CCC and CCI designs because they are structurally identical.

For three factors, the Box-Behnken design offers some advantage in
requiring a fewer number of runs. For 4 or more factors, this advantage
disappears.

Structural
comparisons
of CCC
(CCI), CCF,
and Box-
Behnken
designs for
three factors

TABLE 3.24  Structural Comparisons of CCC (CCI), CCF,
and Box-Behnken Designs for Three Factors

CCC (CCI) CCF Box-Behnken
Rep X1 X2 X3 Rep X1 X2 X3 Rep X1 X2 X3

1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 0
1 +1 -1 -1 1 +1 -1 -1 1 +1 -1 0
1 -1 +1 -1 1 -1 +1 -1 1 -1 +1 0
1 +1 +1 -1 1 +1 +1 -1 1 +1 +1 0
1 -1 -1 +1 1 -1 -1 +1 1 -1 0 -1
1 +1 -1 +1 1 +1 -1 +1 1 +1 0 -1
1 -1 +1 +1 1 -1 +1 +1 1 -1 0 +1
1 +1 +1 +1 1 +1 +1 +1 1 +1 0 +1
1 -1.682 0 0 1 -1 0 0 1 0 -1 -1
1 1.682 0 0 1 +1 0 0 1 0 +1 -1
1 0 -1.682 0 1 0 -1 0 1 0 -1 +1
1 0 1.682 0 1 0 +1 0 1 0 +1 +1
1 0 0 -1.682 1 0 0 -1 3 0 0 0
1 0 0 1.682 1 0 0 +1        
6 0 0 0 6 0 0 0        

Total Runs = 20 Total Runs = 20 Total Runs = 15
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Factor
settings for
CCC and
CCI three
factor
designs

Table 3.25 illustrates the factor settings required for a central
composite circumscribed (CCC) design and for a central composite
inscribed (CCI) design (standard order), assuming three factors, each
with low and high settings of 10 and 20, respectively. Because the
CCC design generates new extremes for all factors, the investigator
must inspect any worksheet generated for such a design to make
certain that the factor settings called for are reasonable.

In Table 3.25, treatments 1 to 8 in each case are the factorial points in
the design; treatments 9 to 14 are the star points; and 15 to 20 are the
system-recommended center points. Notice in the CCC design how the
low and high values of each factor have been extended to create the
star points.  In the CCI design, the specified low and high values
become the star points, and the system computes appropriate settings
for the factorial part of the design inside those boundaries.

TABLE 3.25  Factor Settings for CCC and CCI Designs for
Three Factors

Central Composite
Circumscribed CCC

  Central Composite
Inscribed CCI

Sequence
Number X1 X2 X3  

Sequence
Number X1 X2 X3

1 10 10 10   1 12 12 12
2 20 10 10   2 18 12 12
3 10 20 10   3 12 18 12
4 20 20 10   4 18 18 12
5 10 10 20   5 12 12 18
6 20 10 20   6 18 12 18
7 10 20 20   7 12 12 18
8 20 20 20   8 18 18 18
9 6.6 15 15 * 9 10 15 15
10 23.4 15 15 * 10 20 15 15
11 15 6.6 15 * 11 15 10 15
12 15 23.4 15 * 12 15 20 15
13 15 15 6.6 * 13 15 15 10
14 15 15 23.4 * 14 15 15 20
15 15 15 15   15 15 15 15
16 15 15 15   16 15 15 15
17 15 15 15   17 15 15 15
18 15 15 15   18 15 15 15
19 15 15 15   19 15 15 15
20 15 15 15   20 15 15 15

* are star points
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Factor
settings for
CCF and
Box-
Behnken
three factor
designs

Table 3.26 illustrates the factor settings for the corresponding central
composite face-centered (CCF) and Box-Behnken designs. Note that
each of these designs provides three levels for each factor and that the
Box-Behnken design requires fewer runs in the three-factor case.

TABLE 3.26  Factor Settings for CCF and Box-Behnken
Designs for Three Factors

Central Composite
Face-Centered CCC

  Box-Behnken

Sequence
Number X1 X2 X3  

Sequence
Number X1 X2 X3

1 10 10 10   1 10 10 15
2 20 10 10   2 20 10 15
3 10 20 10   3 10 20 15
4 20 20 10   4 20 20 15
5 10 10 20   5 10 15 10
6 20 10 20   6 20 15 10
7 10 20 20   7 10 15 20
8 20 20 20   8 20 15 20
9 10 15 15 * 9 15 10 10
10 20 15 15 * 10 15 20 10
11 15 10 15 * 11 15 10 20
12 15 20 15 * 12 15 20 20
13 15 15 10 * 13 15 15 15
14 15 15 20 * 14 15 15 15
15 15 15 15   15 15 15 15
16 15 15 15          
17 15 15 15          
18 15 15 15          
19 15 15 15          
20 15 15 15          

* are star points for the CCC

Properties
of classical
response
surface
designs

Table 3.27 summarizes properties of the classical quadratic designs.
Use this table for broad guidelines when attempting to choose from
among available designs.

TABLE 3.27  Summary of Properties of Classical Response
Surface Designs

Design
Type

Comment

CCC designs provide high quality predictions over the
entire design space, but require factor settings outside the
range of the factors in the factorial part. Note: When the
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CCC
possibility of running a CCC design is recognized before
starting a factorial experiment, factor spacings can be
reduced to ensure that ±  for each coded factor
corresponds to feasible (reasonable) levels.

Requires 5 levels for each factor.

CCI

CCI designs use only points within the factor ranges
originally specified, but do not provide the same high
quality prediction over the entire space compared to the
CCC.

Requires 5 levels of each factor.

CCF

CCF designs provide relatively high quality predictions over
the entire design space and do not require using points
outside the original factor range. However, they give poor
precision for estimating pure quadratic coefficients.

Requires 3 levels for each factor.

Box-
Behnken

These designs require fewer treatment combinations than a
central composite design in cases involving 3 or 4 factors.

The Box-Behnken design is rotatable (or nearly so) but it
contains regions of poor prediction quality like the CCI. Its
"missing corners" may be useful when the experimenter
should avoid combined factor extremes. This property
prevents a potential loss of data in those cases.

Requires 3 levels for each factor.

Number of
runs
required by
central
composite
and Box-
Behnken
designs

Table 3.28 compares the number of runs required for a given number
of factors for various Central Composite and Box-Behnken designs.

TABLE 3.28  Number of Runs Required by Central Composite and
Box-Behnken Designs

Number of
Factors Central Composite

Box-
Behnken

2 13 (5 center points) -
3 20 (6 centerpoint runs) 15
4 30 (6 centerpoint runs) 27
5 33 (fractional factorial) or 52 (full

factorial)
46

6 54 (fractional factorial) or 91 (full
factorial)

54

Desirable Features for Response Surface Designs

A summary
of desirable
properties
for response

G. E. P. Box and N. R. Draper in "Empirical Model Building and
Response Surfaces," John Wiley and Sons, New York, 1987, page 477,
identify desirable properties for a response surface design:

Satisfactory distribution of information across the experimental
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surface
designs region.

- rotatability
Fitted values are as close as possible to observed values.

- minimize residuals or error of prediction
Good lack of fit detection.
Internal estimate of error.
Constant variance check.
Transformations can be estimated.
Suitability for blocking.
Sequential construction of higher order designs from simpler
designs
Minimum number of treatment combinations.
Good graphical analysis through simple data patterns.
Good behavior when errors in settings of input variables occur.

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
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http://www.nist.gov/
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5.3.3.6.4. Blocking a response surface design

How can we block a response surface design?

When
augmenting
a resolution
V design to
a CCC
design by
adding star
points, it
may be
desirable to
block the
design

If an investigator has run either a 2k full factorial or a 2k-p fractional
factorial design of at least resolution V, augmentation of that design
to a central composite design (either CCC of CCF) is easily
accomplished by adding an additional set (block) of star and
centerpoint runs. If the factorial experiment indicated (via the t test)
curvature, this composite augmentation is the best follow-up option
(follow-up options for other situations will be discussed later).

An
orthogonal
blocked
response
surface
design has
advantages

An important point to take into account when choosing a response
surface design is the possibility of running the design in blocks.
Blocked designs are better designs if the design allows the estimation
of individual and interaction factor effects independently of the block
effects. This condition is called orthogonal blocking. Blocks are
assumed to have no impact on the nature and shape of the response
surface.

CCF
designs
cannot be
orthogonally
blocked

The CCF design does not allow orthogonal blocking and the Box-
Behnken designs offer blocking only in limited circumstances,
whereas the CCC does permit orthogonal blocking. 

Axial and
factorial
blocks

In general, when two blocks are required there should be an axial
block and a factorial block. For three blocks, the factorial block is
divided into two blocks and the axial block is not split. The blocking
of the factorial design points should result in orthogonality between
blocks and individual factors and between blocks and the two factor
interactions.

The following Central Composite design in two factors is broken into
two blocks.

Table of TABLE 3.29  CCD: 2 Factors, 2 Blocks

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/pri/pri.htm
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CCD design
with 2
factors and
2 blocks

Pattern Block X1 X2 Comment

-- 1 -1 -1 Full Factorial
-+ 1 -1 +1 Full Factorial
+- 1 +1 -1 Full Factorial
++ 1 +1 +1 Full Factorial
00 1  0  0 Center-Full Factorial
00 1  0  0 Center-Full Factorial
00 1  0  0 Center-Full Factorial
-0 2 -1.414214  0 Axial
+0 2 +1.414214  0 Axial
0- 2  0 -1.414214 Axial
0+ 2  0 +1.414214 Axial
00 2  0  0 Center-Axial
00 2  0  0 Center-Axial
00 2  0  0 Center-Axial

Note that the first block includes the full factorial points and three
centerpoint replicates. The second block includes the axial points and
another three centerpoint replicates. Naturally these two blocks
should be run as two separate random sequences.

Table of
CCD design
with 3
factors and
3 blocks

The following three examples show blocking structure for various
designs.

TABLE 3.30  CCD: 3 Factors 3 Blocks, Sorted by Block
Pattern Block X1 X2 X3 Comment

--- 1 -1 -1 -1 Full Factorial
-++ 1 -1 +1 +1 Full Factorial
+-+ 1 +1 -1 +1 Full Factorial
++- 1 +1 +1 -1 Full Factorial
000 1  0  0  0 Center-Full Factorial
000 1  0  0  0 Center-Full Factorial
--+ 2 -1 -1 +1 Full Factorial
-+- 2 -1 +1 -1 Full Factorial
+-- 2 +1 -1 -1 Full Factorial
+++ 2 +1 +1 +1 Full Factorial
000 2  0  0  0 Center-Full Factorial
000 2  0  0  0 Center-Full Factorial
-00 3 -1.63299  0  0 Axial
+00 3 +1.63299  0  0 Axial
0-0 3  0 -1.63299  0 Axial
0+0 3  0 +1.63299  0 Axial
00- 3  0  0 -1.63299 Axial
00+ 3  0  0 +1.63299 Axial
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000 3  0  0  0 Axial
000 3  0  0  0 Axial

Table of
CCD design
with 4
factors and
3 blocks

TABLE 3.31  CCD: 4 Factors, 3 Blocks
Pattern Block X1 X2 X3 X4 Comment

---+ 1 -1 -1 -1 +1 Full Factorial
--+- 1 -1 -1 +1 -1 Full Factorial
-+-- 1 -1 +1 -1 -1 Full Factorial
-+++ 1 -1 +1 +1 +1 Full Factorial
+--- 1 +1 -1 -1 -1 Full Factorial
+-++ 1 +1 -1 +1 +1 Full Factorial
++-+ 1 +1 +1 -1 +1 Full Factorial
+++- 1 +1 +1 +1 -1 Full Factorial
0000 1  0  0  0  0 Center-Full Factorial
0000 1  0  0  0  0 Center-Full Factorial
---- 2 -1 -1 -1 -1 Full Factorial
--++ 2 -1 -1 +1 +1 Full Factorial
-+-+ 2 -1 +1 -1 +1 Full Factorial
-++- 2 -1 +1 +1 -1 Full Factorial
+--+ 2 +1 -1 -1 +1 Full Factorial
+-+- 2 +1 -1 +1 -1 Full Factorial
++-- 2 +1 +1 -1 -1 Full Factorial
++++ 2 +1 +1 +1 +1 Full Factorial
0000 2  0  0  0  0 Center-Full Factorial
0000 2  0  0  0  0 Center-Full Factorial
-000 3 -2  0  0  0 Axial
+000 3 +2  0  0  0 Axial
+000 3 +2  0  0  0 Axial
0-00 3  0 -2  0  0 Axial
0+00 3  0 +2  0  0 Axial
00-0 3  0  0 -2  0 Axial
00+0 3  0  0 +2  0 Axial
000- 3  0  0  0 -2 Axial
000+ 3  0  0  0 +2 Axial
0000 3  0  0  0  0 Center-Axial

Table
of
CCD
design
with 5
factors
and 2
blocks

TABLE 3.32  CCD: 5 Factors, 2 Blocks
Pattern Block X1 X2 X3 X4 X5 Comment

----+ 1 -1 -1 -1 -1 +1 Fractional
Factorial

---+- 1 -1 -1 -1 +1 -1 Fractional
Factorial
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--+-- 1 -1 -1 +1 -1 -1 Fractional
Factorial

--+++ 1 -1 -1 +1 +1 +1 Fractional
Factorial

-+--- 1 -1 +1 -1 -1 -1 Fractional
Factorial

-+-++ 1 -1 +1 -1 +1 +1 Fractional
Factorial

-++-+ 1 -1 +1 +1 -1 +1 Fractional
Factorial

-+++- 1 -1 +1 +1 +1 -1 Fractional
Factorial

+---- 1 +1 -1 -1 -1 -1 Fractional
Factorial

+--++ 1 +1 -1 -1 +1 +1 Fractional
Factorial

+-+-+ 1 +1 -1 +1 -1 +1 Fractional
Factorial

+-++- 1 +1 -1 +1 +1 -1 Fractional
Factorial

++--+ 1 +1 +1 -1 -1 +1 Fractional
Factorial

++-+- 1 +1 +1 -1 +1 -1 Fractional
Factorial

+++-- 1 +1 +1 +1 -1 -1 Fractional
Factorial

+++++ 1 +1 +1 +1 +1 +1 Fractional
Factorial

00000 1  0  0  0  0  0 Center-
Fractional
Factorial

00000 1  0  0  0  0  0 Center-
Fractional
Factorial

00000 1  0  0  0  0  0 Center-
Fractional
Factorial

00000 1  0  0  0  0  0 Center-
Fractional
Factorial

00000 1  0  0  0  0  0 Center-
Fractional
Factorial

00000 1  0  0  0  0  0 Center-
Fractional
Factorial

-0000 2 -2  0  0  0  0 Axial
+0000 2 +2  0  0  0  0 Axial
0-000 2  0 -2  0  0  0 Axial



5.3.3.6.4. Blocking a response surface design

http://www.itl.nist.gov/div898/handbook/pri/section3/pri3364.htm[6/27/2012 2:24:12 PM]

0+000 2  0 +2  0  0  0 Axial
00-00 2  0  0 -2  0  0 Axial
00+00 2  0  0 +2  0  0 Axial
000-0 2  0  0  0 -2  0 Axial
000+0 2  0  0  0 +2  0 Axial
0000- 2  0  0  0  0 -2 Axial
0000+ 2  0  0  0  0 +2 Axial
00000 2  0  0  0  0  0 Center-

Axial

http://www.itl.nist.gov/div898/handbook/search.htm
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5.3.3.7. Adding centerpoints

Center point, or `Control' Runs

Centerpoint
runs
provide a
check for
both
process
stability and
possible
curvature

As mentioned earlier in this section, we add centerpoint runs
interspersed among the experimental setting runs for two
purposes:

1. To provide a measure of process stability
and inherent variability

2. To check for curvature.

Centerpoint
runs are not
randomized

Centerpoint runs should begin and end the experiment, and
should be dispersed as evenly as possible throughout the
design matrix. The centerpoint runs are not randomized!
There would be no reason to randomize them as they are
there as guardians against process instability and the best way
to find instability is to sample the process on a regular basis.

Rough rule
of thumb is
to add 3 to
5 center
point runs
to your
design

With this in mind, we have to decide on how many
centerpoint runs to do. This is a tradeoff between the
resources we have, the need for enough runs to see if there is
process instability, and the desire to get the experiment over
with as quickly as possible. As a rough guide, you should
generally add approximately 3 to 5 centerpoint runs to a full
or fractional factorial design.

Table of
randomized,
replicated
23 full
factorial
design with
centerpoints

In the following Table we have added three centerpoint runs
to the otherwise randomized design matrix, making a total of
nineteen runs.

TABLE 3.32  Randomized, Replicated 23 Full Factorial
Design Matrix with Centerpoint Control Runs Added

  Random
Order

Standard
Order SPEED FEED DEPTH

1 not applicable not applicable 0 0 0
2 1 5 -1 -1 1
3 2 15 -1 1 1
4 3 9 -1 -1 -1

http://www.itl.nist.gov/div898/handbook/index.htm
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5 4 7 -1 1 1
6 5 3 -1 1 -1
7 6 12 1 1 -1
8 7 6 1 -1 1
9 8 4 1 1 -1
10 not applicable not applicable 0 0 0
11 9 2 1 -1 -1
12 10 13 -1 -1 1
13 11 8 1 1 1
14 12 16 1 1 1
15 13 1 -1 -1 -1
16 14 14 1 -1 1
17 15 11 -1 1 -1
18 16 10 1 -1 -1
19 not applicable not applicable 0 0 0

Preparing a
worksheet
for operator
of
experiment

To prepare a worksheet for an operator to use when running
the experiment, delete the columns `RandOrd' and `Standard
Order.' Add an additional column for the output (Yield) on
the right, and change all `-1', `0', and `1' to original factor
levels as follows.

Operator
worksheet

TABLE 3.33  DOE Worksheet Ready to Run
Sequence
Number Speed Feed Depth Yield

1 20 0.003 0.015  
2 16 0.001 0.02  
3 16 0.005 0.02  
4 16 0.001 0.01  
5 16 0.005 0.02  
6 16 0.005 0.01  
7 24 0.005 0.01  
8 24 0.001 0.02  
9 24 0.005 0.01  

10 20 0.003 0.015  
11 24 0.001 0.01  
12 16 0.001 0.02  
13 24 0.005 0.02  
14 24 0.005 0.02  
15 16 0.001 0.01  
16 24 0.001 0.02  
17 16 0.005 0.01  



5.3.3.7. Adding centerpoints

http://www.itl.nist.gov/div898/handbook/pri/section3/pri337.htm[6/27/2012 2:24:14 PM]

18 24 0.001 0.01  
19 20 0.003 0.015  

Note that the control (centerpoint) runs appear at rows 1, 10,
and 19.

This worksheet can be given to the person who is going to do
the runs/measurements and asked to proceed through it from
first row to last in that order, filling in the Yield values as
they are obtained.

Pseudo Center points

Center
points for
discrete
factors

One often runs experiments in which some factors are
nominal. For example, Catalyst "A" might be the (-1) setting,
catalyst "B" might be coded (+1). The choice of which is
"high" and which is "low" is arbitrary, but one must have
some way of deciding which catalyst setting is the "standard"
one.

These standard settings for the discrete input factors together
with center points for the continuous input factors, will be
regarded as the "center points" for purposes of design.

 Center Points in Response Surface Designs

Uniform
precision

In an unblocked response surface design, the number of
center points controls other properties of the design matrix.
The number of center points can make the design orthogonal
or have "uniform precision." We will only focus on uniform
precision here as classical quadratic designs were set up to
have this property.

Variance of
prediction

Uniform precision ensures that the variance of prediction is
the same at the center of the experimental space as it is at a
unit distance away from the center.

Protection
against bias

In a response surface context, to contrast the virtue of
uniform precision designs over replicated center-point
orthogonal designs one should also consider the following
guidance from Montgomery ("Design and Analysis of
Experiments," Wiley, 1991, page 547), "A uniform precision
design offers more protection against bias in the regression
coefficients than does an orthogonal design because of the
presence of third-order and higher terms in the true surface.

Controlling 
 and the

number of
center
points

Myers, Vining, et al, ["Variance Dispersion of Response
Surface Designs," Journal of Quality Technology, 24, pp. 1-
11 (1992)] have explored the options regarding the number of
center points and the value of  somewhat further: An
investigator may control two parameters,  and the number
of center points (nc), given k factors. Either set  = 2(k/4)
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(for rotatability) or  -- an axial point on perimeter of
design region. Designs are similar in performance with 
preferable as k increases. Findings indicate that the best
overall design performance occurs with  and 2  nc 
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5.3.3.8. Improving fractional factorial design
resolution

Foldover
designs
increase
resolution

Earlier we saw how fractional factorial designs resulted in an
alias structure that confounded main effects with certain
interactions. Often it is useful to know how to run a few
additional treatment combinations to remove alias structures
that might be masking significant effects or interactions.

Partial
foldover
designs
break up
specific
alias
patterns

Two methods will be described for selecting these additional
treatment combinations:

Mirror-image foldover designs (to build a
resolution IV design from a resolution III
design)
Alternative foldover designs (to break up
specific alias patterns).

http://www.itl.nist.gov/div898/handbook/index.htm
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5.3.3.8. Improving fractional factorial design resolution 

5.3.3.8.1. Mirror-Image foldover designs

A foldover
design is
obtained
from a
fractional
factorial
design by
reversing
the signs of
all the
columns

A mirror-image fold-over (or foldover, without the hyphen)
design is used to augment fractional factorial designs to
increase the resolution of  and Plackett-Burman designs.
It is obtained by reversing the signs of all the columns of the
original design matrix. The original design runs are combined
with the mirror-image fold-over design runs, and this
combination can then be used to estimate all main effects
clear of any two-factor interaction. This is referred to as:
breaking the alias link between main effects and two-factor
interactions.

Before we illustrate this concept with an example, we briefly
review the basic concepts involved.

Review of Fractional 2k-p Designs

A
resolution
III design,
combined
with its
mirror-
image
foldover,
becomes
resolution
IV

In general, a design type that uses a specified fraction of the
runs from a full factorial and is balanced and orthogonal is
called a fractional factorial.

A 2-level fractional factorial is constructed as follows: Let the
number of runs be 2k-p. Start by constructing the full factorial
for the k-p variables. Next associate the extra factors with
higher-order interaction columns. The Table shown
previously details how to do this to achieve a minimal amount
of confounding.

For example, consider the 25-2 design (a resolution III
design). The full factorial for k = 5 requires 25 = 32 runs. The
fractional factorial can be achieved in 25-2 = 8 runs, called a
quarter (1/4) fractional design, by setting X4 = X1*X2 and X5
= X1*X3.

Design
matrix for
a 25-2

fractional
factorial

The design matrix for a 25-2 fractional factorial looks like:

TABLE 3.34  Design Matrix for a 25-2 Fractional
Factorial

run X1 X2 X3 X4 = X1X2 X5 = X1X3
1 -1 -1 -1 +1 +1

http://www.itl.nist.gov/div898/handbook/index.htm
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2 +1 -1 -1 -1 -1
3 -1 +1 -1 -1 +1
4 +1 +1 -1 +1 -1
5 -1 -1 +1 +1 -1
6 +1 -1 +1 -1 +1
7 -1 +1 +1 -1 -1
8 +1 +1 +1 +1 +1

Design Generators, Defining Relation and the Mirror-
Image Foldover

Increase to
resolution
IV design
by
augmenting
design
matrix

In this design the X1X2 column was used to generate the X4
main effect and the X1X3 column was used to generate the X5
main effect. The design generators are: 4 = 12 and 5 = 13 and
the defining relation is I = 124 = 135 = 2345. Every main
effect is confounded (aliased) with at least one first-order
interaction (see the confounding structure for this design).

We can increase the resolution of this design to IV if we
augment the 8 original runs, adding on the 8 runs from the
mirror-image fold-over design. These runs make up another
1/4 fraction design with design generators 4 = -12 and 5 = -13
and defining relation I = -124 = -135 = 2345. The augmented
runs are:

Augmented
runs for the
design
matrix

run X1 X2 X3 X4 = -X1X2 X5 = -X1X3
9 +1 +1 +1 -1 -1

10 -1 +1 +1 +1 +1
11 +1 -1 +1 +1 -1
12 -1 -1 +1 -1 +1
13 +1 +1 -1 -1 +1
14 -1 +1 -1 +1 -1
15 +1 -1 -1 +1 +1
16 -1 -1 -1 -1 -1

Mirror-
image
foldover
design
reverses all
signs in
original
design
matrix

A mirror-image foldover design is the original design with all
signs reversed. It breaks the alias chains between every main
factor and two-factor interactionof a resolution III design.
That is, we can estimate all the main effects clear of any two-
factor interaction.

A 1/16 Design Generator Example

http://www.itl.nist.gov/div898/handbook/pri/section3/eqns/2to5m2.txt
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27-3

example
Now we consider a more complex example.

We would like to study the effects of 7 variables. A full 2-
level factorial, 27, would require 128 runs.

Assume economic reasons restrict us to 8 runs. We will build
a 27-4 = 23 full factorial and assign certain products of
columns to the X4, X5, X6 and X7 variables. This will
generate a resolution III design in which all of the main
effects are aliased with first-order and higher interaction
terms. The design matrix (see the previous Table for a
complete description of this fractional factorial design) is:

Design
matrix for
27-3

fractional
factorial

Design Matrix for a 27-3 Fractional Factorial

run X1 X2 X3
X4 =
X1X2

X5 =
X1X3

X6 =
X2X3

X7 =
X1X2X3

1 -1 -1 -1 +1 +1 +1 -1
2 +1 -1 -1 -1 -1 +1 +1
3 -1 +1 -1 -1 +1 -1 +1
4 +1 +1 -1 +1 -1 -1 -1
5 -1 -1 +1 +1 -1 -1 +1
6 +1 -1 +1 -1 +1 -1 -1
7 -1 +1 +1 -1 -1 +1 -1
8 +1 +1 +1 +1 +1 +1 +1

Design
generators
and
defining
relation for
this
example

The design generators for this 1/16 fractional factorial design
are:

4 = 12, 5 = 13, 6 = 23 and 7 = 123

From these we obtain, by multiplication, the defining relation:

I = 124 = 135 = 236 = 347 = 257 = 167 = 456 = 1237 =

2345 = 1346 = 1256 = 1457 = 2467 = 3567 = 1234567.

Computing
alias
structure
for
complete
design

Using this defining relation, we can easily compute the alias
structure for the complete design, as shown previously in the
link to the fractional design Table given earlier. For example,
to figure out which effects are aliased (confounded) with
factor X1 we multiply the defining relation by 1 to obtain:

1 = 24 = 35 = 1236 = 1347 = 1257 = 67 = 1456 = 237
= 12345 = 346 = 256 = 457 = 12467 = 13567 = 234567

In order to simplify matters, let us ignore all interactions with
3 or more factors; we then have the following 2-factor alias
pattern for X1: 1 = 24 = 35 = 67 or, using the full notation, X1
= X2*X4 = X3*X5 = X6*X7.

http://www.itl.nist.gov/div898/handbook/pri/section3/eqns/2to7m4.txt
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The same procedure can be used to obtain all the other aliases
for each of the main effects, generating the following list:

1 = 24 = 35 = 67 
2 = 14 = 36 = 57 
3 = 15 = 26 = 47 
4 = 12 = 37 = 56 
5 = 13 = 27 = 46 
6 = 17 = 23 = 45 
7 = 16 = 25 = 34

Signs in
every
column of
original
design
matrix
reversed
for mirror-
image
foldover
design

The chosen design used a set of generators with all positive
signs. The mirror-image foldover design uses generators with
negative signs for terms with an even number of factors or, 4
= -12, 5 = -13, 6 = -23 and 7 = 123. This generates a design
matrix that is equal to the original design matrix with every
sign in every column reversed.

If we augment the initial 8 runs with the 8 mirror-image
foldover design runs (with all column signs reversed), we can
de-alias all the main effect estimates from the 2-way
interactions. The additional runs are:

Design
matrix for
mirror-
image
foldover
runs

Design Matrix for the Mirror-Image Foldover
Runs of the 27-3 Fractional Factorial

run X1 X2 X3
X4 =
X1X2

X5 =
X1X3

X6 =
X2X3

X7 =
X1X2X3

1 +1 +1 +1 -1 -1 -1 +1
2 -1 +1 +1 +1 +1 -1 -1
3 +1 -1 +1 +1 -1 +1 -1
4 -1 -1 +1 -1 +1 +1 +1
5 +1 +1 -1 -1 +1 +1 -1
6 -1 +1 -1 +1 -1 +1 +1
7 +1 -1 -1 +1 +1 -1 +1
8 -1 -1 -1 -1 -1 -1 -1

Alias
structure
for
augmented
runs

Following the same steps as before and making the same
assumptions about the omission of higher-order interactions
in the alias structure, we arrive at:

1 = -24 = -35 = -67 
2 = -14 = -36 =- 57 
3 = -15 = -26 = -47 
4 = -12 = -37 = -56 
5 = -13 = -27 = -46 
6 = -17 = -23 = -45 
7 = -16 = -25 = -34

With both sets of runs, we can now estimate all the main
effects free from two factor interactions.
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Build a
resolution
IV design
from a
resolution
III design

Note: In general, a mirror-image foldover design is a method
to build a resolution IV design from a resolution III design. It
is never used to follow-up a resolution IV design.

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/
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5.3.3.8.2. Alternative foldover designs

Alternative
foldover
designs can
be an
economical
way to break
up a selected
alias pattern

The mirror-image foldover (in which signs in all columns are
reversed) is only one of the possible follow-up fractions that
can be run to augment a fractional factorial design. It is the
most common choice when the original fraction is resolution
III. However, alternative foldover designs with fewer runs
can often be utilized to break up selected alias patterns. We
illustrate this by looking at what happens when the signs of a
single factor column are reversed.

Example of
de-aliasing a
single factor

Previously, we described how we de-alias all the factors of a 
27-4 experiment. Suppose that we only want to de-alias the
X4 factor. This can be accomplished by only changing the
sign of X4 = X1X2 to X4 = -X1X2. The resulting design is:

Table
showing
design
matrix of a
reverse X4
foldover
design

TABLE 3.36  A "Reverse X4" Foldover Design

run X1 X2 X3
X4 =

-X1X2
X5 =

-X1X3
X6 =
X2X3

X7 =
X1X2X3

1 -1 -1 -1 -1 +1 +1 -1
2 +1 -1 -1 +1 -1 +1 +1
3 -1 +1 -1 +1 +1 -1 +1
4 +1 +1 -1 -1 -1 -1 -1
5 -1 -1 +1 -1 -1 -1 +1
6 +1 -1 +1 +1 +1 -1 -1
7 -1 +1 +1 +1 -1 +1 -1
8 +1 +1 +1 -1 +1 +1 +1

Alias
patterns and
effects that
can be
estimated in
the example
design

The two-factor alias patterns for X4 are: Original experiment:
X4 = X1X2 = X3X7 = X5X6; "Reverse X4" foldover
experiment: X4 = -X1X2 = -X3X7 = -X5X6.

The following effects can be estimated by combining the
original  with the "Reverse X4" foldover fraction:

X1 + X3X5 + X6X7 
X2 + X3X6 + X5X7 
X3 + X1X5 + X2X6 
X4 

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/pri/pri.htm
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X5 + X1X3 + X2X7 
X6 + X2X3 + X1X7 
X7 + X2X5 + X1X6 
X1X4 
X2X4 
X3X4 
X4X5 
X4X6 
X4X7 
X1X2 + X3X7 + X5X6

Note: The 16 runs allow estimating the above 14 effects,
with one degree of freedom left over for a possible block
effect.

Advantage
and
disadvantage
of this
example
design

The advantage of this follow-up design is that it permits
estimation of the X4 effect and each of the six two-factor
interaction terms involving X4.

The disadvantage is that the combined fractions still yield a
resolution III design, with all main effects other than X4
aliased with two-factor interactions.

Case when
purpose is
simply to
estimate all
two-factor
interactions
of a single
factor

Reversing a single factor column to obtain de-aliased two-
factor interactions for that one factor works for any
resolution III or IV design. When used to follow-up a
resolution IV design, there are relatively few new effects to
be estimated (as compared to  designs). When the
original resolution IV fraction provides sufficient precision,
and the purpose of the follow-up runs is simply to estimate
all two-factor interactions for one factor, the semifolding
option should be considered.

Semifolding

Number of
runs can be
reduced for
resolution IV
designs

For resolution IV fractions, it is possible to economize on the
number of runs that are needed to break the alias chains for
all two-factor interactions of a single factor. In the above
case we needed 8 additional runs, which is the same number
of runs that were used in the original experiment. This can be
improved upon.

Additional
information
on John's 3/4
designs

We can repeat only the points that were set at the high levels
of the factor of choice and then run them at their low settings
in the next experiment. For the given example, this means an
additional 4 runs instead 8. We mention this technique only
in passing, more details may be found in the references (or
see John's 3/4 designs).

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/
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5.3.3.9. Three-level full factorial designs

Three-level
designs are
useful for
investigating
quadratic
effects

The three-level design is written as a 3k factorial design. It means
that k factors are considered, each at 3 levels. These are (usually)
referred to as low, intermediate and high levels. These levels are
numerically expressed as 0, 1, and 2. One could have considered the
digits -1, 0, and +1, but this may be confusing with respect to the 2-
level designs since 0 is reserved for center points. Therefore, we will
use the 0, 1, 2 scheme. The reason that the three-level designs were
proposed is to model possible curvature in the response function and
to handle the case of nominal factors at 3 levels. A third level for a
continuous factor facilitates investigation of a quadratic relationship
between the response and each of the factors.

Three-level
design may
require
prohibitive
number of
runs

Unfortunately, the three-level design is prohibitive in terms of the
number of runs, and thus in terms of cost and effort. For example a
two-level design with center points is much less expensive while it
still is a very good (and simple) way to establish the presence or
absence of curvature.

The 32 design

The simplest
3-level design
- with only 2
factors

This is the simplest three-level design. It has two factors, each at
three levels. The 9 treatment combinations for this type of design can
be shown pictorially as follows: 

FIGURE 3.23 A 32 Design Schematic

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/pri/pri.htm
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A notation such as "20" means that factor A is at its high level (2)
and factor B is at its low level (0).

The 33 design

The model
and treatment
runs for a 3
factor, 3-level
design

This is a design that consists of three factors, each at three levels. It
can be expressed as a 3 x 3 x 3 = 33 design. The model for such an
experiment is

where each factor is included as a nominal factor rather than as a
continuous variable. In such cases, main effects have 2 degrees of
freedom, two-factor interactions have 22 = 4 degrees of freedom and
k-factor interactions have 2k degrees of freedom. The model contains
2 + 2 + 2 + 4 + 4 + 4 + 8 = 26 degrees of freedom. Note that if there
is no replication, the fit is exact and there is no error term (the
epsilon term) in the model. In this no replication case, if one assumes
that there are no three-factor interactions, then one can use these 8
degrees of freedom for error estimation.

In this model we see that i = 1, 2, 3, and similarly for j and k, making
27 treatments.

Table of
treatments for
the 33 design

These treatments may be displayed as follows:

TABLE 3.37  The 33 Design

  Factor A
Factor B Factor C 0 1 2
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0 0 000 100 200
0 1 001 101 201
0 2 002 102 202

1 0 010 110 210
1 1 011 111 211
1 2 012 112 212

2 0 020 120 220
2 1 021 121 221
2 2 022 122 222

Pictorial
representation
of the 33

design

The design can be represented pictorially by

FIGURE 3.24  A 33 Design Schematic 

Two types of
3k designs

Two types of fractions of 3k designs are employed:

Box-Behnken designs whose purpose is to estimate a second-
order model for quantitative factors (discussed earlier in
section 5.3.3.6.2)
3k-p orthogonal arrays.

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/
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5.3.3.10. Three-level, mixed-level and fractional
factorial designs

Mixed level
designs have
some factors
with, say, 2
levels, and
some with 3
levels or 4
levels

The 2k and 3k experiments are special cases of factorial
designs. In a factorial design, one obtains data at every
combination of the levels. The importance of factorial designs,
especially 2-level factorial designs, was stated by Montgomery
(1991): It is our belief that the two-level factorial and
fractional factorial designs should be the cornerstone of
industrial experimentation for product and process
development and improvement. He went on to say: There are,
however, some situations in which it is necessary to include a
factor (or a few factors) that have more than two levels.

This section will look at how to add three-level factors
starting with two-level designs, obtaining what is called a
mixed-level design. We will also look at how to add a four-
level factor to a two-level design. The section will conclude
with a listing of some useful orthogonal three-level and
mixed-level designs (a few of the so-called Taguchi "L"
orthogonal array designs), and a brief discussion of their
benefits and disadvantages.

Generating a Mixed Three-Level and Two-Level Design

Montgomery
scheme for
generating a
mixed
design

Montgomery (1991) suggests how to derive a variable at three
levels from a 23 design, using a rather ingenious scheme. The
objective is to generate a design for one variable, A, at 2 levels
and another, X, at three levels. This will be formed by
combining the -1 and 1 patterns for the B and C factors to
form the levels of the three-level factor X:

TABLE 3.38  Generating a Mixed Design

Two-Level Three-Level

B C X

-1 -1 x1

+1 -1 x2

-1 +1 x2

+1 +1 x3

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/pri/pri.htm
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Similar to the 3k case, we observe that X has 2 degrees of
freedom, which can be broken out into a linear and a
quadratic component. To illustrate how the 23 design leads to
the design with one factor at two levels and one factor at three
levels, consider the following table, with particular attention
focused on the column labels.

Table
illustrating
the
generation
of a design
with one
factor at 2
levels and
another at 3
levels from a
23 design

  A XL XL AXL AXL XQ AXQ TRT MNT

Run A B C AB AC BC ABC A X

1 -1 -1 -1 +1 +1 +1 -1 Low Low
2 +1 -1 -1 -1 -1 +1 +1 High Low
3 -1 +1 -1 -1 +1 -1 +1 Low Medium
4 +1 +1 -1 +1 -1 -1 -1 High Medium
5 -1 -1 +1 +1 -1 -1 +1 Low Medium
6 +1 -1 +1 -1 +1 -1 -1 High Medium
7 -1 +1 +1 -1 -1 +1 -1 Low High
8 +1 +1 +1 +1 +1 +1 +1 High High

If quadratic
effect
negligble,
we may
include a
second two-
level factor

If we believe that the quadratic effect is negligible, we may
include a second two-level factor, D, with D = ABC. In fact,
we can convert the design to exclusively a main effect
(resolution III) situation consisting of four two-level factors
and one three-level factor. This is accomplished by equating
the second two-level factor to AB, the third to AC and the
fourth to ABC. Column BC cannot be used in this manner
because it contains the quadratic effect of the three-level
factor X.

More than one three-level factor

3-Level
factors from
24 and 25

designs

We have seen that in order to create one three-level factor, the
starting design can be a 23 factorial. Without proof we state
that a 24 can split off 1, 2 or 3 three-level factors; a 25 is able
to generate 3 three-level factors and still maintain a full
factorial structure. For more on this, see Montgomery (1991).

Generating a Two- and Four-Level Mixed Design

Constructing
a design
with one 4-
level factor
and two 2-
level factors

We may use the same principles as for the three-level factor
example in creating a four-level factor. We will assume that
the goal is to construct a design with one four-level and two
two-level factors.

Initially we wish to estimate all main effects and interactions.
It has been shown (see Montgomery, 1991) that this can be
accomplished via a 24 (16 runs) design, with columns A and B
used to create the four level factor X.

Table
showing

TABLE 3.39  A Single Four-level Factor and Two Two-
level Factors in 16 runs



5.3.3.10. Three-level, mixed-level and fractional factorial designs

http://www.itl.nist.gov/div898/handbook/pri/section3/pri33a.htm[6/27/2012 2:24:20 PM]

design with
4-level, two
2-level
factors in 16
runs

Run (A B) = X C D

1 -1 -1 x1 -1 -1
2 +1 -1 x2 -1 -1
3 -1 +1 x3 -1 -1
4 +1 +1 x4 -1 -1
5 -1 -1 x1 +1 -1
6 +1 -1 x2 +1 -1
7 -1 +1 x3 +1 -1
8 +1 +1 x4 +1 -1
9 -1 -1 x1 -1 +1
10 +1 -1 x2 -1 +1
11 -1 +1 x3 -1 +1
12 +1 +1 x4 -1 +1
13 -1 -1 x1 +1 +1
14 +1 -1 x2 +1 +1
15 -1 +1 x3 +1 +1
16 +1 +1 x4 +1 +1

Some Useful (Taguchi) Orthogonal "L" Array Designs

L9
design

L9 - A 34-2 Fractional Factorial Design 4
Factors at Three Levels (9 runs)

Run X1 X2 X3 X4
1 1 1 1 1
2 1 2 2 2
3 1 3 3 3
4 2 1 2 3
5 2 2 3 1
6 2 3 1 2
7 3 1 3 2
8 3 2 1 3
9 3 3 2 1

L18
design

L18 - A 2 x 37-5 Fractional Factorial (Mixed-Level) Design 
1 Factor at Two Levels and Seven Factors at 3 Levels (18

Runs)
Run X1 X2 X3 X4 X5 X6 X7 X8

1 1 1 1 1 1 1 1 1
2 1 1 2 2 2 2 2 2
3 1 1 3 3 3 3 3 3
4 1 2 1 1 2 2 3 3
5 1 2 2 2 3 3 1 1
6 1 2 3 3 1 1 2 2
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7 1 3 1 2 1 3 2 3
8 1 3 2 3 2 1 3 1
9 1 3 3 1 3 2 1 2
10 2 1 1 3 3 2 2 1
11 2 1 2 1 1 3 3 2
12 2 1 3 2 2 1 1 3
13 2 2 1 2 3 1 3 2
14 2 2 2 3 1 2 1 3
15 2 2 3 1 2 3 2 1
16 2 3 1 3 2 3 1 2
17 2 3 2 1 3 1 2 3
18 2 3 3 2 1 2 3 1

L27
design

L27 - A 313-10 Fractional Factorial Design 
Thirteen Factors at Three Levels (27 Runs)

Run X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13
1 1 1  1  1  1  1  1  1  1  1  1  1  1 
2 1 1  1  1  2  2  2  2  2  2  2  2  2 
3  1  1  1  1  3  3  3  3  3  3  3  3  3 
4 1  2 2 2 1 1 1  2  2  2  3  3  3 
5 1  2  2  2  2  2  2  3  3  3  1  1  1 
6 1  2  2  2  3  3  3  1  1  1  2  2  2 
7 1  3  3  3  1  1  1  3  3  3  2  2  2 
8 1  3  3  3  2  2  2  1  1  1  3  3  3 
9 1  3  3  3  3  3  3  2  2  2  1 1  1 

10 2  1  2  3  1  2  3  1  2  3  1  2  3 
11 2  1  2  3  2  3  1  2  3  1  2  3  1 
12 2  1  2  3  3  1  2  3  1  2  3  1  2 
13 2  2  3  1  1  2  3  2  3  1  3  1  2 
14 2  2  3  1  2  3  1  3  1  2  1  2  3 
15 2  2  3  1  3  1  2  1  2  3  2  3  1 
16 2  3  1  2  1  2  3  3  1  2  2 3  1 
17 2  3  1  2  2  3  1  1  2  3  3  1  2 
18 2  3  1  2  3  1  2  2  3  1  1 2  3 
19 3  1  3  2  1  3  2  1  3  2  1  3  2 
20 3  1  3  2  2  1  3  2  1  3  2  1  3 
21 3  1  3  2  3   2  1  3  2  1  3  2  1
22 3  2  1  3  1  3  2  2  1  3  3  2  1 
23 3  2  1  3  2  1  3  3  2  1  1  3  2 
24 3 2  1  3  3  2  1  1  3  2  2  1  3 
25 3  3  2  1  1  3  2  3  2  1  2  1  3 
26 3  3  2  1  2  1  3  1  3  2  3  2  1 
27 3  3  2  1  3  2  1  2  1  3  1  3  2 
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L36
design

L36 - A Fractional Factorial (Mixed-Level) Design Eleven Factors at Two Levels and Twelve Factors at 3
Levels (36 Runs)

Run X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 X17 X18 X19 X20 X21 X22 X23
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2
3 1 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3
4 1 1 1 1 1 2 2 2 2 2 2 1 1 1 1 2 2 2 2 3 3 3 3
5 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 1 1 1 1
6 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 1 1 1 1 2 2 2 2
7 1 1 2 2 2 1 1 1 2 2 2 1 1 2 3 1 2 3 3 1 2 2 3
8 1 1 2 2 2 1 1 1 2 2 2 2 2 3 1 2 3 1 1 2 3 3 1
9 1 1 2 2 2 1 1 1 2 2 2 3 3 1 2 3 1 2 2 3 1 1 2
10 1 2 1 2 2 1 2 2 1 1 2 1 1 3 2 1 3 2 3 2 1 3 2
11 1 2 1 2 2 1 2 2 1 1 2 2 2 1 3 2 1 3 1 3 2 1 3
12 1 2 1 2 2 1 2 2 1 1 2 3 3 2 1 3 2 1 2 1 3 2 1
13 1 2 2 1 2 2 1 2 1 2 1 1 2 3 1 3 2 1 3 3 2 1 2
14 1 2 2 1 2 2 1 2 1 2 1 2 3 1 2 1 3 2 1 1 3 2 3
15 1 2 2 1 2 2 1 2 1 2 1 3 1 2 3 2 1 3 2 2 1 3 1
16 1 2 2 2 1 2 2 1 2 1 1 1 2 3 2 1 1 3 2 3 3 2 1
17 1 2 2 2 1 2 2 1 2 1 1 2 3 1 3 2 2 1 3 1 1 3 2
18 1 2 2 2 1 2 2 1 2 1 1 3 1 2 1 3 3 2 1 2 2 1 3
19 2 1 2 2 1 1 2 2 1 2 1 1 2 1 3 3 3 1 2 2 1 2 3
20 2 1 2 2 1 1 2 2 1 2 1 2 3 2 1 1 1 2 3 3 2 3 1
21 2 1 2 2 1 1 2 2 1 2 1 3 1 3 2 2 2 3 1 1 3 1 2
22 2 1 2 1 2 2 2 1 1 1 2 1 2 2 3 3 1 2 1 1 3 3 2
23 2 1 2 1 2 2 2 1 1 1 2 2 3 3 1 1 2 3 2 2 1 1 3
24 2 1 2 1 2 2 2 1 1 1 2 3 1 1 2 2 3 1 3 3 2 2 1
25 2 1 1 2 2 2 1 2 2 1 1 1 3 2 1 2 3 3 1 3 1 2 2
26 2 1 1 2 2 2 1 2 2 1 1 2 1 3 2 3 1 1 2 1 2 3 3
27 2 1 1 2 2 2 1 2 2 1 1 3 2 1 3 1 2 2 3 2 3 1 1
28 2 2 2 1 1 1 1 2 2 1 2 1 3 2 2 2 1 1 3 2 3 1 3
29 2 2 2 1 1 1 1 2 2 1 2 2 1 3 3 3 2 2 1 3 1 2 1
30 2 2 2 1 1 1 1 2 2 1 2 3 2 1 1 1 3 3 2 1 2 3 2
31 2 2 1 2 1 2 1 1 1 2 2 1 3 3 3 2 3 2 2 1 2 1 1
32 2 2 1 2 1 2 1 1 1 2 2 2 1 1 1 3 1 3 3 2 3 2 2
33 2 2 1 2 1 2 1 1 1 2 2 3 2 2 2 1 2 1 1 3 1 3 3
34 2 2 1 1 2 1 2 1 2 2 1 1 3 1 2 3 2 3 1 2 2 3 1
35 2 2 1 1 2 1 2 1 2 2 1 2 1 2 3 1 3 1 2 3 3 1 2
36 2 2 1 1 2 1 2 1 2 2 1 3 2 3 1 2 1 2 3 1 1 2 3

Advantages and Disadvantages of Three-Level and
Mixed-Level "L" Designs

Advantages The good features of these designs are:
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and
disadvantages
of three-level
mixed-level
designs

They are orthogonal arrays. Some analysts believe
this simplifies the analysis and interpretation of
results while other analysts believe it does not.
They obtain a lot of information about the main
effects in a relatively few number of runs.
You can test whether non-linear terms are needed in
the model, at least as far as the three-level factors are
concerned.

On the other hand, there are several undesirable features of
these designs to consider:

They provide limited information about interactions.
They require more runs than a comparable
2k-pdesign, and a two-level design will often suffice
when the factors are continuous and monotonic
(many three-level designs are used when two-level
designs would have been adequate).
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5. Process Improvement 

5.4. Analysis of DOE data

Contents of
this section

Assuming you have a starting model that you want to fit to
your experimental data and the experiment was designed
correctly for your objective, most DOE software packages
will analyze your DOE data. This section will illustrate how
to analyze DOE's by first going over the generic basic steps
and then showing software examples. The contents of the
section are:

DOE analysis steps
Plotting DOE data
Modeling DOE data
Testing and revising DOE models
Interpreting DOE results
Confirming DOE results
DOE examples

Full factorial example
Fractional factorial example
Response surface example

Prerequisite
statistical
tools and
concepts
needed for
DOE
analyses

The examples in this section assume the reader is familiar
with the concepts of

ANOVA tables (see Chapter 3 or Chapter 7)
p-values
Residual analysis
Model Lack of Fit tests
Data transformations for normality and linearity

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/pri/pri.htm
http://www.itl.nist.gov/div898/handbook/ppc/section2/ppc23.htm
http://www.itl.nist.gov/div898/handbook/prc/section4/prc42.htm
http://www.itl.nist.gov/div898/handbook/prc/section1/prc131.htm
http://www.itl.nist.gov/div898/handbook/pmd/section4/pmd44.htm#resdef
http://www.itl.nist.gov/div898/handbook/pmd/section4/pmd44.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda336.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda335.htm
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/


5.4.1. What are the steps in a DOE analysis?

http://www.itl.nist.gov/div898/handbook/pri/section4/pri41.htm[6/27/2012 2:24:26 PM]
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5.4.1. What are the steps in a DOE analysis?

General
flowchart
for
analyzing
DOE data

Flowchart of DOE Analysis Steps

DOE Analysis Steps

Analysis
steps:
graphics,
theoretical
model,
actual
model,
validate
model, use
model

The following are the basic steps in a DOE analysis.

1. Look at the data. Examine it for outliers, typos and obvious problems.
Construct as many graphs as you can to get the big picture.

Response distributions (histograms, box plots, etc.)
Responses versus time order scatter plot (a check for possible time
effects)
Responses versus factor levels (first look at magnitude of factor effects)
Typical DOE plots (which assume standard models for effects and
errors)

Main effects mean plots
Block plots
Normal or half-normal plots of the effects
Interaction plots

Sometimes the right graphs and plots of the data lead to obvious
answers for your experimental objective questions and you can skip to
step 5. In most cases, however, you will want to continue by fitting and
validating a model that can be used to answer your questions.

http://www.itl.nist.gov/div898/handbook/index.htm
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2. Create the theoretical model (the experiment should have been designed with
this model in mind!).

3. Create a model from the data. Simplify the model, if possible, using stepwise
regression methods and/or parameter p-value significance information.

4. Test the model assumptions using residual graphs.
If none of the model assumptions were violated, examine the ANOVA.

Simplify the model further, if appropriate. If reduction is
appropriate, then return to step 3 with a new model.

If model assumptions were violated, try to find a cause.
Are necessary terms missing from the model?
Will a transformation of the response help? If a transformation is
used, return to step 3 with a new model.

5. Use the results to answer the questions in your experimental objectives --
finding important factors, finding optimum settings, etc.

Flowchart
is a
guideline,
not a
hard-and
-fast rule

Note: The above flowchart and sequence of steps should not be regarded as a "hard-
and-fast rule" for analyzing all DOE's. Different analysts may prefer a different
sequence of steps and not all types of experiments can be analyzed with one set
procedure. There still remains some art in both the design and the analysis of
experiments, which can only be learned from experience. In addition, the role of
engineering judgment should not be underestimated.
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5.4.2. How to "look" at DOE data

The
importance
of looking
at the data
with a wide
array of
plots or
visual
displays
cannot be
over-
stressed

The right graphs, plots or visual displays of a dataset can
uncover anomalies or provide insights that go beyond what
most quantitative techniques are capable of discovering.
Indeed, in many cases quantitative techniques and models are
tools used to confirm and extend the conclusions an analyst
has already formulated after carefully "looking" at the data.

Most software packages have a selection of different kinds of
plots for displaying DOE data. Some of these useful ways of
looking at data are mentioned below, with links to detailed
explanations in Chapter 1 (Exploratory Data Analysis or
EDA) or to other places where they are illustrated and
explained. In addition, examples and detailed explanations of
visual (EDA) DOE techniques can be found in section 5.5.9.

Plots for
viewing the
response
data

First "Look" at the Data

Histogram of responses
Run-sequence plot (pay special attention to results at
center points)
Scatter plot (for pairs of response variables)
Lag plot
Normal probability plot
Autocorrelation plot

Plots for
viewing
main effects
and 2-factor
interactions,
explanation
of normal
or half-
normal
plots to
detect
possible
important
effects

Subsequent Plots: Main Effects, Comparisons and 2-Way
Interactions

Quantile-quantile (q-q) plot
Block plot
Box plot
Bi-histogram
DOE scatter plot
DOE mean plot
DOE standard deviation plot
DOE interaction plots
Normal or half-normal probability plots for effects.
Note: these links show how to generate plots to test for
normal (or half-normal) data with points lining up
along a straight line, approximately, if the plotted
points were from the assumed normal (or half-normal)
distribution. For two-level full factorial and fractional
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factorial experiments, the points plotted are the
estimates of all the model effects, including possible
interactions. Those effects that are really negligible
should have estimates that resemble normally
distributed noise, with mean zero and a constant
variance. Significant effects can be picked out as the
ones that do not line up along the straight line. Normal
effect plots use the effect estimates directly, while
half-normal plots use the absolute values of the effect
estimates.
Youden plots

Plots for
testing and
validating
models

Model testing and Validation

Response vs predictions
Residuals vs predictions
Residuals vs independent variables
Residuals lag plot
Residuals histogram
Normal probability plot of residuals

Plots for
model
prediction

Model Predictions

Contour plots
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5.4.3. How to model DOE data

DOE models
should be
consistent
with the
goal of the
experiment

In general, the trial model that will be fit to DOE data should
be consistent with the goal of the experiment and has been
predetermined by the goal of the experiment and the
experimental design and data collection methodology.

Comparative
designs

Models were given earlier for comparative designs
(completely randomized designs, randomized block designs
and Latin square designs).

Full
factorial
designs

For full factorial designs with k factors (2k runs, not
counting any center points or replication runs), the full
model contains all the main effects and all orders of
interaction terms. Usually, higher-order (three or more
factors) interaction terms are included initially to construct
the normal (or half-normal) plot of effects, but later dropped
when a simpler, adequate model is fit. Depending on the
software available or the analyst's preferences, various
techniques such as normal or half-normal plots, Youden
plots, p-value comparisons and stepwise regression routines
are used to reduce the model to the minimum number of
needed terms. An example of model selection is shown later
in this section and an example of Yates algorithm is given
as a case study.

Fractional
factorial
designs

For fractional factorial screening designs, it is necessary to
know the alias structure in order to write an appropriate
starting model  containing only the interaction terms the
experiment was designed to estimate (assuming all terms
confounded with these selected terms are insignificant). This
is illustrated by the fractional factorial example later in this
section. The starting model is then possibly reduced by the
same techniques described above for full factorial models.

Response
surface
designs

Response surface initial models include quadratic terms and
may occasionally also include cubic terms. These models
were described in section 3.

Model
validation

Of course, as in all cases of model fitting, residual analysis
and other tests of model fit are used to confirm or adjust
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models, as needed.
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5.4.4. How to test and revise DOE models

Tools for
testing,
revising,
and
selecting
models

All the tools and procedures for testing, revising and selecting
final DOE models are covered in various sections of the
Handbook. The outline below gives many of the most
common and useful techniques and has links to detailed
explanations.

Outline of Model Testing and Revising: Tools and
Procedures

An outline
(with
links)
covers
most of the
useful
tools and
procedures
for testing
and
revising
DOE
models

Graphical Indicators for testing models (using residuals)
Response vs predictions
Residuals vs predictions
Residuals vs independent variables
Residuals lag plot
Residuals histogram
Normal probability plot of residuals

Overall numerical indicators for testing models and
model terms

R Squared and R Squared adjusted
Model Lack of Fit tests
ANOVA tables (see Chapter 3 or Chapter 7)
p-values

Model selection tools or procedures
ANOVA tables (see Chapter 3 or Chapter 7)
p-values
Residual analysis
Model Lack of Fit tests
Data transformations for normality and linearity
Stepwise regression procedures
Normal or half-normal plots of effects (primarily
for two-level full and fractional factorial
experiments)
Youden plots
Other methods
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5.4.5. How to interpret DOE results

Final model
used to
make
conclusions
and
decisions

Assume that you have a final model that has passed all the
relevant tests (visual and quantitative) and you are ready to
make conclusions and decisions. These should be responses
to the questions or outputs dictated by the original
experimental goals.

Checklist relating DOE conclusions or outputs to
experimental goals or experimental purpose:

A checklist
of how to
compare
DOE results
to the
experimental
goals

Do the responses differ significantly over the factor
levels? (comparative experiment goal)
Which are the significant effects or terms in the final
model? (screening experiment goal)
What is the model for estimating responses?

Full factorial case (main effects plus significant
interactions)
Fractional factorial case (main effects plus
significant interactions that are not confounded
with other possibly real effects)
RSM case (allowing for quadratic or possibly
cubic models, if needed)

What responses are predicted and how can responses
be optimized? (RSM goal)

Contour plots
Settings for confirmation runs and prediction
intervals for results
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5.4.6. How to confirm DOE results
(confirmatory runs)

Definition of
confirmation
runs

When the analysis of the experiment is complete, one must
verify that the predictions are good. These are called
confirmation runs.

The interpretation and conclusions from an experiment may
include a "best" setting to use to meet the goals of the
experiment. Even if this "best" setting were included in the
design, you should run it again as part of the confirmation
runs to make sure nothing has changed and that the response
values are close to their predicted values. would get.

At least 3
confirmation
runs should
be planned

In an industrial setting, it is very desirable to have a stable
process. Therefore, one should run more than one test at the
"best" settings. A minimum of 3 runs should be conducted
(allowing an estimate of variability at that setting).

If the time between actually running the experiment and
conducting the confirmation runs is more than a few hours,
the experimenter must be careful to ensure that nothing else
has changed since the original data collection.

Carefully
duplicate the
original
environment

The confirmation runs should be conducted in an
environment as similar as possible to the original
experiment. For example, if the experiment were conducted
in the afternoon and the equipment has a warm-up effect,
the confirmation runs should be conducted in the afternoon
after the equipment has warmed up. Other extraneous factors
that may change or affect the results of the confirmation runs
are: person/operator on the equipment, temperature,
humidity, machine parameters, raw materials, etc.

Checks for
when
confirmation
runs give
surprises

What do you do if you don't obtain the results you expected?
If the confirmation runs don't produce the results you
expected:

1. check to see that nothing has changed since the
original data collection

2. verify that you have the correct settings for the
confirmation runs

3. revisit the model to verify the "best" settings from the
analysis
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4. verify that you had the correct predicted value for the
confirmation runs.

If you don't find the answer after checking the above 4
items, the model may not predict very well in the region you
decided was "best". You still learned from the experiment
and you should use the information gained from this
experiment to design another follow-up experiment.

Even when
the
experimental
goals are
not met,
something
was learned
that can be
used in a
follow-up
experiment

Every well-designed experiment is a success in that you
learn something from it. However, every experiment will not
necessarily meet the goals established before
experimentation. That is why it makes sense to plan to
experiment sequentially in order to meet the goals.
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5.4.7. Examples of Designed Experiments

Three
detailed
examples

Perhaps one of the best ways to illustrate how to analyze data
from a designed experiment is to work through a detailed
example, explaining each step in the analysis.

Detailed analyses are presented for three basic types of
designed experiments:

1. A full factorial experiment
2. A fractional factorial experiment
3. A response surface experiment

Software Most analyses of designed experiments are performed by
statistical software packages. Good statistical software enables
the analyst to view graphical displays, build models, and test
assumptions. Occasionally, the goals of the experiment can be
achieved by simply examining appropriate graphical displays
of the experimental responses. In other cases, a satisfactory
model has to be fit in order to determine the most significant
factors or the optimal contours of the response surface. In any
case, the software will perform the appropriate calculations as
long as the analyst knows what to request and how to interpret
the program outputs.
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5.4.7.1. Full factorial example

Data Source

This example
uses data from
a NIST high
performance
ceramics
experiment

This data set was taken from an experiment that was performed a few years ago at NIST by
Said Jahanmir of the Ceramics Division in the Material Science and Engineering Laboratory.
The original analysis was performed primarily by Lisa Gill of the Statistical Engineering
Division. The example shown here is an independent analysis of a modified portion of the
original data set.

The original data set was part of a high performance ceramics experiment with the goal of
characterizing the effect of grinding parameters on sintered reaction-bonded silicon nitride,
reaction bonded silicone nitride, and sintered silicon nitride.

Only modified data from the first of the three ceramic types (sintered reaction-bonded silicon
nitride) will be discussed in this illustrative example of a full factorial data analysis.

The reader can download the data as a text file.

Description of Experiment: Response and Factors

Response and
factor
variables

Purpose: To determine the effect of machining factors on ceramic strength 
Response variable = mean (over 15 repetitions) of the ceramic strength 
Number of observations = 32 (a complete 25 factorial design)

Response Variable Y = Mean (over 15 reps) of Ceramic Strength 
Factor 1 = Table Speed (2 levels: slow (.025 m/s) and fast (.125 m/s)) 
Factor 2 = Down Feed Rate (2 levels: slow (.05 mm) and fast (.125 mm)) 
Factor 3 = Wheel Grit (2 levels: 140/170 and 80/100) 
Factor 4 = Direction (2 levels: longitudinal and transverse) 
Factor 5 = Batch (2 levels: 1 and 2)

Since two factors were qualitative (direction and batch) and it was reasonable to expect
monotone effects from the quantitative factors, no centerpoint runs were included.

The data The design matrix, with measured ceramic strength responses, appears below. The actual
randomized run order is given in the last column. (The interested reader may download the
data as a text file.)

    speed rate grit direction batch strength order
  1    -1   -1   -1        -1    -1   680.45    17
  2     1   -1   -1        -1    -1   722.48    30
  3    -1    1   -1        -1    -1   702.14    14
  4     1    1   -1        -1    -1   666.93     8
  5    -1   -1    1        -1    -1   703.67    32
  6     1   -1    1        -1    -1   642.14    20

http://www.itl.nist.gov/div898/handbook/index.htm
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http://www.itl.nist.gov/div898/handbook/pri/section4/gifs/ceramic.txt
http://www.itl.nist.gov/div898/handbook/pri/section4/gifs/ceramic.txt
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  7    -1    1    1        -1    -1   692.98    26
  8     1    1    1        -1    -1   669.26    24
  9    -1   -1   -1         1    -1   491.58    10
 10     1   -1   -1         1    -1   475.52    16
 11    -1    1   -1         1    -1   478.76    27
 12     1    1   -1         1    -1   568.23    18
 13    -1   -1    1         1    -1   444.72     3
 14     1   -1    1         1    -1   410.37    19
 15    -1    1    1         1    -1   428.51    31
 16     1    1    1         1    -1   491.47    15
 17    -1   -1   -1        -1     1   607.34    12
 18     1   -1   -1        -1     1   620.80     1
 19    -1    1   -1        -1     1   610.55     4
 20     1    1   -1        -1     1   638.04    23
 21    -1   -1    1        -1     1   585.19     2
 22     1   -1    1        -1     1   586.17    28
 23    -1    1    1        -1     1   601.67    11
 24     1    1    1        -1     1   608.31     9
 25    -1   -1   -1         1     1   442.90    25
 26     1   -1   -1         1     1   434.41    21
 27    -1    1   -1         1     1   417.66     6
 28     1    1   -1         1     1   510.84     7
 29    -1   -1    1         1     1   392.11     5
 30     1   -1    1         1     1   343.22    13
 31    -1    1    1         1     1   385.52    22
 32     1    1    1         1     1   446.73    29

Analysis of the Experiment

Five basic
steps

The experimental data will be analyzed following the previously described five basic steps.
The analyses shown in this page can be generated using R code.

Step 1: Look at the data

Plot the
response
variable

We start by plotting the response data several ways to see if any trends or anomalies appear
that would not be accounted for by the standard linear response models.

First, we look at the distribution of the response variable regardless of factor levels by
generating the following four plots.

1. The first plot is a normal probability plot of the response variable. The red line is the
theoretical normal distribution.

2. The second plot is a box plot of the response variable.
3. The third plot is a histogram of the response variable.
4. The fourth plot is the response versus the run order.

http://www.itl.nist.gov/div898/handbook/pri/section4/pri471.r
http://www.itl.nist.gov/div898/handbook/eda/section3/normprpl.htm
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5.4.7.1. Full factorial example

http://www.itl.nist.gov/div898/handbook/pri/section4/pri471.htm[6/27/2012 2:24:31 PM]

Clearly there is "structure" that we hope to account for when we fit a response model. For
example, the response variable is separated into two roughly equal-sized clumps in the
histogram. The first clump is centered approximately around the value 450 while the second
clump is centered approximately around the value 650. As hoped for, the run-order plot does
not indicate a significant time effect.

Box plots of
response by
factor
variables

Next, we look at box plots of the response for each factor.



5.4.7.1. Full factorial example

http://www.itl.nist.gov/div898/handbook/pri/section4/pri471.htm[6/27/2012 2:24:31 PM]

Several factors, most notably "Direction" followed by "Batch" and possibly "Wheel Grit",
appear to change the average response level.

Step 2: Create the theoretical model

Theoretical
model: assume
all four-factor
and higher
interaction
terms are not
significant

For a 25 full factorial experiment we can fit a model containing a mean term, five main effect
terms, ten two-factor interaction terms, ten three-factor interaction terms, five four-factor
interaction terms, and a five-factor interaction term (32 parameters). However, we start by
assuming all four-factor and higher interaction terms are non-existent. It's very rare for such
high-order interactions to be significant, and they are very difficult to interpret from an
engineering viewpoint. The assumption allows us to accumulate the sums of squares for these
terms and use them to estimate an error term. We start with a theoretical model with 26
unknown constants, hoping the data will clarify which of these are the significant main effects
and interactions we need for a final model.

Step 3: Fit model to the data

Results from The ANOVA table for the 26-parameter model (intercept not shown) follows.
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fitting up to
and including
third-order
interaction
terms

                    Summary of Fit
                RSquare         0.995127
                RSquare Adj     0.974821
          Root Mean Square Error     17.81632
           Mean of Response         546.8959
                   Observations  32

                                 Sum
Source                DF     of Squares  F Ratio     Prob>F
X1: Table Speed        1       894.33     2.8175     0.1442
X2: Feed Rate          1      3497.20    11.0175     0.0160
X1: Table Speed*       1      4872.57    15.3505     0.0078
    X2: Feed Rate
X3: Wheel Grit         1     12663.96    39.8964     0.0007
X1: Table Speed*       1      1838.76     5.7928     0.0528
    X3: Wheel Grit
X2: Feed Rate*         1       307.46     0.9686     0.3630
    X3: Wheel Grit
X1:Table Speed*        1       357.05     1.1248     0.3297
   X2: Feed Rate*
   X3: Wheel Grit
X4: Direction          1    315132.65   992.7901     <.0001
X1: Table Speed*       1      1637.21     5.1578     0.0636
    X4: Direction
X2: Feed Rate*         1      1972.71     6.2148     0.0470
    X4: Direction
X1: Table Speed        1      5895.62    18.5735     0.0050
    X2: Feed Rate*
    X4: Direction
X3: Wheel Grit*        1      3158.34     9.9500     0.0197
    X4: Direction
X1: Table Speed*       1         2.12     0.0067     0.9376
    X3: Wheel Grit*
    X4: Direction
X2: Feed Rate*         1        44.49     0.1401     0.7210
    X3: Wheel Grit*
    X4: Direction
X5: Batch              1     33653.91   106.0229     <.0001
X1: Table Speed*       1       465.05     1.4651     0.2716
    X5: Batch
X2: Feed Rate*         1       199.15     0.6274     0.4585
    X5: Batch
X1: Table Speed*       1       144.71     0.4559     0.5247
    X2: Feed Rate*
    X5: Batch
X3: Wheel Grit*        1        29.36     0.0925     0.7713
    X5: Batch
X1: Table Speed*       1        30.36     0.0957     0.7676
    X3: Wheel Grit*
    X5: Batch
X2: Feed Rate*         1        25.58     0.0806     0.7860
    X3: Wheel Grit*
    X5: Batch
X4: Direction *        1      1328.83     4.1863     0.0867
    X5: Batch
X1: Table Speed*       1       544.58     1.7156     0.2382
    X4: Directio*
    X5: Batch
X2: Feed Rate*         1       167.31     0.5271     0.4952
    X4: Direction*
    X5: Batch
X3: Wheel Grit*        1        32.46     0.1023     0.7600
    X4: Direction*
    X5: Batch

This fit has a large R2 and adjusted R2, but the high number of large (>0.10) p-values (in the
"Prob>F" column) makes it clear that the model has many unnecessary terms.

Stepwise
regression

Starting with the 26 terms, we use stepwise regression to eliminate unnecessary terms. By a
combination of stepwise regression and the removal of remaining terms with a p-value larger
than 0.05, we quickly arrive at a model with an intercept and 12 significant effect terms.

Results from
fitting the 12-

                Summary of Fit
               RSquare 0.989114
               RSquare Adj 0.982239
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term model          Root Mean Square Error 14.96346
          Mean of Response 546.8959
         Observations (or Sum Wgts) 32

                                 Sum
Source                DF     of Squares  F Ratio     Prob>F
X1: Table Speed        1       894.33     3.9942     0.0602
X2: Feed Rate          1      3497.20    15.6191     0.0009
X1: Table Speed*       1      4872.57    21.7618     0.0002
    X2: Feed Rate
X3: Wheel Grit         1     12663.96    56.5595     <.0001
X1: Table Speed*       1      1838.76     8.2122     0.0099
    X3: Wheel Grit
X4: Direction          1    315132.65  1407.4390     <.0001
X1: Table Speed*       1      1637.21     7.3121     0.0141
    X4: Direction
X2: Feed Rate*         1      1972.71     8.8105     0.0079
    X4: Direction
X1: Table Speed*       1      5895.62    26.3309     <.0001
    X2: Feed Rate*
    X4:Direction
X3: Wheel Grit*        1      3158.34    14.1057     0.0013
    X4: Direction
X5: Batch              1     33653.91   150.3044     <.0001
X4: Direction*         1      1328.83     5.9348     0.0249
    X5: Batch

Normal plot of
the effects

Non-significant effects should effectively follow an approximately normal distribution with
the same location and scale. Significant effects will vary from this normal distribution.
Therefore, another method of determining significant effects is to generate a normal
probability plot of all 31 effects. The effects that deviate substantially from the straight line fit
to the data are considered significant. Although this is a somewhat subjective criteria, it tends
to work well in practice. It is helpful to use both the numerical output from the fit and
graphical techniques such as the normal probability plot in deciding which terms to keep in
the model.

A normal probability plot of the effects is shown below. (To reduce the scale of the y-axis, the
largest two effects, X4: Direction and X5: Batch, are not shown on the plot. In addition, these
two effects were not used to compute the normal reference line.) The effects we consider to
be significant are labeled. In this case, we have arrived at the exact same 12 terms by looking
at the normal probability plot as we did from the stepwise regression.
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Most of the effects cluster close to the center (zero) line and follow the fitted normal model
straight line. The effects that appear to be above or below the line by more than a small
amount are the same effects identified using the stepwise routine, with the exception of X1.
Some analysts prefer to include a main effect term when it has several significant interactions
even if the main effect term itself does not appear to be significant.

Model appears
to account for
most of the
variability

At this stage, the model appears to account for most of the variability in the response,
achieving an adjusted R2 of 0.982. All the main effects are significant, as are six 2-factor
interactions and one 3-factor interaction. The only interaction that makes little physical sense
is the " X4: Direction*X5: Batch" interaction - why would the response using one batch of
material react differently when the batch is cut in a different direction as compared to another
batch of the same formulation?

However, before accepting any model, residuals need to be examined.

Step 4: Test the model assumptions using residual graphs (adjust and simplify as
needed)

Plot of
residuals
versus
predicted
responses

First we look at the residuals plotted versus the predicted responses.
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The residuals appear to spread out more with larger values of predicted strength, which should
not happen when there is a common variance.

Next we examine the distribution of the residuals with a normal quantile plot, a box plot, a
histogram, and a run-order plot.
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None of these plots appear to show typical normal residuals and the boxplot indicates that
there may be outliers.

Step 4 continued: Transform the data and fit the model again

Box-Cox
Transformation

We next look at whether we can model a transformation of the response variable and obtain
residuals with the assumed properties. We calculate an optimum Box-Cox transformation by
finding the value of  that maximizes the negative log likelihood.
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The optimum is found at  = 0.2. A new Y: Strength variable is calculated using:

Fit model to
transformed
data

When the 12-effect model is fit to the transformed data, the "X4: Direction * X5: Batch"
interaction term is no longer significant. The 11-effect model fit is shown below, with
parameter estimates and p-values.

The fitted
model after
applying Box-
Cox
transformation

    The 11-Effect Model Fit to Tranformed Response Data

               Response:    Y:NewStrength

                  Summary of Fit
               RSquare 0.99041
               RSquare Adj 0.985135
         Root Mean Square Error 13.81065
          Mean of Response 1917.115
         Observations (or Sum Wgts) 32

                       Parameter
Effect                  Estimate         p-value
Intercept               1917.115          <.0001
X1: Table Speed            5.777          0.0282
X2: Feed Rate             11.691          0.0001
X1: Table Speed*         -14.467          <.0001
    X2: Feed Rate
X3: Wheel Grit           -21.649          <.0001
X1: Table Speed*           7.339          0.007
    X3: Wheel Grit
X4: Direction            -99.272          <.0001
X1: Table Speed*          -7.188          0.0080
    X4: Direction
X2: Feed Rate*            -9.160          0.0013
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    X4: Direction
X1: Table Speed*          15.325          <.0001
    X2: Feed Rate*
    X4:Direction
X3: Wheel Grit*           12.965          <.0001
    X4: Direction
X5: Batch                -31.871          <.0001

Model has high
R2

This model has a very large R2 and adjusted R2. The residual plots (shown below) are quite a
bit better behaved than before

Residual plots
from model
with
transformed
response

The plot of the residuals versus the predicted values indicates that the transformation has
resolved the problem of increasing variace with increasing strength.

The normal probability plot, box plot, and the histogram of the residuals do not indicate any
serious violations of the model assumptions. The run sequence plot of the residuals does not
indicate any time dependent patterns.

http://www.itl.nist.gov/div898/handbook/eda/section3/normprpl.htm
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Step 5. Answer the questions in your experimental objectives

Important main
effects and
interaction
effects

The magnitudes of the effect estimates show that "Direction" is by far the most important
factor. "Batch" plays the next most critical role, followed by "Wheel Grit". Then, there are
several important interactions followed by "Feed Rate". "Table Speed" plays a role in almost
every significant interaction term, but is the least important main effect on its own. Note that
large interactions can obscure main effects.

Plots of the
main effects
and significant
2-way
interactions

Plots of the main effects and the significant 2-way interactions are shown below. 
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Next, we plot 2-way interaction plot showing means for all combinations of levels for the two
factors.
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The labels located in the diagonal spaces of the plot grid have two purposes. First, the label
indicates the factor associated with the x-axis for all plots in the same row. Second, the label
indicates the factor defining the two lines for plots in the same column.

For example, the plot labeled r*s contains averages for low and high levels of the rate variable
(x-axis) for both levels of speed. The blue line represents the low level of speed and the pink
line represents the high level of speed. The two lines in the r*s plot cross, indicating that there
is interaction between rate and speed. Parallel lines indicate that there is no interaction
between the two factors.

Optimal
Settings

Based on the analyses, we can select factor settings that maximize ceramic strength.
Translating from "-1" and "+1" back to the actual factor settings, we have: Table speed at "1"
or .125m/s; Down Feed Rate at "1" or .125 mm; Wheel Grit at "-1" or 140/170; and Direction
at "-1" or longitudinal.

Unfortunately, "Batch" is also a very significant factor, with the first batch giving higher
strengths than the second. Unless it is possible to learn what worked well with this batch, and
how to repeat it, not much can be done about this factor.

Comments

Analyses with
value of
Direction fixed

1. One might ask what an analysis of just the 24 factorial with "Direction" kept at -1 (i.e.,
longitudinal) would yield. This analysis turns out to have a very simple model; only
"Wheel Grit" and "Batch" are significant main effects and no interactions are
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indicates
complex model
is needed only
for transverse
cut

significant.

If, on the other hand, we do an analysis of the 24 factorial with "Direction" kept at +1
(i.e., transverse), then we obtain a 7-parameter model with all the main effects and
interactions we saw in the 25 analysis, except, of course, any terms involving
"Direction".

So it appears that the complex model of the full analysis came from the physical
properties of a transverse cut, and these complexities are not present for longitudinal
cuts.

Half fraction
design

2. If we had assumed that three-factor and higher interactions were negligible before
experimenting, a  half fraction design might have been chosen. In hindsight, we
would have obtained valid estimates for all main effects and two-factor interactions
except for X3 and X5, which would have been aliased with X1*X2*X4 in that half
fraction.

Natural log
transformation

3. Finally, we note that many analysts might prefer to adopt a natural logarithm
transformation (i.e., use ln Y) as the response instead of using a Box-Cox
transformation with an exponent of 0.2. The natural logarithm transformation
corresponds to an exponent of  = 0 in the Box-Cox graph.

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
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http://www.nist.gov/
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5.4.7.2. Fractional factorial example

A "Catapult" Fractional Factorial Experiment

A step-by-step
analysis of a
fractional
factorial
"catapult"
experiment

This experiment was conducted by a team of students on a catapult – a table-top wooden
device used to teach design of experiments and statistical process control. The catapult has
several controllable factors and a response easily measured in a classroom setting. It has been
used for over 10 years in hundreds of classes.

 
Catapult

Description of Experiment: Response and Factors

The experiment
has five factors
that might
affect the
distance the
golf ball
travels

Purpose: To determine the significant factors that affect the distance the ball is thrown by the
catapult, and to determine the settings required to reach three different distances (30, 60 and
90 inches).

Response Variable: The distance in inches from the front of the catapult to the spot where the
ball lands. The ball is a plastic golf ball.

Number of observations: 20 (a 25-1 resolution V design with 4 center points).

Variables:

1. Response Variable Y = distance

2. Factor 1 = band height (height of the pivot point for the rubber bands – levels were 2.25
and 4.75 inches with a centerpoint level of 3.5)

3. Factor 2 = start angle (location of the arm when the operator releases– starts the forward
motion of the arm – levels were 0 and 20 degrees with a centerpoint level of 10
degrees)

4. Factor 3 = rubber bands (number of rubber bands used on the catapult– levels were 1
and 2 bands)

5. Factor 4 = arm length (distance the arm is extended – levels were 0 and 4 inches with a
centerpoint level of 2 inches)

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/pri/pri.htm
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http://www.itl.nist.gov/div898/handbook/pri/section4/gifs/catapul2.gif
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6. Factor 5 = stop angle (location of the arm where the forward motion of the arm is
stopped and the ball starts flying – levels were 45 and 80 degrees with a centerpoint
level of 62 degrees)

Design matrix
and responses
(in run order)

The design matrix appears below in (randomized) run order.

distance height start bands length stop order
   28.00   3.25     0    1      0   80     1
   99.00      4    10    2      2   62     2
  126.50   4.75    20    2      4   80     3
  126.50   4.75     0    2      4   45     4
   45.00   3.25    20    2      4   45     5
   35.00   4.75     0    1      0   45     6
   45.00      4    10    1      2   62     7
   28.25   4.75    20    1      0   80     8
   85.00   4.75     0    1      4   80     9
    8.00   3.25    20    1      0   45    10
   36.50   4.75    20    1      4   45    11
   33.00   3.25     0    1      4   45    12
   84.50      4    10    2      2   62    13
   28.50   4.75    20    2      0   45    14
   33.50   3.25     0    2      0   45    15
   36.00   3.25    20    2      0   80    16
   84.00   4.75     0    2      0   80    17
   45.00   3.25    20    1      4   80    18
   37.50      4    10    1      2   62    19
  106.00   3.25     0    2      4   80    20

One discrete
factor

Note that four of the factors are continuous, and one – number of rubber bands – is discrete.
Due to the presence of this discrete factor, we actually have two different centerpoints, each
with two runs. Runs 7 and 19 are with one rubber band, and the center of the other factors,
while runs 2 and 13 are with two rubber bands and the center of the other factors.

Five
confirmatory
runs

After analyzing the 20 runs and determining factor settings needed to achieve predicted
distances of 30, 60 and 90 inches, the team was asked to conduct five confirmatory runs at
each of the derived settings.

Analysis of the Experiment

Step 1: Look at the data

Histogram,
box plot,
normal
probability
plot, and run
order plot of
the response

We start by plotting the data several ways to see if any trends or anomalies appear that would
not be accounted for by the models.

http://www.itl.nist.gov/div898/handbook/eda/section3/histogra.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/boxplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/normprpl.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/normprpl.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/normprpl.htm


5.4.7.2. Fractional factorial example

http://www.itl.nist.gov/div898/handbook/pri/section4/pri472.htm[6/27/2012 2:24:35 PM]

We can see the large spread of the data and a pattern to the data that should be explained by
the analysis. The run order plot does not indicate an obvious time sequence. The four
highlighted points in the run order plot are the center points in the design. Recall that runs 2
and 13 had two rubber bands and runs 7 and 19 had one rubber band. There may be a slight
aging of the rubber bands in that the second center point resulted in a distance that was a little
shorter than the first for each pair.

Plots of
responses
versus factor
columns

Next look at the plots of responses sorted by factor columns. 
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Several factors appear to change the average response level and most have large spread at
each of the levels.

Step 2: Create the theoretical model

The resolution
V design can
estimate main
effects and all
two-factor
interactions

With a resolution V design we are able to estimate all the main effects and all two-factor
interactions – without worrying about confounding. Therefore, the initial model will have 16
terms – the intercept term, the 5 main effects, and the 10 two-factor interactions.

Step 3: Create the actual model from the data

Variable
coding

Note we have used the orthogonally coded columns for the analysis, and have abbreviated the
factor names as follows:

Height (h) = band height 
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Start (s) = start angle 
Bands (b) = number of rubber bands 
Stop (e) = stop angle 
Length (l) = arm length.

Trial model
with all main
factors and
two-factor
interactions

The results of fitting the trial model that includes all main factors and two-factor interactions
follow.

Source      Estimate  Std. Error  t value  Pr(>|t|) 
---------   --------  ----------  -------  --------
Intercept    57.5375      2.9691   19.378  4.18e-05 ***
h            13.4844      3.3196    4.062   0.01532 *  
s           -11.0781      3.3196   -3.337   0.02891 *  
b            19.4125      2.9691    6.538   0.00283 ** 
l            20.1406      3.3196    6.067   0.00373 ** 
e            12.0469      3.3196    3.629   0.02218 *  
h*s          -2.7656      3.3196   -0.833   0.45163    
h*b           4.6406      3.3196    1.398   0.23467    
h*l           4.7031      3.3196    1.417   0.22950    
h*e           0.1094      3.3196    0.033   0.97529    
s*b          -3.1719      3.3196   -0.955   0.39343    
s*l          -1.1094      3.3196   -0.334   0.75502    
s*e           2.6719      3.3196    0.805   0.46601    
b*l           7.6094      3.3196    2.292   0.08365 .  
b*e           2.8281      3.3196    0.852   0.44225    
l*e           3.1406      3.3196    0.946   0.39768    

Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error:  13.28, based on 4 degrees of freedom
Multiple R-squared:  0.9709     
Adjusted R-squared:  0.8619 
F-statistic:  8.905, based on 15 and 4 degrees of freedom
p-value: 0.02375 

Use p-values
and a normal
probability
plot to help
select
significant
effects

The model has a good R2 value, but the fact that R2 adjusted is considerably smaller indicates
that we undoubtedly have some terms in our model that are not significant. Scanning the
column of p-values (labeled Pr(>|t|)) for small values shows five significant effects at the 0.05
level and another one at the 0.10 level.

A normal probability plot of effects is a useful graphical tool to determine significant effects.
The graph below shows that there are nine terms in the model that can be assumed to be
noise. That would leave six terms to be included in the model. Whereas the output above
shows a p-value of 0.0836 for the interaction of Bands (b) and Length (l), the normal plot
suggests we treat this interaction as significant.
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Refit using just
the effects that
appear to
matter

Remove the non-significant terms from the model and refit to produce the following analysis
of variance table.

Source           Df Sum of Sq  Mean Sq   F value   Pr(>F)
-----------      -- ---------  -------   -------   ------
Model             6  22148.55   3691.6
Total error      13   2106.99    162.1     22.77  3.5e-06

Lack-of-fit      11   1973.74    179.4
Pure error        2    133.25     66.6      2.69   0.3018

Residual standard error:  12.73 based on 13 degrees of freedom
Multiple R-squared:  0.9131
Adjusted R-squared:  0.873 
p-value:  

R2 is OK and
there is no
significant
model "lack of
fit"

The R2 and R2 adjusted values are acceptable. The ANOVA table shows us that the model is
significant, and the lack-of-fit test is not significant. Parameter estimates are below.

Source      Estimate  Std. Error  t value  Pr(>|t|)  
---------   --------  ----------  -------  --------  
Intercept     57.537       2.847   20.212  3.33e-11 ***
h             13.484       3.183    4.237   0.00097 ***
s            -11.078       3.183   -3.481   0.00406 ** 
b             19.412       2.847    6.819  1.23e-05 ***
l             20.141       3.183    6.328  2.62e-05 ***
e             12.047       3.183    3.785   0.00227 ** 
b*l            7.609       3.183    2.391   0.03264 *  

Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Step 4: Test the model assumptions using residual graphs (adjust and simplify as
needed)

Diagnostic
residual plots

To examine the assumption that the residuals are approximately normally distributed, are
independent, and have equal variances, we generate four plots of the residuals: a normal
probability plot, box plot, histogram, and a run-order plot of the residuals. In the run-order
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plot, the highlighted points are the centerpoint values. Recall that run numbers 2 and 13 had
two rubber bands while run numbers 7 and 19 had only one rubber band.

The residuals do appear to have, at least approximately, a normal distributed.

Plot of
residuals
versus
predicted
values

Next we plot the residuals versus the predicted values.
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There does not appear to be a pattern to the residuals. One observation about the graph, from
a single point, is that the model performs poorly in predicting a short distance. In fact, run
number 10 had a measured distance of 8 inches, but the model predicts -11 inches, giving a
residual of 19 inches. The fact that the model predicts an impossible negative distance is an
obvious shortcoming of the model. We may not be successful at predicting the catapult
settings required to hit a distance less than 25 inches. This is not surprising since there is only
one data value less than 28 inches. Recall that the objective is to achieve distances of 30, 60,
and 90 inches.

Plots of
residuals
versus the
factor
variables

Next we look at the residual values versus each of the factors.
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The residual
graphs are not
ideal, although
the model
passes the
lack-of-fit test

Most of the residual graphs versus the factors appear to have a slight "frown" on the graph
(higher residuals in the center). This may indicate a lack of fit, or sign of curvature at the
centerpoint values. The lack- of-fit test, however, indicates that the lack of fit is not
significant.

Consider a
transformation
of the response
variable to see
if we can
obtain a better
model

At this point, since there are several unsatisfactory features of the model we have fit and the
resultant residuals, we should consider whether a simple transformation of the response
variable (Y = "Distance") might improve the situation.

There are at least two good reasons to suspect that using the logarithm of distance as the
response might lead to a better model.

1. A linear model fit to ln(Y) will always predict a positive distance when converted back
to the original scale for any possible combination of X factor values.

2. Physical considerations suggest that a realistic model for distance might require
quadratic terms since gravity plays a key role - taking logarithms often reduces the
impact of non-linear terms.
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To see whether using ln(Y) as the response leads to a more satisfactory model, we return to
step 3.

Step 3a: Fit the full model using ln(Y) as the response

First a main
effects and
two-factor
interaction
model is fit to
the log
distance
responses

Proceeding as before, using the coded values of the factor levels and the natural logarithm of
distance as the response, we obtain the following parameter estimates.

Source      Estimate  Std. Error  t value  Pr(>|t|) 
---------   --------  ----------  -------  --------   
(Intercept)  3.85702     0.06865   56.186  6.01e-07 ***
h            0.25735     0.07675    3.353   0.02849 *  
s           -0.24174     0.07675   -3.150   0.03452 *  
b            0.34880     0.06865    5.081   0.00708 ** 
l            0.39437     0.07675    5.138   0.00680 ** 
e            0.26273     0.07675    3.423   0.02670 *  
h*s         -0.02582     0.07675   -0.336   0.75348    
h*b         -0.02035     0.07675   -0.265   0.80403    
h*l         -0.01396     0.07675   -0.182   0.86457    
h*e         -0.04873     0.07675   -0.635   0.55999    
s*b          0.00853     0.07675    0.111   0.91686    
s*l          0.06775     0.07675    0.883   0.42724    
s*e          0.07955     0.07675    1.036   0.35855    
b*l          0.01499     0.07675    0.195   0.85472    
b*e         -0.01152     0.07675   -0.150   0.88794    
l*e         -0.01120     0.07675   -0.146   0.89108    

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error:  0.307 based on 4 degrees of freedom
Multiple R-squared:  0.9564
Adjusted R-squared:  0.7927 
F-statistic:  5.845 based on 15 and 4 degrees of freedom
p-value:  0.0502

A simpler
model with just
main effects
has a
satisfactory fit

Examining the p-values of the 16 model coefficients, only the intercept and the 5 main effect
terms appear significant. Refitting the model with just these terms yields the following results.

Source           Df Sum of Sq  Mean Sq   F value    Pr(>F)
-----------      -- ---------  -------   -------    ------
Model             5   8.02079   1.60416   36.285   1.6e-07
Total error      14   0.61896   0.04421

Lack-of-fit      12   0.58980   0.04915
Pure error        2   0.02916   0.01458    3.371    0.2514

Source      Estimate  Std. Error  t value  Pr(>|t|) 
---------   --------  ----------  -------  --------   
Intercept    3.85702     0.04702   82.035   < 2e-16 ***
h            0.25735     0.05257    4.896  0.000236 ***
s           -0.24174     0.05257   -4.599  0.000413 ***
b            0.34880     0.04702    7.419  3.26e-06 ***
l            0.39437     0.05257    7.502  2.87e-06 ***
e            0.26273     0.05257    4.998  0.000195 ***

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Residual standard error:  0.2103 based on 14 degrees of freedom
Multiple R-squared:  0.9284
Adjusted R-squared:  0.9028 

This is a simpler model than previously obtained in Step 3 (no interaction term). All the terms
are highly significant and there is no indication of a significant lack of fit.

We next look at the residuals for this new model fit.

Step 4a: Test the (new) model assumptions using residual graphs (adjust and simplify as
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needed)

Normal
probability
plot, box plot,
histogram, and
run-order plot
of the residuals

The following normal plot, box plot, histogram and run-order plot of the residuals shows no
problems.

Residuals plotted versus run order again show a possible slight decreasing trend (rubber band
fatigue?).

Plot of
residuals
versus
predicted ln(Y)
values

A plot of the residuals versus the predicted ln(Y) values looks reasonable, although there might
be a tendency for the model to overestimate slightly for high predicted values.

http://www.itl.nist.gov/div898/handbook/eda/section3/normprpl.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/boxplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/histogra.htm
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Plot of
residuals
versus the
factor
variables

Next we look at the residual values versus each of the factors.
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The residuals
for the main
effects model
(fit to natural
log of
distance) are
reasonably
well behaved

These plots still appear to have a slight "frown" on the graph (higher residuals in the center).
However, the model is generally an improvement over the previous model and will be
accepted as possibly the best that can be done without conducting a new experiment designed
to fit a quadratic model.

Step 5: Use the results to answer the questions in your experimental objectives

Final step:
Predict the
settings that
should be used
to obtain
desired
distances

Based on the analyses and plots, we can select factor settings that maximize the log-
transaformed distance. Translating from "-1", "0", and "+1" back to the actual factor settings,
we have: band height at "0" or 3.5 inches; start angle at "0" or 10 degrees; number of rubber
bands at "1" or 2 bands; arm length at "1" or 4 inches , and stop angle at "0" or 80 degrees.
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"Confirmation"
runs were
successful

In the confirmatory runs that followed the experiment, the team was successful at hitting all
three targets, but did not hit them all five times. The model discovery and fitting process, as
illustrated in this analysis, is often an iterative process.

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org
http://www.nist.gov/
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5.4. Analysis of DOE data 
5.4.7. Examples of DOE's 

5.4.7.3. Response surface model example

Data Source

A CCD with
two
responses

This example uses experimental data published in Czitrom and Spagon,
(1997), Statistical Case Studies for Industrial Process Improvement. The
material is copyrighted by the American Statistical Association and the
Society for Industrial and Applied Mathematics, and is used with their
permission. Specifically, Chapter 15, titled "Elimination of TiN Peeling
During Exposure to CVD Tungsten Deposition Process Using Designed
Experiments", describes a semiconductor wafer processing experiment
(labeled Experiment 2).

Goal,
response
variables,
and factor
variables

The goal of this experiment was to fit response surface models to the two
responses, deposition layer Uniformity and deposition layer Stress, as a
function of two particular controllable factors of the chemical vapor
deposition (CVD) reactor process. These factors were Pressure (measured in
torr) and the ratio of the gaseous reactants H2 and WF6 (called H2/WF6).
The experiment also included an important third (categorical) response - the
presence or absence of titanium nitride (TiN) peeling. The third response has
been omitted in this example in order to focus on the response surface
aspects of the experiment.

To summarize, the goal is to obtain a response surface model for two
responses, Uniformity and Stress. The factors are: Pressure and H2/WF6.

Experiment Description

The design is
a 13-run
CCI design
with 3
centerpoints

The minimum and maximum values chosen for Pressure were 4 torr and 80
torr (0.5333 kPa and 10.6658 kPa). Although the international system of
units indicates that the standard unit for pressure is Pascal, or 1 N/m2, we
use torr to be consistent with the analysis appearing in the paper by Czitrom
and Spagon.

The minimum and maximum H2/WF6 ratios were chosen to be 2 and 10.
Since response curvature, especially for Uniformity, was a distinct
possibility, an experimental design that allowed estimating a second order
(quadratic) model was needed. The experimenters decided to use a central
composite inscribed (CCI) design. For two factors, this design is typically
recommended to have 13 runs with 5 centerpoint runs. However, the
experimenters, perhaps to conserve a limited supply of wafer resources,
chose to include only 3 centerpoint runs. The design is still rotatable, but the
uniform precision property has been sacrificed.

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/pri/pri.htm
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Table
containing
the CCI
design points
and
experimental
responses

The table below shows the CCI design and experimental responses, in the
order in which they were run (presumably randomized). The last two
columns show coded values of the factors.

Run Pressure H2/WF6 Uniformity Stress
Coded 

Pressure
Coded 
H2/WF6

1  80  6  4.6  8.04  1   0 
2 42 6 6.2 7.78 0 0
3      68.87       3.17  3.4  7.58        0.71      -0.71 
4      15.13       8.83  6.9  7.27      -0.71       0.71 
5   4  6  7.3   6.49  -1  0 
6 42 6  6.4  7.69  0 0 
7     15.13       3.17   8.6  6.66     -0.71     -0.71 
8  42  2  6.3  7.16  0 -1 
9       68.87       8.83  5.1  8.33       0.71       0.71 

10  42  10  5.4  8.19  0 1 
11  42  6  5.0  7.90  0 0 

Low values
of both
responses
are better
than high

Uniformity is calculated from four-point probe sheet resistance
measurements made at 49 different locations across a wafer. The value in the
table is the standard deviation of the 49 measurements divided by their
mean, expressed as a percentage. So a smaller value of Uniformity indicates
a more uniform layer - hence, lower values are desirable. The Stress
calculation is based on an optical measurement of wafer bow, and again
lower values are more desirable.

Analysis of DOE Data

Steps for
fitting a
response
surface
model

The steps for fitting a response surface (second-order or quadratic) model are
as follows:

1. Fit the full model to the first response.
2. Use stepwise regression, forward selection, or backward elimination to

identify important variables.
3. When selecting variables for inclusion in the model, follow the

hierarchy principle and keep all main effects that are part of significant
higher-order terms or interactions, even if the main effect p-value is
larger than you would like (note that not all analysts agree with this
principle).

4. Generate diagnostic residual plots (histograms, box plots, normal
plots, etc.) for the model selected.

5. Examine the fitted model plot, interaction plots, and ANOVA statistics
(R2, adjusted R2, lack-of-fit test, etc.). Use all these plots and statistics
to determine whether the model fit is satisfactory.

6. Use contour plots of the response surface to explore the effect of
changing factor levels on the response.

7. Repeat all the above steps for the second response variable.
8. After satisfactory models have been fit to both responses, you can

overlay the surface contours for both responses.
9. Find optimal factor settings.
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Fitting a Model to the Uniformity Response, Simplifying the Model and
Checking Residuals

Fit full
quadratic
model to
Uniformity
response

Source              Estimate  Std. Error  t value  Pr(>|t|)   
------              --------  ----------  -------  --------
Intercept            5.86613     0.41773   14.043  3.29e-05
Pressure            -1.90967     0.36103   -5.289  0.00322 
H2/WF6              -0.22408     0.36103   -0.621  0.56201   
Pressure*H2/WF6      1.68617     0.71766    2.350  0.06560
Pressure^2           0.13373     0.60733    0.220  0.83442
H2/WF6^2             0.03373     0.60733    0.056  0.95786

Residual standard error:  0.7235 based on 5 degrees of freedom
Multiple R-squared:  0.8716
Adjusted R-squared:  0.7431 
F-statistic:  6.787 based on 5 and 5 degrees of freedom
p-value:  0.0278

Stepwise
regression
for
Uniformity

Start:   AIC=-3.79
Model:   Uniformity ~ Pressure + H2/WF6 + Pressure*H2/WF6 + 
Pressure^2 + H2/WF6^2

Step 1:  Remove H2/WF6^2, AIC=-5.79
Model:   Uniformity ~ Pressure + H2/WF6 + Pressure*H2/WF6 + 
Pressure^2 

Step 2:  Remove Pressure^2,  AIC=-7.69
Model:   Uniformity ~ Pressure + H2/WF6 + Pressure*H2/WF6 

Step 3:  Remove H2/WF6,  AIC=-8.88
Model:   Uniformity ~ Pressure + Pressure*H2/WF6 

The stepwise routine selects a model containing the intercept, Pressure, and
the interaction term. However, many statisticians do not think an interaction
term should be included in a model unless both main effects are also
included. Thus, we will use the model from Step 2 that included Pressure,
H2/WF6, and the interaction term. Interaction plots confirm the need for an
interaction term in the model.
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Analysis of
model
selected by
stepwise
regression
for
Uniformity

Source           DF Sum of Sq  Mean Sq   F value   Pr(>F)
------           -- ---------  -------   -------   ------
Model             3   17.739   5.9130      15.66   0.0017
Total error       7    2.643   0.3776                      

Lack-of-fit       5   1.4963   0.2993       0.52   0.7588
Pure error        2   1.1467   0.5734

Residual standard error:  0.6145 based on 7 degrees of freedom
Multiple R-squared:  0.8703
Adjusted R-squared:  0.8148 

Source           Estimate  Std. Error  t value  Pr(>|t|)   
------           --------  ----------  -------  -------- 
Intercept          5.9273     0.1853    31.993  7.54e-09
Pressure          -1.9097     0.3066    -6.228  0.000433
H2/WF6            -0.2241     0.3066    -0.731  0.488607   
Pressure*H2/WF6    1.6862     0.6095     2.767  0.027829

A contour plot and perspective plot of Uniformity provide a visual display of
the response surface.
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Residual
plots

We perform a residuals analysis to validate the model assumptions. We
generate a normal plot, a box plot, a histogram and a run-order plot of the
residuals.

The residual plots do not indicate problems with the underlying assumptions.

Conclusions
from the
analysis

From the above output, we make the following conclusions.

The R2 is reasonable for fitting Uniformity (well known to be a
difficult response to model).
The lack-of-fit test is not significant (very small "Prob > F " would
indicate a lack of fit).
The residual plots do not reveal any major violations of the underlying
assumptions.
The interaction plot shows why an interaction term is needed (parallel
lines would suggest no interaction).

Fitting a Model to the Stress Response, Simplifying the Model and
Checking Residuals

Fit full
quadratic
model to
Stress

Source            Estimate  Std. Error  t value  Pr(>|t|) 
------            --------   ---------  -------  --------
Intercept         8.056791    0.179561   44.869  1.04e-07
Pressure          0.735933    0.038524   19.103  7.25e-06 
H2/WF6            0.852099    0.198192    4.299   0.00772
Pressure*H2/WF6   0.069431    0.076578    0.907   0.40616
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response Pressure^2       -0.528848    0.064839   -8.156   0.00045
H2/WF6^2         -0.007414    0.004057   -1.827   0.12722 

Residual standard error:  0.07721 based on 5 degrees of freedom
Multiple R-squared:  0.9917
Adjusted R-squared:  0.9834 
F-statistic:  119.8 based on 5 and 5 degrees of freedom
p-value:  3.358e-05 

Stepwise
regression
for Stress

Start:   AIC=-53.02
Model:   Stress ~ Pressure + H2/WF6 + Pressure*H2/WF6 + 
Pressure^2 + H2/WF6^2

Step 1:  AIC=-53.35
Model:   Stress ~ Pressure + H2/WF6 + Pressure^2 + H2/WF6^2

The stepwise routine identifies a model containing the intercept, the main
effects, and both squared terms. However, the fit of the full quadratic model
indicates that neither the H2/WF6 squared term nor the interaction term are
significant. A comparison of the full model and the model containing just the
main effects and squared pressure terms indicates that there is no significant
difference between the two models.

Model 1: Stress ~ Pressure + H2/WF6 + Pressure^2
Model 2: Stress ~ Pressure + H2/WF6 + Pressure^2 + 
Pressure*H2/WF6 + H2/WF6^2

Source      DF Sum of Sq  Mean Sq   F value    Pr(>F)
------      -- ---------  -------   -------   -------
Model 1      2  0.024802  0.01240      2.08      0.22 
Model 2      5  0.029804  0.00596  

In addition, interaction plots do not indicate any significant interaction.
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Thus, we will proceed with the model containing main effects and the
squared pressure term.

The fact that the stepwise procedure selected a model for Stress containing a
term that was not significant indicates that all output generated by statistical
software should be carefully examined. In this case, the stepwise procedure
identified the model with the lowest AIC (Akaike information criterion), but
did not take into account contributions by individual terms. Other software
using a different criteria may identify a different model, so it is important to
understand the algorithms being used.

Analysis of
reduced
model for
Stress

Source           DF Sum of Sq  Mean Sq   F value    Pr(>F)
------           -- ---------  -------   -------   -------
Model             3    3.5454   1.1818     151.5   9.9e-07 
Total error       7    0.0546   0.0078                       

Lack-of-fit       5  0.032405  0.00065      0.58      0.73
Pure error        2  0.022200  0.01110

Residual standard error:  0.0883 based on 7 degrees of freedom
Multiple R-squared:  0.9848
Adjusted R-squared:  0.9783 

Source        Estimate  Std. Error  t value  Pr(>|t|)    
------        --------  ----------  -------  --------
Intercept      7.73410    0.03715   208.185  1.56e-14
Pressure       0.73593    0.04407    16.699  6.75e-07
H2/WF6         0.49686    0.04407    11.274  9.65e-06
Pressure^2    -0.49426    0.07094    -6.967  0.000218 

A contour plot and perspective plot of Stress provide a visual representation
of the response surface.
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Residual
plots

We perform a residuals analysis to validate the model by generating a run-
order plot, box plot, histogram, and normal probability plot of the residuals.
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The residual plots do not indicate any major violations of the underlying
assumptions.

Conclusions From the above output, we make the following conclusions.

The R2 is very good for fitting Stress.
The lack-of-fit test is not significant (very small "Prob > F " would
indicate a lack of fit).
The residual plots do not reveal any major violations of the underlying
assumptions.
The nearly parallel lines in the interaction plots show why an
interaction term is not needed.

Response Surface Contours for Both Responses

Overlay
contour plots

We overlay the contour plots for the two responses to visually compare the
surfaces over the region of interest.
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Summary

Final
response
surface
models

The response surface models fit to (coded) Uniformity and Stress were:

Uniformity = 5.93 - 1.91*Pressure - 0.22*H2/WF6 +
1.70*Pressure*H2/WF6

Stress = 7.73 + 0.74*Pressure + 0.50*H2/WF6 - 0.49*Pressure2

Trade-offs
are often
needed for
multiple
responses

The models and the corresponding contour plots show that trade-offs have to
be made when trying to achieve low values for both Uniformity and Stress
since a high value of Pressure is good for Uniformity while a low value of
Pressure is good for Stress. While low values of H2/WF6 are good for both
responses, the situation is further complicated by the fact that the Peeling
response (not considered in this analysis) was unacceptable for values of
H2/WF6 below approximately 5.

Uniformity
was chosen
as more
important

In this case, the experimenters chose to focus on optimizing Uniformity
while keeping H2/WF6 at 5. That meant setting Pressure at 80 torr.

Confirmation
runs
validated the
model

A set of 16 verification runs at the chosen conditions confirmed that all
goals, except those for the Stress response, were met by this set of process
settings.
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5.5. Advanced topics

Contents
of
"Advanced
Topics"
section

This section builds on the basics of DOE described in the
preceding sections by adding brief or survey descriptions of a
selection of useful techniques. Subjects covered are:

1. When classical designs don't work
2. Computer-aided designs

1. D-Optimal designs
2. Repairing a design

3. Optimizing a Process
1. Single response case

1. Path of steepest ascent
2. Confidence region for search path
3. Choosing the step length
4. Optimization when there is adequate

quadratic fit
5. Effect of sampling error on optimal solution
6. Optimization subject to experimental region

constraints
2. Multiple response case

1. Path of steepest ascent
2. Desirability function approach
3. Mathematical programming approach

4. Mixture designs
1. Mixture screening designs
2. Simplex-lattice designs
3. Simplex-Centroid designs
4. Constrained mixture designs
5. Treating mixture and process variables together

5. Nested variation
6. Taguchi designs
7. John's 3/4 fractional factorial designs
8. Small composite designs
9. An EDA approach to experimental design

1. Ordered data plot
2. DOE scatter plot
3. DOE mean plot
4. Interaction effects matrix plot
5. Block plot
6. DOE Youden plot
7. |Effects| plot
8. Half-normal probability plot
9. Cumulative residual standard deviation plot

10. DOE contour plot
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5.5.1. What if classical designs don't work?

Reasons
designs
don't work

Most experimental situations call for standard designs that can
be constructed with many statistical software packages.
Standard designs have assured degrees of precision,
orthogonality, and other optimal properties that are important
for the exploratory nature of most experiments. In some
situations, however, standard designs are not appropriate or
are impractical. These may include situations where

1. The required blocking structure or blocking size of the
experimental situation does not fit into a standard
blocked design

2. Not all combinations of the factor settings are feasible,
or for some other reason the region of experimentation is
constrained or irregularly shaped.

3. A classical design needs to be 'repaired'. This can
happen due to improper planning with the original
design treatment combinations containing forbidden or
unreachable combinations that were not considered
before the design was generated.

4. A nonlinear model is appropriate.
5. A quadratic or response surface design is required in the

presence of qualitative factors.
6. The factors in the experiment include both components

of a mixture and other process variables.
7. There are multiple sources of variation leading to nested

or hierarchical data structures and restrictions on what
can be randomized.

8. A standard fractional factorial design requires too many
treatment combinations for the given amount of time
and/or resources.

Computer-
aided
designs

When situations such as the above exist, computer-aided
designs are a useful option. In some situations, computer-
aided designs are the only option an experimenter has.
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5.5.2. What is a computer-aided design?

Computer-
aided
designs are
generated
by a
computer
algorithm
and
constructed
to be
optimal for
certain
models
according
to one of
many types
of
optimality
criteria

Designs generated from a computer algorithm are referred to
as computer-aided designs. Computer-aided designs are
experimental designs that are generated based on a particular
optimality criterion and are generally 'optimal' only for a
specified model. As a result, they are sometimes referred to as
optimal designs and generally do not satisfy the desirable
properties such as independence among the estimators that
standard classical designs do. The design treatment runs that
are generated by the algorithms are chosen from an overall
candidate set of possible treatment combinations. The
candidate set consists of all the possible treatment
combinations that one wishes to consider in an experiment.

Optimality
critieria

There are various forms of optimality criteria that are used to
select the points for a design.

D-
Optimality

One popular criterion is D-optimality, which seeks to
maximize |X'X|, the determinant of the information matrix
X'X of the design. This criterion results in minimizing the
generalized variance of the parameter estimates based on a
pre-specified model.

A-
Optimality

Another criterion is A-optimality, which seeks to minimize the
trace of the inverse of the information matrix. This criterion
results in minimizing the average variance of the parameter
estimates based on a pre-specified model.

G-
Optimality

A third criterion is G-optimality, which seeks to minimize the
maximum prediction variance, i.e., minimize max. [d=x'(X'X)-

1x], over a specified set of design points.

V-
Optimality

A fourth criterion is V-optimality, which seeks to minimize
the average prediction variance over a specified set of design
points.

http://www.itl.nist.gov/div898/handbook/index.htm
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Optimality
of a given
design is
model
dependent

Since the optimality criterion of most computer-aided designs
is based on some function of the information matrix, the
'optimality' of a given design is model dependent. That is, the
experimenter must specify a model for the design and the
final number of design points desired before the 'optimal'
design' can be generated. The design generated by the
computer algorithm is 'optimal' only for that model.
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5.5.2.1. D-Optimal designs

D-optimal
designs
are often
used when
classical
designs do
not apply

D-optimal designs are one form of design provided by a
computer algorithm. These types of computer-aided designs
are particularly useful when classical designs do not apply.

Unlike standard classical designs such as factorials and
fractional factorials, D-optimal design matrices are usually not
orthogonal and effect estimates are correlated.

These types of designs are always an option regardless of the
type of model the experimenter wishes to fit (for example,
first order, first order plus some interactions, full quadratic,
cubic, etc.) or the objective specified for the experiment (for
example, screening, response surface, etc.). D-optimal designs
are straight optimizations based on a chosen optimality
criterion and the model that will be fit. The optimality
criterion used in generating D-optimal designs is one of
maximizing |X'X|, the determinant of the information matrix
X'X.

This optimality criterion results in minimizing the generalized
variance of the parameter estimates for a pre-specified model.
As a result, the 'optimality' of a given D-optimal design is
model dependent. That is, the experimenter must specify a
model for the design before a computer can generate the
specific treatment combinations. Given the total number of
treatment runs for an experiment and a specified model, the
computer algorithm chooses the optimal set of design runs
from a candidate set of possible design treatment runs. This
candidate set of treatment runs usually consists of all possible
combinations of various factor levels that one wishes to use in
the experiment.

In other words, the candidate set is a collection of treatment
combinations from which the D-optimal algorithm chooses
the treatment combinations to include in the design. The
computer algorithm generally uses a stepping and exchanging
process to select the set of treatment runs.

Note: There is no guarantee that the design the computer
generates is actually D-optimal.

D-optimal The reasons for using D-optimal designs instead of standard
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designs
are useful
when
resources
are limited
or there
are
constraints
on factor
settings

classical designs generally fall into two categories:

1. standard factorial or fractional factorial designs require
too many runs for the amount of resources or time
allowed for the experiment

2. the design space is constrained (the process space
contains factor settings that are not feasible or are
impossible to run).

Example Suppose an industrial process has three design variables (k =
3), and engineering judgment specifies the following model as
an appropriate representation of the process.

The levels being considered by the researcher are (coded)

X1: 5 levels (-1, -0.5, 0, 0.5, 1) 
X2: 2 levels (-1, 1) 
X3: 2 levels (-1, 1)

Due to resource limitations, only n = 12 data points can be
collected.

Create the
candidate
set

Given the experimental specifications, the first step in
generating the design is to create a candidate set of points.
The candidate set is a data table with a row for each point
(run) to be considered for the design, often a full factorial. For
our problem, the candidate set is a full factorial in all factors
containing 5*2*2 = 20 possible design runs.

Table
containing
the
candidate
set

TABLE 5.1  Candidate Set for Variables X1, X2,
X3

X1 X2 X3
-1 -1 -1
-1 -1 +1
-1 +1 -1
-1 +1 +1

-0.5 -1 -1
-0.5 -1 +1
-0.5 +1 -1
-0.5 +1 +1

0 -1 -1
0 -1 +1
0 +1 -1
0 +1 +1

0.5 -1 -1
0.5 -1 +1
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0.5 +1 -1
0.5 +1 +1
+1 -1 -1
+1 -1 +1
+1 +1 -1
+1 +1 +1

Generating
a D-
optimal
design

D-optimal designs maximize the D-efficiency, which is a
volume criterion on the generalized variance of the parameter
estimates. The D-efficiency of the standard fractional factorial
is 100 %, but it is not possible to achieve 100 % D-efficiency
when pure quadratic terms such as (X1)2 are included in the
model.

The D-efficiency values are a function of the number of points
in the design, the number of independent variables in the
model, and the maximum standard error for prediction over
the design points. The best design is the one with the highest
D-efficiency. Other reported efficiencies (e.g. A, G, I) help
choose an optimal design when various models produce
similar D-efficiencies.

D-optimal
design

The D-optimal design (D=0.6825575, A=2.2, G=1, I=4.6625)
using 12 runs is shown in Table 5.2 in standard order. The
standard error of prediction is also shown. The design runs
should be randomized before the treatment combinations are
executed.

TABLE 5.2  Final D-optimal Design
X1 X2 X3 OptStdPred

-1 -1 -1 0.645497
-1 -1 +1 0.645497
-1 +1 -1 0.645497
-1 +1 +1 0.645497
 0 -1 -1 0.645497
 0 -1 +1 0.645497
 0 +1 -1 0.645497
 0 +1 +1 0.645497
+1 -1 -1 0.645497
+1 -1 +1 0.645497
+1 +1 -1 0.645497
+1 +1 +1 0.645497

Software
note

Software packages may have different procedures for
generating D-optimal designs, so the final design may be
different depending on the software packaged being used.
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5.5.2.2. Repairing a design

Repair or
augment
classical
designs

Computer-aided designs are helpful in either repairing or
augmenting a current experimental design. They can be used
to repair a 'broken' standard classical design.

Original
design
matrix
may
contain
runs that
were lost
or
impossible
to acieve

There may be situations in which, due to improper planning or
other issues, the original design matrix contains forbidden or
unreachable combinations of the factor settings. A computer-
aided design (for example a D-optimal design) can be used to
'replace' those runs from the original design that were
unattainable. The runs from the original design that are
attainable are labeled as 'inclusion' runs and will be included
in the final computer-aided design.

Computer-
aided
design can
generate
additional
attainable
runs

Given a pre-specified model, the computer-aided design can
generate the additional attainable runs that are necessary in
order to estimate the model of interest. As a result, the
computer-aided design is just replacing those runs in the
original design that were unattainable with a new set of runs
that are attainable, and which still allows the experimenter to
obtain information regarding the factors from the experiment.

Properties
of this
final
design
may not
compare
with those
of the
original
design

The properties of this final design will probably not compare
with those of the original design and there may exist some
correlation among the estimates. However, instead of not
being able to use any of the data for analysis, generating the
replacement runs from a computer-aided design, a D-optimal
design for example, allows one to analyze the data.
Furthermore, computer-aided designs can be used to augment
a classical design with treatment combinations that will break
alias chains among the terms in the model or permit the
estimation of curvilinear effects.
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5.5.3. How do you optimize a process?

How do you determine the optimal region to run a
process?

Often the
primary
DOE goal is
to find the
operating
conditions
that
maximize (or
minimize)
the system
responses

The optimal region to run a process is usually determined
after a sequence of experiments has been conducted and a
series of empirical models obtained. In many engineering
and science applications, experiments are conducted and
empirical models are developed with the objective of
improving the responses of interest. From a mathematical
point of view, the objective is to find the operating
conditions (or factor levels) X1, X2, ..., Xk that maximize or
minimize the r system response variables Y1, Y2, ..., Yr. In
experimental optimization, different optimization techniques
are applied to the fitted response equations .

Provided that the fitted equations approximate adequately
the true (unknown) system responses, the optimal operating
conditions of the model will be "close" to the optimal
operating conditions of the true system.

The DOE
approach to
optimization

The experimental optimization of response surface models
differs from classical optimization techniques in at least
three ways:

Find
approximate
(good)
models and
iteratively
search for
(near)
optimal
operating
conditions

1. Experimental optimization is an iterative process; that
is, experiments conducted in one set of experiments
result in fitted models that indicate where to search for
improved operating conditions in the next set of
experiments. Thus, the coefficients in the fitted
equations (or the form of the fitted equations) may
change during the optimization process. This is in
contrast to classical optimization in which the
functions to optimize are supposed to be fixed and
given.

Randomness
(sampling
variability)
affects the
final

2. The response models are fit from experimental data
that usually contain random variability due to
uncontrollable or unknown causes. This implies that
an experiment, if repeated, will result in a different
fitted response surface model that might lead to
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answers and
should be
taken into
account

different optimal operating conditions. Therefore,
sampling variability should be considered in
experimental optimization.

In contrast, in classical optimization techniques the
functions are deterministic and given.

Optimization
process
requires
input of the
experimenter

3. The fitted responses are local approximations,
implying that the optimization process requires the
input of the experimenter (a person familiar with the
process). This is in contrast with classical optimization
which is always automated in the form of some
computer algorithm.
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5.5.3.1. Single response case

Optimizing
of a single
response
usually
starts with
line searches
in the
direction of
maximum
improvement

The experimental optimization of a single response is usually conducted in two
phases or steps, following the advice of Box and Wilson. The first phase consists of
a sequence of line searches in the direction of maximum improvement. Each search
in the sequence is continued until there is evidence that the direction chosen does not
result in further improvements. The sequence of line searches is performed as long
as there is no evidence of lack of fit for a simple first-order model of the form

If there is
lack of fit
for linear
models,
quadratic
models are
tried next

The second phase is performed when there is lack of linear fit in Phase I, and
instead, a second-order or quadratic polynomial regression model of the general
form

is fit. Not all responses will require quadratic fit, and in such cases Phase I is
stopped when the response of interest cannot be improved any further. Each phase is
explained and illustrated in the next few sections.

"Flowchart"
for two
phases of
experimental
optimization

The following is a flow chart showing the two phases of experimental optimization.

FIGURE 5.1: The Two Phases of Experimental Optimization
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5.5.3.1.1. Single response: Path of steepest ascent

Starting at
the current
operating
conditions, fit
a linear
model

If experimentation is initially performed in a new, poorly understood production
process, chances are that the initial operating conditions X1, X2, ...,Xk are located
far from the region where the factors achieve a maximum or minimum for the
response of interest, Y. A first-order model will serve as a good local
approximation in a small region close to the initial operating conditions and far
from where the process exhibits curvature. Therefore, it makes sense to fit a
simple first-order (or linear polynomial) model of the form:

 

Experimental strategies for fitting this type of model were discussed earlier.
Usually, a 2k-p fractional factorial experiment is conducted with repeated runs at
the current operating conditions (which serve as the origin of coordinates in
orthogonally coded factors).

Determine the
directions of
steepest
ascent and
continue
experimenting
until no
further
improvement
occurs - then
iterate the
process

The idea behind "Phase I" is to keep experimenting along the direction of steepest
ascent (or descent, as required) until there is no further improvement in the
response. At that point, a new fractional factorial experiment with center runs is
conducted to determine a new search direction. This process is repeated until at
some point significant curvature in  is detected. This implies that the operating
conditions X1, X2, ...,Xk are close to where the maximum (or minimum, as
required) of Y occurs. When significant curvature, or lack of fit, is detected, the
experimenter should proceed with "Phase II". Figure 5.2 illustrates a sequence of
line searches when seeking a region where curvature exists in a problem with 2
factors (i.e., k=2).

 

FIGURE 5.2: A Sequence of Line Searches for a 2-Factor Optimization
Problem
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Two main
decisions:
search
direction and
length of step

There are two main decisions an engineer must make in Phase I:

1. determine the search direction;
2. determine the length of the step to move from the current operating

conditions.

Figure 5.3 shows a flow diagram of the different iterative tasks required in Phase
I. This diagram is intended as a guideline and should not be automated in such a
way that the experimenter has no input in the optimization process.

Flow chart of
iterative
search
process

 
FIGURE 5.3: Flow Chart for the First Phase of the Experimental

Optimization Procedure

Procedure for Finding the Direction of Maximum Improvement

The direction
of steepest
ascent is

Suppose a first-order model (like above) has been fit and provides a useful
approximation. As long as lack of fit (due to pure quadratic curvature and
interactions) is very small compared to the main effects, steepest ascent can be
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determined by
the gradient
of the fitted
model

attempted. To determine the direction of maximum improvement we use

1. the estimated direction of steepest ascent, given by the gradient of , if the
objective is to maximize Y;

2. the estimated direction of steepest descent, given by the negative of the
gradient of , if the objective is to minimize Y.

The direction
of steepest
ascent
depends on
the scaling
convention -
equal
variance
scaling is
recommended

The direction of the gradient, g, is given by the values of the parameter estimates,
that is, g' = (b1, b2, ..., bk). Since the parameter estimates b1, b2, ..., bk depend on
the scaling convention for the factors, the steepest ascent (descent) direction is also
scale dependent. That is, two experimenters using different scaling conventions
will follow different paths for process improvement. This does not diminish the
general validity of the method since the region of the search, as given by the signs
of the parameter estimates, does not change with scale. An equal variance scaling
convention, however, is recommended. The coded factors xi, in terms of the
factors in the original units of measurement, Xi, are obtained from the relation

This coding convention is recommended since it provides parameter estimates that
are scale independent, generally leading to a more reliable search direction. The
coordinates of the factor settings in the direction of steepest ascent, positioned a
distance  from the origin, are given by:

 

Solution is a
simple
equation

This problem can be solved with the aid of an optimization solver (e.g., like the
solver option of a spreadsheet). However, in this case this is not really needed, as
the solution is a simple equation that yields the coordinates

 

Equation can
be computed
for increasing
values of 

An engineer can compute this equation for different increasing values of  and
obtain different factor settings, all on the steepest ascent direction.

To see the details that explain this equation, see Technical Appendix 5A.

 Example: Optimization of a Chemical Process

Optimization
by search
example

It has been concluded (perhaps after a factor screening experiment) that the yield
(Y, in %) of a chemical process is mainly affected by the temperature (X1, in C)
and by the reaction time (X2, in minutes). Due to safety reasons, the region of
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operation is limited to

Factor levels The process is currently run at a temperature of 200 C and a reaction time of 200
minutes. A process engineer decides to run a 22 full factorial experiment with
factor levels at

factor low center high

X1 170 200 230
X2 150 200 250

Orthogonally
coded factors

Five repeated runs at the center levels are conducted to assess lack of fit. The
orthogonally coded factors are

Experimental
results

The experimental results were:

x1 x2 X1 X2 Y (= yield)

-1 -1 170 150 32.79
+1 -1 230 150 24.07
-1 +1 170 250 48.94
+1 +1 230 250 52.49
  0   0 200 200 38.89
  0   0 200 200 48.29
  0   0 200 200 29.68
  0   0 200 200 46.50
  0   0 200 200 44.15

ANOVA table The corresponding ANOVA table for a first-order polynomial model is

                 SUM OF        MEAN    F
SOURCE          SQUARES   DF  SQUARE  VALUE  PROB>F
MODEL          503.3035   2  251.6517 4.7972 0.0687
CURVATURE        8.2733   1    8.2733 0.1577 0.7077
RESIDUAL       262.2893   5   52.4579
  LACK OF FIT   37.6382   1   37.6382 0.6702 0.4590
  PURE ERROR   224.6511   4   56.1628

COR TOTAL      773.8660   8

Resulting
model

It can be seen from the ANOVA table that there is no significant lack of linear fit
due to an interaction term and there is no evidence of curvature. Furthermore,
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there is evidence that the first-order model is significant. The resulting model (in
the coded variables) is

Diagnostic
checks

The usual diagnostic checks show conformance to the regression assumptions,
although the R2 value is not very high: R2 = 0.6504.

Determine
level of
factors for
next run
using
direction of
steepest
ascent

To maximize , we use the direction of steepest ascent. The engineer selects  = 1
since a point on the steepest ascent direction one unit (in the coded units) from the
origin is desired. Then from the equation above for the predicted Y response, the
coordinates of the factor levels for the next run are given by:

and

This means that to improve the process, for every (-0.1152)(30) = -3.456 C that
temperature is varied (decreased), the reaction time should be varied by
(0.9933)(50) = 49.66 minutes.

===========================================================

 Technical Appendix 5A: finding the factor settings on the steepest ascent
direction a specified distance from the origin

Details of
how to
determine the
path of
steepest
ascent

The problem of finding the factor settings on the steepest ascent/descent direction
that are located a distance  from the origin is given by the optimization problem,

 

Solve using a
Lagrange
multiplier
approach

To solve it, use a Lagrange multiplier approach. First, add a penalty  for
solutions not satisfying the constraint (since we want a direction of steepest
ascent, we maximize, and therefore the penalty is negative). For steepest descent
we minimize and the penalty term is added instead.

Compute the partials and equate them to zero
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Solve two
equations in
two unknowns

These two equations have two unknowns (the vector x and the scalar ) and thus
can be solved yielding the desired solution:

or, in non-vector notation:

Multiples of
the direction
of the
gradient

From this equation we can see that any multiple  of the direction of the gradient
(given by ) will lead to points on the steepest ascent direction. For steepest
descent, use instead -bi in the numerator of the equation above.

http://www.itl.nist.gov/div898/handbook/search.htm
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5.5.3.1.2. Single response: Confidence region for search path

"Randomness"
means that the
steepest
ascent
direction is
just an
estimate and it
is possible to
construct a
confidence
"cone" around
this direction
estimate

The direction given by the gradient g' = (b0, b2, ... , bk) constitutes only a single
(point) estimate based on a sample of N runs. If a different set of N runs were
conducted, these would provide different parameter estimates, which in turn would
give a different gradient. To account for this sampling variability, Box and Draper
gave a formula for constructing a "cone" around the direction of steepest ascent that
with certain probability contains the true (unknown) system gradient given by 

. The width of the confidence cone is useful to assess how reliable
an estimated search direction is.

Figure 5.4 shows such a cone for the steepest ascent direction in an experiment with
two factors. If the cone is so wide that almost every possible direction is inside the
cone, an experimenter should be very careful in moving too far from the current
operating conditions along the path of steepest ascent or descent. Usually this will
happen when the linear fit is quite poor (i.e., when the R2 value is low). Thus,
plotting the confidence cone is not so important as computing its width.

If you are interested in the details on how to compute such a cone (and its width),
see Technical Appendix 5B.

Graph of a
confidence
cone for the
steepest
ascent
direction

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/pri/pri.htm


5.5.3.1.2. Single response: Confidence region for search path

http://www.itl.nist.gov/div898/handbook/pri/section5/pri5312.htm[6/27/2012 2:24:49 PM]

FIGURE 5.4: A Confidence Cone for the Steepest Ascent Direction in an
Experiment with 2 Factors

=============================================================

 Technical Appendix 5B: Computing a Confidence Cone on the Direction of
Steepest Ascent

Details of how
to construct a
confidence
cone for the
direction of
steepest
ascent

Suppose the response of interest is adequately described by a first-order polynomial
model. Consider the inequality

 

with

Cjj is the j-th diagonal element of the matrix (X'X)-1 (for j = 1, ..., k these values are
all equal if the experimental design is a 2k-p factorial of at least Resolution III), and
X is the model matrix of the experiment (including columns for the intercept and
second-order terms, if any). Any operating condition with coordinates x' = (x1, x2,
..., xk) that satisfies this inequality generates a direction that lies within the 100(1- 
) % confidence cone of steepest ascent if
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or inside the 100(1- ) % confidence cone of steepest descent if

Inequality
defines a cone

The inequality defines a cone with the apex at the origin and center line located
along the gradient of .

A measure of
goodnes of fit:

A measure of "goodness" of a search direction is given by the fraction of directions
excluded by the 100(1- ) % confidence cone around the steepest ascent/descent
direction (see Box and Draper, 1987) which is given by:

with Tk-1() denoting the complement of the Student's t distribution function with k-1
degrees of freedom (that is, Tk-1(x) = P(tk-1  x)) and F , k-1, n-p denotes an 
percentage point of the F distribution with k-1 and n-p degrees of freedom, with n-p
denoting the error degrees of freedom. The value of  represents the fraction of
directions included by the confidence cone. The smaller  is, the wider the cone is,
with . Note that the inequality equation and the "goodness measure"
equation are valid when operating conditions are given in coded units.

Example: Computing 

Compute 
from ANOVA
table and Cjj

From the ANOVA table in the chemical experiment discussed earlier

since Cjj = 1/4 (j=2,3) for a 22 factorial. The fraction of directions excluded by a 95
% confidence cone in the direction of steepest ascent is:

Compute 

Conclusions
for this
example

since F0.05,1,6 = 5.99. Thus 71 % of the possible directions from the current
operating point are excluded with 95 % confidence. This is useful information that
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can be used to select a step length. The smaller  is, the shorter the step should be,
as the steepest ascent direction is less reliable. In this example, with high confidence,
the true steepest ascent direction is within this cone of 29 % of possible directions.
For k=2, 29 % of 360o = 104.4o, so we are 95 % confident that our estimated
steepest ascent path is within plus or minus 52.2o of the true steepest path. In this
case, we should not use a large step along the estimated steepest ascent path.
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5.5.3.1.3. Single response: Choosing the step
length

A procedure
for choosing
how far
along the
direction of
steepest
ascent to go
for the next
trial run

Once the search direction is determined, the second decision
needed in Phase I relates to how far in that direction the
process should be "moved". The most common procedure for
selecting a step length is based on choosing a step size in
one factor and then computing step lengths in the other
factors proportional to their parameter estimates. This
provides a point on the direction of maximum improvement.
The procedure is given below. A similar approach is
obtained by choosing increasing values of  in

.

However, the procedure below considers the original units of
measurement which are easier to deal with than the coded
"distance" .

Procedure: selection of step length

Procedure
for selecting
the step
length

The following is the procedure for selecting the step length.

1. Choose a step length Xj (in natural units of
measurement) for some factor j. Usually, factor j is
chosen to be the one engineers feel more comfortable
varying, or the one with the largest |bj|. The value of 

Xj can be based on the width of the confidence cone
around the steepest ascent/descent direction. Very
wide cones indicate that the estimated steepest
ascent/descent direction is not reliable, and thus Xj

should be small. This usually occurs when the R2

value is low. In such a case, additional experiments
can be conducted in the current experimental region to
obtain a better model fit and a better search direction.

2. Transform to coded units:

http://www.itl.nist.gov/div898/handbook/index.htm
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with sj denoting the scale factor used for factor j (e.g.,
sj = rangej/2).

3. Set  for all other factors i.

4. Transform all the xi's to natural units: Xi = (
xi)(si).

Example: Step Length Selection.

An example
of step
length
selection

The following is an example of the step length selection
procedure.

For the chemical process experiment described
previously, the process engineer selected X2 = 50
minutes. This was based on process engineering
considerations. It was also felt that X2 = 50 does not
move the process too far away from the current region
of experimentation. This was desired since the R2

value of 0.6580 for the fitted model is quite low,
providing a not very reliable steepest ascent direction
(and a wide confidence cone, see Technical Appendix
5B).

.

.

X2 = (-0.1160)(30) = -3.48oC.

Thus the step size is X' = (-3.48oC, 50 minutes).

Procedure: Conducting Experiments Along the Direction
of Maximum Improvement

Procedure
for
conducting
experiments
along the
direction of
maximum
improvement

The following is the procedure for conducting experiments
along the direction of maximum improvement.

1. Given current operating conditions  = (X1, X2, ...,
Xk) and a step size X' = ( X1, X2, ..., Xk),
perform experiments at factor levels X0 + X, X0 + 2

X, X0 + 3 X, ... as long as improvement in the
response Y (decrease or increase, as desired) is
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observed.

2. Once a point has been reached where there is no
further improvement, a new first-order experiment
(e.g., a 2k-p fractional factorial) should be performed
with repeated center runs to assess lack of fit. If there
is no significant evidence of lack of fit, the new first-
order model will provide a new search direction, and
another iteration is performed as indicated in Figure
5.3. Otherwise (there is evidence of lack of fit), the
experimental design is augmented and a second-order
model should be fitted. That is, the experimenter
should proceed to "Phase II".

Example: Experimenting Along the Direction of
Maximum Improvement

Step 1:
increase
factor levels
by 

Step 1:

Given X0 = (200oC, 200 minutes) and X = (-3.48oC, 50
minutes), the next experiments were performed as follows
(the step size in temperature was rounded to -3.5oC for
practical reasons):

  X1 X2 x1 x2 Y (= yield)

X0 200 200 0 0  

X0 + X 196.5 250 -0.1160 1 56.2

X0 + 2 X 193.0 300 -0.2320 2 71.49

X0 + 3 X 189.5 350 -0.3480 3 75.63

X0 + 4 X 186.0 400 -0.4640 4 72.31

X0 + 5 X 182.5 450 -0.5800 5 72.10

Since the goal is to maximize Y, the point of maximum
observed response is X1 = 189.5oC, X2 = 350 minutes.
Notice that the search was stopped after 2 consecutive drops
in response, to assure that we have passed by the "peak" of
the "hill".

Step 2: new
factorial
experiment

Step 2:

A new 22 factorial experiment is performed with X' =
(189.5, 350) as the origin. Using the same scaling factors as
before, the new scaled controllable factors are:
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 Five center runs (at X1 = 189.5, X2 = 350) were repeated to
assess lack of fit. The experimental results were:

x1 x2 X1 X2 Y (= yield)

-1 -1 159.5 300 64.33
+1 -1 219.5 300 51.78
-1 +1 159.5 400 77.30
+1 +1 219.5 400 45.37
0 0 189.5 350 62.08
0 0 189.5 350 79.36
0 0 189.5 350 75.29
0 0 189.5 350 73.81
0 0 189.5 350 69.45

The corresponding ANOVA table for a linear model is

                SUM OF            MEAN     F
SOURCE         SQUARES    DF     SQUARE  VALUE  
PROB > F

MODEL          505.376     2    252.688  4.731   
0.0703
CURVATURE      336.364     1    336.364  6.297   
0.0539
RESIDUAL       267.075     5     53.415
  LACK OF FIT   93.896     1     93.896  2.168   
0.2149
  PURE ERROR   173.179     4     43.295

COR TOTAL     1108.815     8

From the table, the linear effects (model) are significant and
there is no evidence of lack of fit. However, there is a
significant curvature effect (at the 5.4 % significance level),
which implies that the optimization should proceed with
Phase II; that is, the fit and optimization of a second-order
model.
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5.5.3.1.4. Single response: Optimization when there is adequate
quadratic fit

Regions
where
quadratic
models or
even cubic
models are
needed occur
in many
instances in
industry

After a few steepest ascent (or descent) searches, a first-order model will eventually lead to
no further improvement or it will exhibit lack of fit. The latter case typically occurs when
operating conditions have been changed to a region where there are quadratic (second-
order) effects present in the response. A second-order polynomial can be used as a local
approximation of the response in a small region where, hopefully, optimal operating
conditions exist. However, while a quadratic fit is appropriate in most of the cases in
industry, there will be a few times when a quadratic fit will not be sufficiently flexible to
explain a given response. In such cases, the analyst generally does one of the following:

1. Uses a transformation of Y or the Xis to improve the fit.
2. Limits use of the model to a smaller region in which the model does fit.
3. Adds other terms to the model.

Procedure: obtaining the estimated optimal operating conditions

Second-
order
polynomial
model

Once a linear model exhibits lack of fit or when significant curvature is detected, the
experimental design used in Phase I (recall that a 2k-p factorial experiment might be used)
should be augmented with axial runs on each factor to form what is called a central
composite design. This experimental design allows estimation of a second-order polynomial
of the form

Steps to find
optimal
operating
conditions

If the corresponding analysis of variance table indicates no lack of fit for this model, the
engineer can proceed to determine the estimated optimal operating conditions.

1. Using some graphics software, obtain a contour plot of the fitted response. If the
number of factors (k) is greater than 2, then plot contours in all planes corresponding
to all the possible pairs of factors. For k greater than, say, 5, this could be too
cumbersome (unless the graphic software plots all pairs automatically). In such a
case, a "canonical analysis" of the surface is recommended (see Technical Appendix
5D).

2. Use an optimization solver to maximize or minimize (as desired) the estimated
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response .

3. Perform a confirmation experiment at the estimated optimal operating conditions
given by the solver in step 2.

Chemical
experiment
example

We illustrate these steps using the chemical experiment discussed previously. For a
technical description of a formula that provides the coordinates of the stationary point of
the surface, see Technical Appendix 5C.

Example: Second Phase Optimization of Chemical Process

Experimental
results for
axial runs

Recall that in the chemical experiment, the ANOVA table, obtained from using an
experiment run around the coordinates X1 = 189.5, X2 = 350, indicated significant
curvature effects. Augmenting the 22 factorial experiment with axial runs at  to
achieve a rotatable central composite experimental design, the following experimental
results were obtained:

x1 x2 X1 X2 Y (= yield)

-1.414 0 147.08 350 72.58
+1.414 0 231.92 350 37.42

0 -1.414 189.5 279.3 54.63
0 +1.414 189.5 420.7 54.18

ANOVA table The ANOVA table corresponding to a cubic model with an interaction term (contained in
the quadratic sum-of-squares partition) is

               SUM OF            MEAN      F
SOURCE        SQUARES   DF      SQUARE   VALUE  PROB > F

MEAN          51418.2    1     51418.2
Linear         1113.7    2       556.8    5.56    0.024
Quadratic       768.1    3       256.0    7.69    0.013
Cubic             9.9    2         5.0    0.11    0.897

RESIDUAL        223.1    5        44.6
TOTAL         53533.0   13

Lack-of-fit
tests and
auxillary
diagnostic
statistics

From the ANOVA table, the linear and quadratic effects are significant. The lack-of-fit
tests and auxiliary diagnostic statistics for linear, quadratic, and cubic models are:

              SUM OF             MEAN      F
MODEL        SQUARES      DF    SQUARE   VALUE  PROB > F

Linear         827.9       6     138.0    3.19    0.141
Quadratic       59.9       3      20.0    0.46    0.725
Cubic           49.9       1      49.9    1.15    0.343

PURE ERROR     173.2       4      43.3

              ROOT                ADJ       PRED
MODEL         MSE      R-SQR     R-SQR      R-SQR    PRESS

Linear       10.01    0.5266    0.4319     0.2425    1602.02
Quadratic     5.77    0.8898    0.8111     0.6708     696.25
Cubic         6.68    0.8945    0.7468    -0.6393    3466.71

The quadratic model has a larger p-value for the lack of fit test, higher adjusted R2, and a
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lower PRESS statistic; thus it should provide a reliable model. The fitted quadratic
equation, in coded units, is

Step 1:

Contour plot
of the fitted
response
function

A contour plot of this function (Figure 5.5) shows that it appears to have a single optimum
point in the region of the experiment (this optimum is calculated below to be (-0.9285,
0.3472), in coded x1, x2 units, with a predicted response value of 77.59).

 

FIGURE 5.5: Contour Plot of the Fitted Response in the Example

3D plot of the
fitted
response
function

Since there are only two factors in this example, we can also obtain a 3D plot of the fitted
response against the two factors (Figure 5.6).
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FIGURE 5.6: 3D Plot of the Fitted Response in the Example

Step 2:

Optimization
point

An optimization routine was used to maximize . The results are  = 161.64oC,  =
367.32 minutes. The estimated yield at the optimal point is (X*) = 77.59 %.

Step 3:

Confirmation
experiment

A confirmation experiment was conducted by the process engineer at settings X1 = 161.64,
X2 = 367.32. The observed response was (X*) = 76.5 %, which is satisfactorily close to
the estimated optimum.

==================================================================

 Technical Appendix 5C: Finding the Factor Settings for the Stationary Point of a
Quadratic Response

How to find
the maximum
or minimum
point for a
quadratic
response

1. Rewrite the fitted equation using matrix notation as

where b' = (b1, b2, ..., bk) denotes a vector of first-order parameter estimates,
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is a matrix of second-order parameter estimates and x' = (x1, x2, ..., xk) is the vector
of controllable factors. Notice that the off-diagonal elements of B are equal to half
the two-factor interaction coefficients.

2. Equating the partial derivatives of  with respect to x to zeroes and solving the
resulting system of equations, the coordinates of the stationary point of the response
are given by

Nature of the
stationary
point is
determined by
B

The nature of the stationary point (whether it is a point of maximum response, minimum
response, or a saddle point) is determined by the matrix B. The two-factor interactions do
not, in general, let us "see" what type of point x* is. One thing that can be said is that if the
diagonal elements of B (bii) have mixed signs, x* is a saddle point. Otherwise, it is
necessary to look at the characteristic roots or eigenvalues of B to see whether B is
"positive definite" (so x* is a point of minimum response) or "negative definite" (the case
in which x* is a point of maximum response). This task is easier if the two-factor
interactions are "eliminated" from the fitted equation as is described in Technical Appendix
5D.

Example: computing the stationary point, Chemical Process experiment

Example of
computing the
stationary
point

The fitted quadratic equation in the chemical experiment discussed in Section 5.5.3.1.1 is,
in coded units,

from which we obtain b' = (-11.78, 0.74),

and

Transforming back to the original units of measurement, the coordinates of the stationary
point are

.
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The predicted response at the stationary point is (X*) = 77.59 %.

 Technical Appendix 5D: "Canonical Analysis" of Quadratic Responses

Case for a
single
controllable
response

Whether the stationary point X* represents a point of maximum or minimum response, or is
just a saddle point, is determined by the matrix of second-order coefficients, B. In the
simpler case of just a single controllable factor (k=1), B is a scalar proportional to the
second derivative of (x) with respect to x. If d2 /dx2 is positive, recall from calculus that
the function (x) is convex ("bowl shaped") and x* is a point of minimum response.

Case for
multiple
controllable
responses not
so easy

Unfortunately, the multiple factor case (k>1) is not so easy since the two-factor interactions
(the off-diagonal elements of B) obscure the picture of what is going on. A recommended
procedure for analyzing whether B is "positive definite" (we have a minimum) or "negative
definite" (we have a maximum) is to rotate the axes x1, x2, ..., xk so that the two-factor
interactions disappear. It is also customary (Box and Draper, 1987; Khuri and Cornell,
1987; Myers and Montgomery, 1995) to translate the origin of coordinates to the stationary
point so that the intercept term is eliminated from the equation of (x). This procedure is
called the canonical analysis of (x).

Procedure: Canonical Analysis

Steps for
performing
the canonical
analysis

1. Define a new axis z = x - x* (translation step). The fitted equation becomes

.

2. Define a new axis w = E'z, with E'BE = D and D a diagonal matrix to be defined
(rotation step). The fitted equation becomes

.

This is the so-called canonical form of the model. The elements on the diagonal of D,
i (i = 1, 2, ..., k) are the eigenvalues of B. The columns of E', ei, are the

orthonormal eigenvectors of B, which means that the ei satisfy (B - i)ei = 0,  =
0 for i  j, and  = 1.0.

3. If all the i are negative, x* is a point of maximum response. If all the i are positive,
x* is a point of minimum response. Finally, if the i are of mixed signs, the response
is a saddle function and x* is the saddle point.

Eigenvalues
that are
approximately
zero

If some i  0, the fitted ellipsoid

is elongated (i.e., it is flat) along the direction of the wi axis. Points along the wi axis will
have an estimated response close to optimal; thus the process engineer has flexibility in
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choosing "good" operating conditions. If two eigenvalues (say i and j) are close to zero, a
plane in the (wi, wj) coordinates will have close to optimal operating conditions, etc.

Canonical
analysis
typically
performed by
software

Software is available to compute the eigenvalues i and the orthonormal eigenvectors ei;
thus there is no need to do a canonical analysis by hand.

Example: Canonical Analysis of Yield Response in Chemical Experiment

B matrix for
this example

Let us return to the chemical experiment example to illustrate the method. Keep in mind
that when the number of factors is small (e.g., k=2 as in this example) canonical analysis is
not recommended in practice since simple contour plotting will provide sufficient
information. The fitted equation of the model yields

Compute the
eigenvalues
and find the
orthonormal
eigenvectors

To compute the eigenvalues i, we have to find all roots of the expression that results from
equating the determinant of B - iI to zero. Since B is symmetric and has real coefficients,
there will be k real roots i, i = 1, 2, ..., k. To find the orthonormal eigenvectors, solve the
simultaneous equations (B - iI)ei = 0 and  = 1.

Canonical
analysis
results

The results of the canonical analysis are as follows:

                                     Eigenvectors
              Eigenvalues         X1               X2

                -4.973187        0.728460       -0.685089
                -9.827317        0.685089        0.728460

Notice that the eigenvalues are the two roots of

As mentioned previously, the stationary point is (x*)' = (-0.9278, 0.3468), which
corresponds to X*' = (161.64, 367.36). Since both eigenvalues are negative, x* is a point of
maximum response. To obtain the directions of the axis of the fitted ellipsoid, compute

w1 = 0.7285(x1 + 0.9278) - 0.6851(x2 - 0.3468) = 0.9143 + 0.7285x1 - 0.6851x2

and

w2 = 0.6851(x1 + 0.9278) - 0.7285(x2 - 0.3468) = 0.8830 + 0.6851x1 + 0.7285x2

Since | 1| < | 2|, there is somewhat more elongation in the wi direction. However, since
both eigenvalues are quite far from zero, there is not much flexibility in choosing operating
conditions. It can be seen from Figure 5.5 that the fitted ellipses do not have a great
elongation in the w1 direction, the direction of the major axis. It is important to emphasize
that confirmation experiments at x* should be performed to check the validity of the
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estimated optimal solution.
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5.5.3.1.5. Single response: Effect of sampling
error on optimal solution

Experimental
error means
all derived
optimal
operating
conditions
are just
estimates -
confidence
regions that
are likely to
contain the
optimal
points can
be derived

Process engineers should be aware that the estimated
optimal operating conditions x* represent a single estimate
of the true (unknown) system optimal point. That is, due to
sampling (experimental) error, if the experiment is repeated,
a different quadratic function will be fitted which will yield
a different stationary point x*. Some authors (Box and
Hunter, 1954; Myers and Montgomery, 1995) provide a
procedure that allows one to compute a region in the factor
space that, with a specified probability, contains the system
stationary point. This region is useful information for a
process engineer in that it provides a measure of how
"good" the point estimate x* is. In general, the larger this
region is, the less reliable the point estimate x* is. When the
number of factors, k, is greater than 3, these confidence
regions are difficult to visualize.

Confirmation
runs are very
important

Awareness of experimental error should make a process
engineer realize the importance of performing confirmation
runs at x*, the estimated optimal operating conditions.
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5.5.3.1.6. Single response: Optimization subject
to experimental region constraints

Optimal
operating
conditions
may fall
outside
region where
experiment
conducted

Sometimes the optimal operating conditions x* simply fall
outside the region where the experiment was conducted. In
these cases, constrained optimization techniques can be
used to find the solution x* that optimizes  without

leaving the region in the factor space where the experiment
took place.

Ridge
analysis is a
method for
finding
optimal
factor
settings that
satisfy
certain
constraints

"Ridge Analysis", as developed by Hoerl (1959), Hoerl
(1964) and Draper (1963), is an optimization technique that
finds factor settings x* such that they

optimize     (x) = b0 + b'x + x'Bx

subject to:     x'x = 2

The solution x* to this problem provides operating
conditions that yield an estimated absolute maximum or
minimum response on a sphere of radius . Different
solutions can be obtained by trying different values of .

Solve with
non-linear
programming
software

The original formulation of Ridge Analysis was based on
the eigenvalues of a stationarity system. With the wide
availability of non-linear programming codes, Ridge
Analysis problems can be solved without recourse to
eigenvalue analysis.
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5.5.3.2. Multiple response case

When there
are multiple
responses, it is
often
impossible to
simultaneously
optimize each
one - trade-
offs must be
made

In the multiple response case, finding process operating
conditions that simultaneously maximize (or minimize, as
desired) all the responses is quite difficult, and often
impossible. Almost inevitably, the process engineer must
make some trade-offs in order to find process operating
conditions that are satisfactory for most (and hopefully all)
the responses. In this subsection, we examine some
effective ways to make these trade-offs.

Path of steepest ascent
The desirability function approach
The mathematical programming approach

Dual response systems
More than 2 responses
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5.5.3.2.1. Multiple responses: Path of steepest ascent

Objective:
consider and
balance the
individual
paths of
maximum
improvement

When the responses exhibit adequate linear fit (i.e., the response models
are all linear), the objective is to find a direction or path that
simultaneously considers the individual paths of maximum improvement
and balances them in some way. This case is addressed next.

When there is a mix of linear and higher-order responses, or when all
empirical response models are of higher-order, see sections 5.5.3.2.2 and
5.5.3.2.3. The desirability method (section 5.5.3.2.2) can also be used
when all response models are linear.

Procedure: Path of Steepest Ascent, Multiple Responses.

A weighted
priority
strategy is
described
using the
path of
steepest
ascent for
each
response

The following is a weighted priority strategy using the path of steepest
ascent for each response.

1. Compute the gradients gi (i = 1, 2, . . ., k) of all responses as
explained in section 5.5.3.1.1. If one of the responses is clearly of
primary interest compared to the others, use only the gradient of
this response and follow the procedure of section 5.5.3.1.1.
Otherwise, continue with step 2.

2. Determine relative priorities  for each of the k responses. Then,
the weighted gradient for the search direction is given by

and the weighted direction is

Weighting
factors
based on R2

The confidence cone for the direction of maximum improvement
explained in section 5.5.3.1.2 can be used to weight down "poor"
response models that provide very wide cones and unreliable directions.
Since the width of the cone is proportional to (1 - R2), we can use

http://www.itl.nist.gov/div898/handbook/index.htm
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Single
response
steepest
ascent
procedure

Given a weighted direction of maximum improvement, we can follow
the single response steepest ascent procedure as in section 5.5.3.1.1 by
selecting points with coordinates x* = di, i = 1, 2, ..., k. These and
related issues are explained more fully in Del Castillo (1996).

Example: Path of Steepest Ascent, Multiple Response Case

An example
using the
weighted
priority
method

Suppose the response model:

with  = 0.8968 represents the average yield of a production process
obtained from a replicated factorial experiment in the two controllable
factors (in coded units). From the same experiment, a second response
model for the process standard deviation of the yield is obtained and
given by

with  = 0.5977. We wish to maximize the mean yield while
minimizing the standard deviation of the yield.

Step 1: compute the gradients:

Compute the
gradients

We compute the gradients as follows.

(recall we wish to minimize y2).

Step 2: find relative priorities:

Find relative
priorities

Since there are no clear priorities, we use the quality of fit as the
priority:

Then, the weighted gradient is

g' = (0.6(0.3124) + 0.4(-0.7088), 0.6(0.95) + 0.4(-0.7054)) = (-
0.096, 0.2878)
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which, after scaling it (by dividing each coordinate by 
), gives the weighted direction d' = (-.03164,

0.9486).

Therefore, if we want to move  = 1 coded units along the path of
maximum improvement, we will set x1 = (1)(-0.3164) = -0.3164, x2 =
(1)(0.9486) = 0.9486 in the next run or experiment.
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5.5.3.2.2. Multiple responses: The desirability approach

The
desirability
approach is
a popular
method that
assigns a
"score" to a
set of
responses
and chooses
factor
settings that
maximize
that score

The desirability function approach is one of the most widely used methods in
industry for the optimization of multiple response processes. It is based on the idea
that the "quality" of a product or process that has multiple quality characteristics,
with one of them outside of some "desired" limits, is completely unacceptable. The
method finds operating conditions x that provide the "most desirable" response
values.

For each response Yi(x), a desirability function di(Yi) assigns numbers between 0
and 1 to the possible values of Yi, with di(Yi) = 0 representing a completely
undesirable value of Yi and di(Yi) = 1 representing a completely desirable or ideal
response value. The individual desirabilities are then combined using the geometric
mean, which gives the overall desirability D:

with k denoting the number of responses. Notice that if any response Yi is
completely undesirable (di(Yi) = 0), then the overall desirability is zero. In practice,
fitted response values i are used in place of the Yi.

Desirability
functions of
Derringer
and Suich

Depending on whether a particular response Yi is to be maximized, minimized, or
assigned a target value, different desirability functions di(Yi) can be used. A useful
class of desirability functions was proposed by Derringer and Suich (1980). Let Li,
Ui and Ti be the lower, upper, and target values, respectively, that are desired for
response Yi, with Li  Ti  Ui.

Desirability
function for
"target is
best"

If a response is of the "target is best" kind, then its individual desirability function is

with the exponents s and t determining how important it is to hit the target value.
For s = t = 1, the desirability function increases linearly towards Ti; for s < 1, t < 1,
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the function is convex, and for s > 1, t > 1, the function is concave (see the example
below for an illustration).

Desirability
function for
maximizing a
response

If a response is to be maximized instead, the individual desirability is defined as

with Ti in this case interpreted as a large enough value for the response.

Desirability
function for
minimizing a
response

Finally, if we want to minimize a response, we could use

with Ti denoting a small enough value for the response.

Desirability
approach
steps

The desirability approach consists of the following steps:

1. Conduct experiments and fit response models for all k responses;
2. Define individual desirability functions for each response;
3. Maximize the overall desirability D with respect to the controllable factors.

Example:

An example
using the
desirability
approach

Derringer and Suich (1980) present the following multiple response experiment
arising in the development of a tire tread compound. The controllable factors are: x1,
hydrated silica level, x2, silane coupling agent level, and x3, sulfur level. The four
responses to be optimized and their desired ranges are:

Factor and
response
variables

Source Desired range

PICO Abrasion index, Y1 120 < Y1

200% modulus, Y2 1000 < Y2

Elongation at break, Y3 400 < Y3 < 600
Hardness, Y4 60 < Y4 < 75

The first two responses are to be maximized, and the value s=1 was chosen for their
desirability functions. The last two responses are "target is best" with T3 = 500 and
T4 = 67.5. The values s=t=1 were chosen in both cases.

Experimental The following experiments were conducted using a central composite design.
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runs from a
central
composite
design

Run
Number x1 x2 x3 Y1 Y2 Y3 Y4

1 -1.00 -1.00 -1.00 102 900 470 67.5
2 +1.00 -1.00 -1.00 120 860 410 65.0
3 -1.00 +1.00 -1.00 117 800 570 77.5
4 +1.00 +1.00 -1.00 198 2294 240 74.5
5 -1.00 -1.00 +1.00 103 490 640 62.5
6 +1.00 -1.00 +1.00 132 1289 270 67.0
7 -1.00 +1.00 +1.00 132 1270 410 78.0
8 +1.00 +1.00 +1.00 139 1090 380 70.0
9 -1.63 0.00 0.00 102 770 590 76.0
10 +1.63 0.00 0.00 154 1690 260 70.0
11 0.00 -1.63 0.00 96 700 520 63.0
12 0.00 +1.63 0.00 163 1540 380 75.0
13 0.00 0.00 -1.63 116 2184 520 65.0
14 0.00 0.00 +1.63 153 1784 290 71.0
15 0.00 0.00 0.00 133 1300 380 70.0
16 0.00 0.00 0.00 133 1300 380 68.5
17 0.00 0.00 0.00 140 1145 430 68.0
18 0.00 0.00 0.00 142 1090 430 68.0
19 0.00 0.00 0.00 145 1260 390 69.0
20 0.00 0.00 0.00 142 1344 390 70.0

Fitted
response

Using ordinary least squares and standard diagnostics, the fitted responses are:

(R2 = 0.8369 and adjusted R2 = 0.6903);

(R2 = 0.7137 and adjusted R2 = 0.4562);

(R2 = 0.682 and adjusted R2 = 0.6224);
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(R2 = 0.8667 and adjusted R2 = 0.7466).

Note that no interactions were significant for response 3 and that the fit for response
2 is quite poor. 

Best Solution The best solution is (x*)' = (-0.10, 0.15, -1.0) and results in:

d1( 1) = 0.34    ( 1(x*) = 136.4)

d2( 2) = 1.0    ( 2(x*) = 1571.05)

d3( 3) = 0.49    ( 3(x*) = 450.56)

d4( 4) = 0.76    ( 4(x*) = 69.26)

The overall desirability for this solution is 0.596. All responses are predicted to be
within the desired limits.

3D plot of
the overall
desirability
function

Figure 5.8 shows a 3D plot of the overall desirability function D(x) for the (x2, x3)
plane when x1 is fixed at -0.10. The function D(x) is quite "flat" in the vicinity of
the optimal solution, indicating that small variations around x* are predicted to not
change the overall desirability drastically. However, the importance of performing
confirmatory runs at the estimated optimal operating conditions should be
emphasized. This is particularly true in this example given the poor fit of the
response models (e.g., 2).

FIGURE 5.8  Overall Desirability Function for Example Problem
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5.5.3.2.3. Multiple responses: The mathematical
programming approach

The
mathematical
programming
approach
maximizes or
minimizes a
primary
response,
subject to
appropriate
constraints
on all other
responses

The analysis of multiple response systems usually involves
some type of optimization problem. When one response can
be chosen as the "primary", or most important response, and
bounds or targets can be defined on all other responses, a
mathematical programming approach can be taken. If this is
not possible, the desirability approach should be used instead.

In the mathematical programming approach, the primary
response is maximized or minimized, as desired, subject to
appropriate constraints on all other responses. The case of two
responses ("dual" responses) has been studied in detail by
some authors and is presented first. Then, the case of more
than 2 responses is illustrated.

 Dual response systems
More than 2 responses

 Dual response systems

Optimization
of dual
response
systems

The optimization of dual response systems (DRS) consists of
finding operating conditions x that

with T denoting the target value for the secondary response, p
the number of primary responses (i.e., responses to be
optimized), s the number of secondary responses (i.e.,
responses to be constrained), and  is the radius of a
spherical constraint that limits the region in the controllable
factor space where the search should be undertaken. The
value of  should be chosen with the purpose of avoiding
solutions that extrapolate too far outside the region where the
experimental data were obtained. For example, if the
experimental design is a central composite design, choosing 

 (axial distance) is a logical choice. Bounds of the form
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L  xi  U can be used instead if a cubical experimental
region were used (e.g., when using a factorial experiment).
Note that a Ridge Analysis problem is related to a DRS
problem when the secondary constraint is absent. Thus, any
algorithm or solver for DRS's will also work for the Ridge
Analysis of single response systems.

Nonlinear
programming
software
required for
DRS

In a DRS, the response models  and  can be linear,

quadratic or even cubic polynomials. A nonlinear
programming algorithm has to be used for the optimization of
a DRS. For the particular case of quadratic responses, an
equality constraint for the secondary response, and a spherical
region of experimentation, specialized optimization
algorithms exist that guarantee global optimal solutions. In
such a case, the algorithm DRSALG can be used (download
from http://www.stat.cmu.edu/jqt/29-3), but a Fortran
compiler is necessary.

More general
case

In the more general case of inequality constraints or a cubical
region of experimentation, a general purpose nonlinear solver
must be used and several starting points should be tried to
avoid local optima. This is illustrated in the next section.

 Example for more than 2 responses

Example:
problem
setup

The values of three components (x1, x2, x3) of a propellant
need to be selected to maximize a primary response, burning
rate (Y1), subject to satisfactory levels of two secondary
reponses; namely, the variance of the burning rate (Y2) and
the cost (Y3). The three components must add to 100% of the
mixture. The fitted models are:

The
optimization
problem

The optimization problem is therefore:

maximize 1(x)

subject to: 2(x)  4.5

  3(x)  20

  x1 + x2 + x3 = 1.0

  0  x1  1
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  0  x2  1

  0  x3  1

Solution The solution is (x*)' = (0.212, 0.343, 0.443) which provides 
1 = 106.62, 2 = 4.17, and 3 = 18.23. Therefore, both

secondary responses are below the specified upper bounds.
The optimization should be implemented using a variety of
starting points to avoid local optima. Once again,
confirmatory experiments should be conducted at the
estimated optimal operating conditions.

The solution to the optimization problem can be obtained
using R code.

http://www.itl.nist.gov/div898/handbook/pri/section5/pri5323.r
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When the
factors are
proportions
of a blend,
you need to
use a
mixture
design

In a mixture experiment, the independent factors are
proportions of different components of a blend. For example,
if you want to optimize the tensile strength of stainless steel,
the factors of interest might be the proportions of iron,
copper, nickel, and chromium in the alloy. The fact that the
proportions of the different factors must sum to 100%
complicates the design as well as the analysis of mixture
experiments.

Standard
mixture
designs and
constrained
mixture
designs

When the mixture components are subject to the constraint
that they must sum to one, there are standard mixture designs
for fitting standard models, such as Simplex-Lattice designs
and Simplex-Centroid designs. When mixture components
are subject to additional constraints, such as a maximum
and/or minimum value for each component, designs other
than the standard mixture designs, referred to as constrained
mixture designs or Extreme-Vertices designs, are appropriate.

Measured
response
assumed to
depend only
on relative
proportions

In mixture experiments, the measured response is assumed to
depend only on the relative proportions of the ingredients or
components in the mixture and not on the amount of the
mixture. The amount of the mixture could also be studied as
an additional factor in the experiment; however, this would
be an example of mixture and process variables being treated
together.

Proportions
of each
variable
must sum to
1

The main distinction between mixture experiments and
independent variable experiments is that with the former, the
input variables or components are non-negative proportionate
amounts of the mixture, and if expressed as fractions of the
mixture, they must sum to one. If for some reason, the sum
of the component proportions is less than one, the variable
proportions can be rewritten as scaled fractions so that the
scaled fractions sum to one.

Purpose of
a mixture
design

In mixture problems, the purpose of the experiment is to
model the blending surface with some form of mathematical
equation so that:

1. Predictions of the response for any mixture or
combination of the ingredients can be made
empirically, or

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/pri/pri.htm
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2. Some measure of the influence on the response of each
component singly and in combination with other
components can be obtained.

Assumptions
for mixture
experiments

The usual assumptions made for factorial experiments are
also made for mixture experiments. In particular, it is
assumed that the errors are independent and identically
distributed with zero mean and common variance. Another
assumption that is made, as with factorial designs, is that the
true underlying response surface is continuous over the
region being studied.

Steps in
planning a
mixture
experiment

Planning a mixture experiment typically involves the
following steps (Cornell and Piepel, 1994):

1. Define the objectives of the experiment.
2. Select the mixture components and any other factors to

be studied. Other factors may include process variables
or the total amount of the mixture.

3. Identify any constraints on the mixture components or
other factors in order to specify the experimental
region.

4. Identify the response variable(s) to be measured.
5. Propose an appropriate model for modeling the

response data as functions of the mixture components
and other factors selected for the experiment.

6. Select an experimental design that is sufficient not
only to fit the proposed model, but which allows a test
of model adequacy as well.

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
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5.5.4.1. Mixture screening designs

Screening
experiments
can be used
to identify
the
important
mixture
factors

In some areas of mixture experiments, for example, certain
chemical industries, there is often a large number, q, of
potentially important components that can be considered
candidates in an experiment. The objective of these types of
experiments is to screen the components to identify the ones
that are most important. In this type of situation, the
experimenter should consider a screening experiment to
reduce the number of possible components.

A first
order
mixture
model

The construction of screening designs and their
corresponding models often begins with the first-order or
first-degree mixture model

for which the beta coefficients are non-negative and sum to
one.

Choices of
types of
screening
designs
depend on
constraints

If the experimental region is a simplex, it is generally a good
idea to make the ranges of the components as similar as
possible. Then the relative effects of the components can be
assessed by ranking the ratios of the parameter estimates (i.e.,
the estimates of the i), relative to their standard errors.
Simplex screening designs are recommended when it is
possible to experiment over the total simplex region.
Constrained mixture designs are suggested when the
proportions of some or all of the components are restricted by
upper and lower bounds. If these designs are not feasible in
this situation, then D-optimal designs for a linear model are
always an option.

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/pri/pri.htm
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/


5.5.4.2. Simplex-lattice designs

http://www.itl.nist.gov/div898/handbook/pri/section5/pri542.htm[6/27/2012 2:25:03 PM]

 

5. Process Improvement 
5.5. Advanced topics 
5.5.4. What is a mixture design? 

5.5.4.2. Simplex-lattice designs

Definition of
simplex-
lattice points

A {q, m} simplex-lattice design for q components consists of
points defined by the following coordinate settings: the
proportions assumed by each component take the m+1 equally
spaced values from 0 to 1,

xi = 0, 1/m, 2/m, ... , 1 for i = 1, 2, ... , q

and all possible combinations (mixtures) of the proportions from
this equation are used.

Except for
the center, all
design points
are on the
simplex
boundaries

Note that the standard Simplex-Lattice and the Simplex-Centroid
designs (described later) are boundary-point designs; that is, with
the exception of the overall centroid, all the design points are on
the boundaries of the simplex. When one is interested in
prediction in the interior, it is highly desirable to augment the
simplex-type designs with interior design points.

Example of a
three-
component
simplex
lattice design

Consider a three-component mixture for which the number of
equally spaced levels for each component is four (i.e., xi = 0,
0.333, 0.667, 1). In this example q = 3 and m = 3. If one uses all
possible blends of the three components with these proportions,
the {3, 3} simplex-lattice then contains the 10 blending
coordinates listed in the table below. The experimental region and
the distribution of design runs over the simplex region are shown
in the figure below. There are 10 design runs for the {3, 3}
simplex-lattice design.

Design table TABLE 5.3  Simplex Lattice
Design

X1 X2 X3

0 0 1
0 0.667 0.333
0 1 0

0.333 0 0.667
0.333 0.333 0.333
0.333 0.6667 0
0.667 0 0.333
0.667 0.333 0

http://www.itl.nist.gov/div898/handbook/index.htm
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1 0 0

Diagram
showing
configuration
of design
runs

 
FIGURE 5.9  Configuration of Design Runs for a {3,3}

Simplex-Lattice Design

The number of design points in the simplex-lattice is (q+m-
1)!/(m!(q-1)!).

Definition of
canonical
polynomial
model used
in mixture
experiments

Now consider the form of the polynomial model that one might fit
to the data from a mixture experiment. Due to the restriction x1 +
x2 + ... + xq = 1, the form of the regression function that is fit to
the data from a mixture experiment is somewhat different from
the traditional polynomial fit and is often referred to as the
canonical polynomial. Its form is derived using the general form
of the regression function that can be fit to data collected at the
points of a {q, m} simplex-lattice design and substituting into this
function the dependence relationship among the xi terms. The
number of terms in the {q, m} polynomial is (q+m-1)!/(m!(q-1)!),
as stated previously. This is equal to the number of points that
make up the associated {q, m} simplex-lattice design.

Example for
a {q, m=1}
simplex-
lattice design

For example, the equation that can be fit to the points from a {q,
m=1} simplex-lattice design is

Multiplying 0 by (x1 + x2 + ... + xq = 1), the resulting equation
is

with  = 0 + i for all i = 1, ..., q.

First- This is called the canonical form of the first-order mixture model.
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order
canonical
form

In general, the canonical forms of the mixture models (with the
asterisks removed from the parameters) are as follows:

Summary of
canonical
mixture
models

Linear

Quadratic

Cubic

Special
Cubic

Linear
blending
portion

The terms in the canonical mixture polynomials have simple
interpretations. Geometrically, the parameter i in the above
equations represents the expected response to the pure mixture
xi=1, xj=0, i  j, and is the height of the mixture surface at the
vertex xi=1. The portion of each of the above polynomials given
by

is called the linear blending portion. When blending is strictly
additive, then the linear model form above is an appropriate
model.

Three-
component
mixture
example

The following example is from Cornell (1990) and consists of a
three-component mixture problem. The three components are
Polyethylene (X1), polystyrene (X2), and polypropylene (X3),
which are blended together to form fiber that will be spun into
yarn. The product developers are only interested in the pure and
binary blends of these three materials. The response variable of
interest is yarn elongation in kilograms of force applied. A {3,2}
simplex-lattice design is used to study the blending process. The
simplex region and the six design runs are shown in the figure
below. The design and the observed responses are listed in Table
5.4. There were two replicate observations run at each of the pure
blends. There were three replicate observations run at the binary
blends. There are 15 observations with six unique design runs.

Diagram
showing the
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designs runs
for this
example

 
FIGURE 5.10  Design Runs for the {3,2} Simplex-Lattice Yarn

Elongation Problem

Table
showing the
simplex-
lattice design
and observed
responses

TABLE 5.4  Simplex-Lattice Design for
Yarn Elongation Problem

X1 X2 X3
Observed
Elongation Values

0.0 0.0 1.0 16.8, 16.0
0.0 0.5 0.5 10.0, 9.7, 11.8
0.0 1.0 0.0 8.8, 10.0
0.5 0.0 0.5 17.7, 16.4, 16.6
0.5 0.5 0.0 15.0, 14.8, 16.1
1.0 0.0 0.0 11.0, 12.4

Fit a
quadratic
mixture
model

The design runs listed in the above table are in standard order.
The actual order of the 15 treatment runs was completely
randomized. Since there are three levels of each of the three
mixture components, a quadratic mixture model can be fit to the
data. The results of the model fit are shown below. Note that there
was no intercept in the model.

                 Summary of Fit
RSquare                        0.951356
RSquare Adj                    0.924331
Root Mean Square Error         0.85375
Mean of Response              13.54
Observations (or Sum Wgts)    15

                 Analysis of Variance

Source   DF  Sum of Squares  Mean Square  F Ratio  
Prob > F
Model     5     2878.27        479.7117   658.141  
1.55e-13
Error     9        6.56          0.7289      
C Total  14     2884.83

                 Parameter Estimates

Term    Estimate  Std Error   t Ratio  Prob>|t|
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X1        11.7     0.603692    19.38   <.0001
X2         9.4     0.603692    15.57   <.0001
X3        16.4     0.603692    27.17   <.0001
X2*X1     19       2.608249     7.28   <.0001
X3*X1     11.4     2.608249     4.37   0.0018
X3*X2     -9.6     2.608249    -3.68   0.0051

Interpretation
of results

Under the parameter estimates section of the output are the
individual t-tests for each of the parameters in the model. The
three cross product terms are significant (X1*X2, X3*X1,
X3*X2), indicating a significant quadratic fit.

The fitted
quadratic
model

The fitted quadratic mixture model is

Conclusions
from the
fitted
quadratic
model

Since b3 > b1 > b2, one can conclude that component 3
(polypropylene) produces yarn with the highest elongation.
Additionally, since b12 and b13 are positive, blending components
1 and 2 or components 1 and 3 produces higher elongation values
than would be expected just by averaging the elongations of the
pure blends. This is an example of 'synergistic' blending effects.
Components 2 and 3 have antagonistic blending effects because
b23 is negative.

Contour plot
of the
predicted
elongation
values

The figure below is the contour plot of the elongation values.
From the plot it can be seen that if maximum elongation is
desired, a blend of components 1 and 3 should be chosen
consisting of about 75% - 80% component 3 and 20% - 25%
component 1.

 

FIGURE 5.11  Contour Plot of Predicted Elongation Values
from {3,2} Simplex-Lattice Design

The analyses in this page can be obtained using R code.

http://www.itl.nist.gov/div898/handbook/pri/section5/pri542.r
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5.5.4.3. Simplex-centroid designs

Definition
of simplex-
centroid
designs

A second type of mixture design is the simplex-centroid design. In
the q-component simplex-centroid design, the number of distinct
points is 2q - 1. These points correspond to q permutations of (1, 0,

0, ..., 0) or q single component blends, the  permutations of

(.5, .5, 0, ..., 0) or all binary mixtures, the  permutations of

(1/3, 1/3, 1/3, 0, ..., 0), ..., and so on, with finally the overall centroid
point (1/q, 1/q, ..., 1/q) or q-nary mixture.

The design points in the Simplex-Centroid design will support the
polynomial

Model
supported
by simplex-
centroid
designs

which is the qth-order mixture polynomial. For q = 2, this is the
quadratic model. For q = 3, this is the special cubic model.

Example of
runs for
three and
four
components

For example, the fifteen runs for a four component (q = 4) simplex-
centroid design are:

(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1), (.5,.5,0,0), (.5,0,.5,0) ...,
(0,0,.5,.5), (1/3,1/3,1/3,0), ...,(0,1/3,1/3,1/3), (1/4,1/4,1/4,1/4).

The runs for a three component simplex-centroid design of degree 2
are

(1,0,0), (0,1,0), (0,0,1), (.5,.5,0), (.5,0,.5), (0,.5,.5), (1/3, 1/3,
1/3).

However, in order to fit a first-order model with q =4, only the five
runs with a "1" and all "1/4's" would be needed. To fit a second-
order model, add the six runs with a ".5" (this also fits a saturated
third-order model, with no degrees of freedom left for error).
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5.5.4.4. Constrained mixture designs

Upper and/or
lower bound
constraints
may be present

In mixture designs when there are constraints on the
component proportions, these are often upper and/or
lower bound constraints of the form Li  xi  Ui, i = 1,
2,..., q, where Li is the lower bound for the i-th
component and Ui the upper bound for the i-th
component. The general form of the constrained mixture
problem is

Typical
additional
constraints

x1 + x2 + ... + xq = 1

Li  xi  Ui,   for i = 1, 2,..., q

with Li  0 and Ui  1.

Example using
only lower
bounds

Consider the following case in which only the lower
bounds in the above equation are imposed, so that the
constrained mixture problem becomes

x1 + x2 + ... + xq = 1

Li  xi  1,   for i = 1, 2,..., q

Assume we have a three-component mixture problem
with constraints

0.3  x1     0.4  x2     0.1  x3

Feasible
mixture region

The feasible mixture space is shown in the figure below.
Note that the existence of lower bounds does not affect
the shape of the mixture region, it is still a simplex
region. In general, this will always be the case if only
lower bounds are imposed on any of the component
proportions.

Diagram
showing the
feasible
mixture space
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FIGURE 5.12  The Feasible Mixture Space (Shaded
Region) for Three Components with Lower Bounds

A simple
transformation
helps in design
construction
and analysis

Since the new region of the experiment is still a simplex,
it is possible to define a new set of components that take
on the values from 0 to 1 over the feasible region. This
will make the design construction and the model fitting
easier over the constrained region of interest. These new
components ( ) are called pseudo components and are
defined using the following formula

Formula for
pseudo
components

with

denoting the sum of all the lower bounds.

Computation of
the pseudo
components for
the example

In the three component example above, the pseudo
components are

Constructing
the design in
the pseudo
components

Constructing a design in the pseudo components is
accomplished by specifying the design points in terms of
the  and then converting them to the original
component settings using
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xi = Li + (1 - L)

Select
appropriate
design

In terms of the pseudo components, the experimenter has
the choice of selecting a Simplex-Lattice or a Simplex-
Centroid design, depending on the objectives of the
experiment.

Simplex-
centroid design
example (after
transformation)

Suppose, we decided to use a Simplex-centroid design for
the three-component experiment. The table below shows
the design points in the pseudo components, along with
the corresponding setting for the original components.

Table showing
the design
points in both
the pseudo
components
and the
original
components

TABLE 5.5  Pseudo Component Settings and
Original Component Settings, Three-
Component Simplex-Centroid Design

Pseudo Components   Original Components
X1 X2 X3  

1 0 0   0.5 0.4 0.1
0 1 0   0.3 0.6 0.1
0 0 1   0.3 0.4 0.3

0.5 0.5 0   0.4 0.5 0.1
0.5 0 0.5   0.4 0.4 0.2
0 0.5 0.5   0.3 0.5 0.2

0.3333 0.3333 0.3333   0.3667 0.4667 0.1666

Use of pseudo
components
(after
transformation)
is
recommended

It is recommended that the pseudo components be used to
fit the mixture model. This is due to the fact that the
constrained design space will usually have relatively high
levels of multicollinearity among the predictors. Once the
final predictive model for the pseudo components has
been determined, the equation in terms of the original
components can be determined by substituting the
relationship between xi and .

D-optimal
designs can
also be used

Computer-aided designs (D-optimal, for example) can be
used to select points for a mixture design in a constrained
region. See Myers and Montgomery (1995) for more
details on using D-optimal designs in mixture
experiments.

Extreme vertice
designs anre
another option

Note: There are other mixture designs that cover only a
sub-portion or smaller space within the simplex. These
types of mixture designs (not covered here) are referred to
as extreme vertices designs. (See chapter 11 of Myers and
Montgomery (1995) or Cornell (1990).
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5.5.4.5. Treating mixture and process variables
together

Options for
setting up
experiments
for
processes
that have
both
standard
process
variables
and mixture
variables

Consider a mixture experiment consisting of q mixture
components and k process variables. First consider the case in
which each of the process variables to be studied has only
two levels. Orthogonally scaled factor settings for the process
variables will be used (i.e., -1 is the low level, 1 is the high
level, and 0 is the center point). Also assume that each of the
components xi can range from 0 to 1. The region of interest
then for the process variables is a k-dimensional hypercube.

The region of interest for the mixture components is the (q-
1)-dimensional simplex. The combined region of interest for
both the process variables and the mixture components is of
dimensionality q - 1 + k.

Example of
three
mixture
components
and three
process
variables

For example, consider three mixture components (x1, x2, x3)
with three process variables (z1, z2, z3). The dimensionality
of the region is 5. The combined region of interest for the
three mixture components and three process variables is
shown in the two figures below. The complete space of the
design can be viewed in either of two ways. The first diagram
shows the idea of a full factorial at each vertex of the three-
component simplex region. The second diagram shows the
idea of a three-component simplex region at each point in the
full factorial. In either case, the same overall process space is
being investigated.

Diagram
showing
simplex
region of a
3-
component
mixture
with a 2^3
full
factorial at
each pure
mixture run
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FIGURE 5.13  Simplex Region of a Three Component
Mixture with a 23 Full Factorial at Each Pure Mixture

Run

Diagram
showing
process
space of a
23 full
factorial
with the 3-
component
simplex
region at
each point
of the full
factorial

 
FIGURE 5.14  Process Space of a 23 Full Factorial with
the Three Component Simplex Region at Each Point of

the Full Factorial

Additional
options
available

As can be seen from the above diagrams, setting up the
design configurations in the process variables and mixture
components involves setting up either a mixture design at
each point of a configuration in the process variables, or
similarly, creating a factorial arrangement in the process
variables at each point of composition in the mixture
components. For the example depicted in the above two
diagrams, this is not the only design available for this number
of mixture components with the specified number of process
variables. Another option might be to run a fractional
factorial design at each vertex or point of the mixture design,
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with the same fraction run at each mixture design point. Still
another option might be to run a fractional factorial design at
each vertex or point of the mixture design, with a different
fraction run at each mixture design point.

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/
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5.5.5. How can I account for nested variation
(restricted randomization)?

Nested data
structures are
common and
lead to many
sources of
variability

Many processes have more than one source of variation in
them. In order to reduce variation in processes, these multiple
sources must be understood, and that often leads to the
concept of nested or hierarchical data structures. For
example, in the semiconductor industry, a batch process may
operate on several wafers at a time (wafers are said to be
nested within batch). Understanding the input variables that
control variation among those wafers, as well as
understanding the variation across each wafer in a run, is an
important part of the strategy for minimizing the total
variation in the system.

Example of
nested data

Figure 5.15 below represents a batch process that uses 7
monitor wafers in each run. The plan further calls for
measuring response on each wafer at each of 9 sites. The
organization of the sampling plan has a hierarchical or nested
structure: the batch run is the topmost level, the second level
is an individual wafer, and the third level is the site on the
wafer.

The total amount of data generated per batch run will be 7*9
= 63 data points. One approach to analyzing these data would
be to compute the mean of all these points as well as their
standard deviation and use those results as responses for each
run.

Diagram
illustrating
the example

FIGURE 5.15  Hierarchical Data Structure Example

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/pri/pri.htm
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Sites nested
within wafers
and wafers
are nested
within runs

Analyzing the data as suggested above is not absolutely
incorrect, but doing so loses information that one might
otherwise obtain. For example, site 1 on wafer 1 is physically
different from site 1 on wafer 2 or on any other wafer. The
same is true for any of the sites on any of the wafers.
Similarly, wafer 1 in run 1 is physically different from wafer
1 in run 2, and so on. To describe this situation one says that
sites are nested within wafers while wafers are nested within
runs.

Nesting places
restrictions on
the
randomization

As a consequence of this nesting, there are restrictions on the
randomization that can occur in the experiment. This kind of
restricted randomization always produces nested sources of
variation. Examples of nested variation or restricted
randomization discussed on this page are split-plot and strip-
plot designs.

Wafer-to-
wafer and
site-to-site
variations are
often "noise
factors" in an
experiment

The objective of an experiment with the type of sampling
plan described in Figure 5.15 is generally to reduce the
variability due to sites on the wafers and wafers within runs
(or batches) in the process. The sites on the wafers and the
wafers within a batch become sources of unwanted variation
and an investigator seeks to make the system robust to those
sources -- in other words, one could treat wafers and sites as
noise factors in such an experiment.

Treating
wafers and
sites as
random
effects allows
calculation of
variance
estimates

Because the wafers and the sites represent unwanted sources
of variation and because one of the objectives is to reduce the
process sensitivity to these sources of variation, treating
wafers and sites as random effects in the analysis of the data
is a reasonable approach. In other words, nested variation is
often another way of saying nested random effects or nested
sources of noise. If the factors "wafers" and "sites", are
treated as random effects, then it is possible to estimate a
variance component due to each source of variation through
analysis of variance techniques. Once estimates of the
variance components have been obtained, an investigator is
then able to determine the largest source of variation in the
process under experimentation, and also determine the
magnitudes of the other sources of variation in relation to the
largest source.

Nested
random
effects same
as nested
variation

If an experiment or process has nested variation, the
experiment or process has multiple sources of random error
that affect its output. Having nested random effects in a
model is the same thing as having nested variation in a
model.

 Split-Plot Designs

Split-plot
designs often
arise when

Split-plot designs result when a particular type of restricted
randomization has occurred during the experiment. A simple
factorial experiment can result in a split-plot type of design
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some factors
are "hard to
vary" or when
batch
processes are
run

because of the way the experiment was actually executed.

In many industrial experiments, three situations often occur:

1. some of the factors of interest may be 'hard to vary'
while the remaining factors are easy to vary. As a
result, the order in which the treatment combinations
for the experiment are run is determined by the
ordering of these 'hard-to-vary' factors

2. experimental units are processed together as a batch
for one or more of the factors in a particular treatment
combination

3. experimental units are processed individually, one
right after the other, for the same treatment
combination without resetting the factor settings for
that treatment combination.

A split-plot
experiment
example

An experiment run under one of the above three situations
usually results in a split-plot type of design. Consider an
experiment to examine electroplating of aluminum (non-
aqueous) on copper strips. The three factors of interest are:
current (A); solution temperature (T); and the solution
concentration of the plating agent (S). Plating rate is the
measured response. There are a total of 16 copper strips
available for the experiment. The treatment combinations to
be run (orthogonally scaled) are listed below in standard
order (i.e., they have not been randomized):

Table
showing the
design matrix

TABLE 5.6  Orthogonally Scaled
Treatment Combinations from a 23 Full

Factorial
Current Temperature Concentration

-1 -1 -1
-1 -1 +1
-1 +1 -1
-1 +1 +1
+1 -1 -1
+1 -1 +1
+1 +1 -1
+1 +1 +1

Concentration
is hard to
vary, so
minimize the
number of
times it is
changed

Consider running the experiment under the first condition
listed above, with the factor solution concentration of the
plating agent (S) being hard to vary. Since this factor is hard
to vary, the experimenter would like to randomize the
treatment combinations so that the solution concentration
factor has a minimal number of changes. In other words, the
randomization of the treatment runs is restricted somewhat by
the level of the solution concentration factor.
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Randomize so
that all runs
for one level
of
concentration
are run first

As a result, the treatment combinations might be randomized
such that those treatment runs corresponding to one level of
the concentration (-1) are run first. Each copper strip is
individually plated, meaning only one strip at a time is
placed in the solution for a given treatment combination.
Once the four runs at the low level of solution concentration
have been completed, the solution is changed to the high
level of concentration (1), and the remaining four runs of the
experiment are performed (where again, each strip is
individually plated).

Performing
replications

Once one complete replicate of the experiment has been
completed, a second replicate is performed with a set of four
copper strips processed for a given level of solution
concentration before changing the concentration and
processing the remaining four strips. Note that the levels for
the remaining two factors can still be randomized. In
addition, the level of concentration that is run first in the
replication runs can also be randomized.

Whole plot
and subplot
factors

Running the experiment in this way results in a split-plot
design. Solution concentration is known as the whole plot
factor and the subplot factors are the current and the solution
temperature.

Definition of
experimental
units and
whole plot
and subplot
factors for
this
experiment

A split-plot design has more than one size experimental unit.
In this experiment, one size experimental unit is an individual
copper strip. The treatments or factors that were applied to
the individual strips are solution temperature and current
(these factors were changed each time a new strip was placed
in the solution). The other or larger size experimental unit is
a set of four copper strips. The treatment or factor that was
applied to a set of four strips is solution concentration (this
factor was changed after four strips were processed). The
smaller size experimental unit is referred to as the subplot
experimental unit, while the larger experimental unit is
referred to as the whole plot unit.

Each size of
experimental
unit leads to
an error term
in the model
for the
experiment

There are 16 subplot experimental units for this experiment.
Solution temperature and current are the subplot factors in
this experiment. There are four whole-plot experimental units
in this experiment. Solution concentration is the whole-plot
factor in this experiment. Since there are two sizes of
experimental units, there are two error terms in the model,
one that corresponds to the whole-plot error or whole-plot
experimental unit and one that corresponds to the subplot
error or subplot experimental unit.

Partial
ANOVA table

The ANOVA table for this experiment would look, in part, as
follows:

Source                                   DF

Replication                               1



5.5.5. How can I account for nested variation (restricted randomization)?

http://www.itl.nist.gov/div898/handbook/pri/section5/pri55.htm[6/27/2012 2:25:07 PM]

Concentration                             1
Error (Whole plot) = Rep*Conc             1
Temperature                               1
Rep*Temp                                  1
Current                                   1
Rep*Current                               1
Temp*Conc                                 1
Rep*Temp*Conc                             1
Temp*Current                              1
Rep*Temp*Current                          1
Current*Conc                              1
Rep*Current*Conc                          1
Temp*Current*Conc                         1
Error (Subplot) =Rep*Temp*Current*Conc    1

The first three sources are from the whole-plot level, while
the next 12 are from the subplot portion. A normal
probability plot of the 12 subplot term estimates could be
used to look for significant terms.

A batch
process leads
to a different
experiment -
also a strip-
plot

Consider running the experiment under the second condition
listed above (i.e., a batch process) for which four copper
strips are placed in the solution at one time. A specified level
of current can be applied to an individual strip within the
solution. The same 16 treatment combinations (a replicated
23 factorial) are run as were run under the first scenario.
However, the way in which the experiment is performed
would be different. There are four treatment combinations of
solution temperature and solution concentration: (-1, -1), (-1,
1), (1, -1), (1, 1). The experimenter randomly chooses one of
these four treatments to set up first. Four copper strips are
placed in the solution. Two of the four strips are randomly
assigned to the low current level. The remaining two strips
are assigned to the high current level. The plating is
performed and the response is measured. A second treatment
combination of temperature and concentration is chosen and
the same procedure is followed. This is done for all four
temperature / concentration combinations.

This also a
split-plot
design

Running the experiment in this way also results in a split-plot
design in which the whole-plot factors are now solution
concentration and solution temperature, and the subplot
factor is current.

Defining
experimental
units

In this experiment, one size experimental unit is again an
individual copper strip. The treatment or factor that was
applied to the individual strips is current (this factor was
changed each time for a different strip within the solution).
The other or larger size experimental unit is again a set of
four copper strips. The treatments or factors that were applied
to a set of four strips are solution concentration and solution
temperature (these factors were changed after four strips
were processed).

Subplot
experimental
unit

The smaller size experimental unit is again referred to as the
subplot experimental unit. There are 16 subplot experimental
units for this experiment. Current is the subplot factor in this
experiment.

http://www.itl.nist.gov/div898/handbook/eda/section3/normprpl.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/normprpl.htm
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Whole-plot
experimental
unit

The larger-size experimental unit is the whole-plot
experimental unit. There are four whole plot experimental
units in this experiment and solution concentration and
solution temperature are the whole plot factors in this
experiment.

Two error
terms in the
model

There are two sizes of experimental units and there are two
error terms in the model: one that corresponds to the whole-
plot error or whole-plot experimental unit, and one that
corresponds to the subplot error or subplot experimental unit.

Partial
ANOVA table

The ANOVA for this experiment looks, in part, as follows:

Source                             DF

Concentration                       1
Temperature                         1
Error (Whole plot) = Conc*Temp      1

Current                             1
Conc*Current                        1
Temp*Current                        1
Conc*Temp*Current                   1
Error (Subplot)                     8 

The first three sources come from the whole-plot level and
the next 5 come from the subplot level. Since there are 8
degrees of freedom for the subplot error term, this MSE can
be used to test each effect that involves current.

Running the
experiment
under the
third scenario

Consider running the experiment under the third scenario
listed above. There is only one copper strip in the solution at
one time. However, two strips, one at the low current and
one at the high current, are processed one right after the
other under the same temperature and concentration setting.
Once two strips have been processed, the concentration is
changed and the temperature is reset to another combination.
Two strips are again processed, one after the other, under this
temperature and concentration setting. This process is
continued until all 16 copper strips have been processed.

This also a
split-plot
design

Running the experiment in this way also results in a split-plot
design in which the whole-plot factors are again solution
concentration and solution temperature and the subplot factor
is current. In this experiment, one size experimental unit is an
individual copper strip. The treatment or factor that was
applied to the individual strips is current (this factor was
changed each time for a different strip within the solution).
The other or larger-size experimental unit is a set of two
copper strips. The treatments or factors that were applied to a
pair of two strips are solution concentration and solution
temperature (these factors were changed after two strips were
processed). The smaller size experimental unit is referred to
as the subplot experimental unit.

Current is the There are 16 subplot experimental units for this experiment.
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subplot factor
and
temperature
and
concentration
are the whole
plot factors

Current is the subplot factor in the experiment. There are
eight whole-plot experimental units in this experiment.
Solution concentration and solution temperature are the
whole plot factors. There are two error terms in the model,
one that corresponds to the whole-plot error or whole-plot
experimental unit, and one that corresponds to the subplot
error or subplot experimental unit.

Partial
ANOVA table

The ANOVA for this (third) approach is, in part, as follows:

Source                          DF

Concentration                  1
Temperature                    1
Conc*Temp                      1
Error (Whole plot)             4

Current                        1
Conc*Current                   1
Temp*Current                   1
Conc*Temp*Current              1
Error (Subplot)                4

The first four terms come from the whole-plot analysis and
the next 5 terms come from the subplot analysis. Note that
we have separate error terms for both the whole plot and the
subplot effects, each based on 4 degrees of freedom.

Primary
distinction of
split-plot
designs is that
they have
more than one
experimental
unit size (and
therefore
more than one
error term)

As can be seen from these three scenarios, one of the major
differences in split-plot designs versus simple factorial
designs is the number of different sizes of experimental units
in the experiment. Split-plot designs have more than one size
experimental unit, i.e., more than one error term. Since these
designs involve different sizes of experimental units and
different variances, the standard errors of the various mean
comparisons involve one or more of the variances.
Specifying the appropriate model for a split-plot design
involves being able to identify each size of experimental unit.
The way an experimental unit is defined relative to the design
structure (for example, a completely randomized design
versus a randomized complete block design) and the
treatment structure (for example, a full 23 factorial, a
resolution V half fraction, a two-way treatment structure with
a control group, etc.). As a result of having greater than one
size experimental unit, the appropriate model used to analyze
split-plot designs is a mixed model.

Using wrong
model can
lead to invalid
conclusions

If the data from an experiment are analyzed with only one
error term used in the model, misleading and invalid
conclusions can be drawn from the results. For a more
detailed discussion of these designs and the appropriate
analysis procedures, see Milliken, Analysis of Messy Data,
Vol. 1.

 Strip-Plot Designs

Strip-plot Similar to a split-plot design, a strip-plot design can result
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desgins often
result from
experiments
that are
conducted
over two or
more process
steps

when some type of restricted randomization has occurred
during the experiment. A simple factorial design can result in
a strip-plot design depending on how the experiment was
conducted. Strip-plot designs often result from experiments
that are conducted over two or more process steps in which
each process step is a batch process, i.e., completing each
treatment combination of the experiment requires more than
one processing step with experimental units processed
together at each process step. As in the split-plot design,
strip-plot designs result when the randomization in the
experiment has been restricted in some way. As a result of
the restricted randomization that occurs in strip-plot designs,
there are multiple sizes of experimental units. Therefore,
there are different error terms or different error variances that
are used to test the factors of interest in the design. A
traditional strip-plot design has three sizes of experimental
units.

Example with
two steps and
three factor
variables

Consider the following example from the semiconductor
industry. An experiment requires an implant step and an
anneal step. At both the anneal and the implant steps there are
three factors to test. The implant process accommodates 12
wafers in a batch, and implanting a single wafer under a
specified set of conditions is not practical nor does doing so
represent economical use of the implanter. The anneal
furnace can handle up to 100 wafers.

Explanation
of the
diagram that
illustrates the
design
structure of
the example

The figure below shows the design structure for how the
experiment was run. The rectangles at the top of the diagram
represent the settings for a two-level factorial design for the
three factors in the implant step (A, B, C). Similarly, the
rectangles at the lower left of the diagram represent a two-
level factorial design for the three factors in the anneal step
(D, E, F).

The arrows connecting each set of rectangles to the grid in
the center of the diagram represent a randomization of trials
in the experiment. The horizontal elements in the grid
represent the experimental units for the anneal factors. The
vertical elements in the grid represent the experimental units
for the implant factors. The intersection of the vertical and
horizontal elements represents the experimental units for the
interaction effects between the implant factors and the anneal
factors. Therefore, this experiment contains three sizes of
experimental units, each of which has a unique error term for
estimating the significance of effects.

Diagram of
the split-plot
design
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FIGURE 5.16  Diagram of a strip-plot design involving
two process steps with three factors in each step

Physical
meaning of
the
experimental
units

To put actual physical meaning to each of the experimental
units in the above example, consider each cell in the grid as
an individual wafer. A batch of eight wafers goes through the
implant step first. According to the figure, treatment
combination #3 in factors A, B, and C is the first implant
treatment run. This implant treatment is applied to all eight
wafers at once. Once the first implant treatment is finished,
another set of eight wafers is implanted with treatment
combination #5 of factors A, B, and C. This continues until
the last batch of eight wafers is implanted with treatment
combination #6 of factors A, B, and C. Once all of the eight
treatment combinations of the implant factors have been run,
the anneal step starts. The first anneal treatment combination
to be run is treatment combination #5 of factors D, E, and F.
This anneal treatment combination is applied to a set of eight
wafers, with each of these eight wafers coming from one of
the eight implant treatment combinations. After this first
batch of wafers has been annealed, the second anneal
treatment is applied to a second batch of eight wafers, with
these eight wafers coming from one each of the eight implant
treatment combinations. This is continued until the last batch
of eight wafers has been implanted with a particular
combination of factors D, E, and F.

Three sizes of Running the experiment in this way results in a strip-plot
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experimental
units

design with three sizes of experimental units. A set of eight
wafers that are implanted together is the experimental unit for
the implant factors A, B, and C and for all of their
interactions. There are eight experimental units for the
implant factors. A different set of eight wafers are annealed
together. This different set of eight wafers is the second size
experimental unit and is the experimental unit for the anneal
factors D, E, and F and for all of their interactions. The third
size experimental unit is a single wafer. This is the
experimental unit for all of the interaction effects between the
implant factors and the anneal factors.

Replication Actually, the above figure of the strip-plot design represents
one block or one replicate of this experiment. If the
experiment contains no replication and the model for the
implant contains only the main effects and two-factor
interactions, the three-factor interaction term A*B*C (1
degree of freedom) provides the error term for the estimation
of effects within the implant experimental unit. Invoking a
similar model for the anneal experimental unit produces the
three-factor interaction term D*E*F for the error term (1
degree of freedom) for effects within the anneal experimental
unit.

Further
information

For more details about strip-plot designs, see Milliken and
Johnson (1987) or Miller (1997).
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Taguchi
designs are
related to
fractional
factorial
designs -
many of which
are large
screening
designs

Genichi Taguchi, a Japanese engineer, proposed several approaches to
experimental designs that are sometimes called "Taguchi Methods."
These methods utilize two-, three-, and mixed-level fractional factorial
designs. Large screening designs seem to be particularly favored by
Taguchi adherents.

Taguchi refers to experimental design as "off-line quality control"
because it is a method of ensuring good performance in the design stage
of products or processes. Some experimental designs, however, such as
when used in evolutionary operation, can be used on-line while the
process is running. He has also published a booklet of design
nomograms ("Orthogonal Arrays and Linear Graphs," 1987, American
Supplier Institute) which may be used as a design guide, similar to the
table of fractional factorial designs given previously in Section 5.3.
Some of the well-known Taguchi orthogonal arrays (L9, L18, L27 and
L36) were given earlier when three-level, mixed-level and fractional
factorial designs were discussed.

If these were the only aspects of "Taguchi Designs," there would be
little additional reason to consider them over and above our previous
discussion on factorials. "Taguchi" designs are similar to our familiar
fractional factorial designs. However, Taguchi has introduced several
noteworthy new ways of conceptualizing an experiment that are very
valuable, especially in product development and industrial engineering,
and we will look at two of his main ideas, namely Parameter Design and
Tolerance Design.

Parameter Design

Taguchi
advocated
using inner
and outer
array designs
to take into
account noise
factors (outer)
and design
factors (inner)

The aim here is to make a product or process less variable (more robust)
in the face of variation over which we have little or no control. A simple
fictitious example might be that of the starter motor of an automobile
that has to perform reliably in the face of variation in ambient
temperature and varying states of battery weakness. The engineer has
control over, say, number of armature turns, gauge of armature wire, and
ferric content of magnet alloy.

Conventionally, one can view this as an experiment in five factors.
Taguchi has pointed out the usefulness of viewing it as a set-up of three
inner array factors (turns, gauge, ferric %) over which we have design
control, plus an outer array of factors over which we have control only
in the laboratory (temperature, battery voltage).

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/pri/pri.htm


5.5.6. What are Taguchi designs?

http://www.itl.nist.gov/div898/handbook/pri/section5/pri56.htm[6/27/2012 2:25:09 PM]

Pictorial
representation
of Taguchi
designs

Pictorially, we can view this design as being a conventional design in
the inner array factors (compare Figure 3.1) with the addition of a
"small" outer array factorial design at each corner of the "inner array"
box.

Let I1 = "turns," I2 = "gauge," I3 = "ferric %," E1 = "temperature," and
E2 = "voltage." Then we construct a 23 design "box" for the I's, and at
each of the eight corners so constructed, we place a 22 design "box" for
the E's, as is shown in Figure 5.17.

FIGURE 5.17  Inner 23 and outer 22 arrays for robust design 
with `I' the inner array, `E' the outer array.

An example of
an inner and
outer array
designed
experiment

We now have a total of 8x4 = 32 experimental settings, or runs. These
are set out in Table 5.7, in which the 23 design in the I's is given in
standard order on the left of the table and the 22 design in the E's is
written out sideways along the top. Note that the experiment would not
be run in the standard order but should, as always, have its runs
randomized. The output measured is the percent of (theoretical)
maximum torque.

Table showing
the Taguchi
design and the
responses
from the
experiment

TABLE 5.7  Design table, in standard order(s) for the
parameter design of Figure 5.9

Run
Number   1 2 3 4

   

  I1 I2 I3
E1
E2

-1
-1

+1
-1

-1
+1

+1
+1

Output
MEAN

Output
STD. DEV
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1 -1 -1 -1   75 86 67 98 81.5 13.5
2 +1 -1 -1   87 78 56 91 78.0 15.6
3 -1 +1 -1   77 89 78  8 63.0 37.1
4 +1 +1 -1   95 65 77 95 83.0 14.7
5 -1 -1 +1   78 78 59 94 77.3 14.3
6 +1 -1 +1   56 79 67 94 74.0 16.3
7 -1 +1 +1   79 80 66 85 77.5  8.1
8 +1 +1 +1   71 80 73 95 79.8 10.9

Interpretation
of the table

Note that there are four outputs measured on each row. These
correspond to the four `outer array' design points at each corner of the
`outer array' box. As there are eight corners of the outer array box, there
are eight rows in all.

Each row yields a mean and standard deviation % of maximum torque.
Ideally there would be one row that had both the highest average torque
and the lowest standard deviation (variability). Row 4 has the highest
torque and row 7 has the lowest variability, so we are forced to
compromise. We can't simply `pick the winner.'

Use contour
plots to see
inside the box

One might also observe that all the outcomes occur at the corners of the
design `box', which means that we cannot see `inside' the box. An
optimum point might occur within the box, and we can search for such a
point using contour plots. Contour plots were illustrated in the example
of response surface design analysis given in Section 4.

Fractional
factorials

Note that we could have used fractional factorials for either the inner or
outer array designs, or for both.

Tolerance Design

Taguchi also
advocated
tolerance
studies to
determine,
based on a
loss or cost
function,
which
variables have
critical
tolerances
that need to
be tightened

This section deals with the problem of how, and when, to specify
tightened tolerances for a product or a process so that quality and
performance/productivity are enhanced. Every product or process has a
number—perhaps a large number—of components. We explain here
how to identify the critical components to target when tolerances have to
be tightened.

It is a natural impulse to believe that the quality and performance of any
item can easily be improved by merely tightening up on some or all of
its tolerance requirements. By this we mean that if the old version of the
item specified, say, machining to ± 1 micron, we naturally believe that
we can obtain better performance by specifying machining to ± ½
micron.

This can become expensive, however, and is often not a guarantee of
much better performance. One has merely to witness the high initial and
maintenance costs of such tight-tolerance-level items as space vehicles,
expensive automobiles, etc. to realize that tolerance design—the
selection of critical tolerances and the re-specification of those critical

http://www.itl.nist.gov/div898/handbook/pri/section4/pri453.htm
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tolerances—is not a task to be undertaken without careful thought. In
fact, it is recommended that only after extensive parameter design
studies have been completed should tolerance design be performed as a
last resort to improve quality and productivity.

Example

Example:
measurement
of electronic
component
made up of
two
components

Customers for an electronic component complained to their supplier that
the measurement reported by the supplier on the as-delivered items
appeared to be imprecise. The supplier undertook to investigate the
matter.

The supplier's engineers reported that the measurement in question was
made up of two components, which we label x and y, and the final
measurement M was reported according to the standard formula

M = K x/y

with `K' a known physical constant. Components x and y were measured
separately in the laboratory using two different techniques, and the
results combined by software to produce M. Buying new measurement
devices for both components would be prohibitively expensive, and it
was not even known by how much the x or y component tolerances
should be improved to produce the desired improvement in the precision
of M.

Taylor series
expansion

Assume that in a measurement of a standard item the `true' value of x is
xo and for y it is yo. Let f(x, y) = M; then the Taylor Series expansion
for f(x, y) is

with all the partial derivatives, `df/dx ', etc., evaluated at (xo, yo).

Apply formula
to M

Applying this formula to M(x, y) = Kx/y, we obtain

It is assumed known from experience that the measurements of x show a
distribution with an average value xo, and with a standard deviation x =
0.003 x-units.

Assume
distribution of
x is normal

In addition, we assume that the distribution of x is normal. Since 99.74%
of a normal distribution's range is covered by 6 , we take 3 x = 0.009 x-
units to be the existing tolerance Tx for measurements on x. That is, Tx =
± 0.009 x-units is the `play' around xo that we expect from the existing
measurement system.
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Assume
distribution of
y is normal

It is also assumed known that the y measurements show a normal
distribution around yo, with standard deviation y = 0.004 y-units. Thus
Ty = ± 3 y = ±0.012.

Worst case
values

Now ±Tx and ±Ty may be thought of as `worst case' values for (x-xo)
and (y-yo). Substituting Tx for (x-xo) and Ty for (y-yo) in the expanded
formula for M(x, y), we have

Drop some
terms

The  and TxTy terms, and all terms of higher order, are going to be at
least an order of magnitude smaller than terms in Tx and in Ty, and for
this reason we drop them, so that

Worst case
Euclidean
distance

Thus, a `worst case' Euclidean distance  of M(x, y) from its ideal value
Kxo/yo is (approximately)

This shows the relative contributions of the components to the variation
in the measurement.

Economic
decision

As yo is a known quantity and reduction in Tx and in Ty each carries its
own price tag, it becomes an economic decision whether one should
spend resources to reduce Tx or Ty, or both.

Simulation an
alternative to
Taylor series
approximation

In this example, we have used a Taylor series approximation to obtain a
simple expression that highlights the benefit of Tx and Ty. Alternatively,
one might simulate values of M = K*x/y, given a specified (Tx,Ty) and
(x0,y0), and then summarize the results with a model for the variability
of M as a function of (Tx,Ty).

Functional
form may not
be available

In other applications, no functional form is available and one must use
experimentation to empirically determine the optimal tolerance design.
See Bisgaard and Steinberg (1997).

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/
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5.5.7. What are John's 3/4 fractional factorial designs?

John's
designs
require only
3/4 of the
number of
runs a full
2n factorial
would
require

Three-quarter (¾) designs are two-level factorial designs that require
only three-quarters of the number of runs of the `original' design. For
example, instead of making all of the sixteen runs required for a 24

fractional factorial design, we need only run 12 of them. Such designs
were invented by Professor Peter John of the University of Texas, and
are sometimes called`John's ¾ designs.'

Three-quarter fractional factorial designs can be used to save on
resources in two different contexts. In one scenario, we may wish to
perform additional runs after having completed a fractional factorial, so
as to de-alias certain specific interaction patterns. Second , we may wish
to use a ¾ design to begin with and thus save on 25% of the run
requirement of a regular design.

Semifolding Example

Four
experimental
factors

We have four experimental factors to investigate, namely X1, X2, X3,
and X4, and we have designed and run a 24-1 fractional factorial design.
Such a design has eight runs, or rows, if we don't count center point runs
(or replications).

Resolution
IV design

The 24-1 design is of resolution IV, which means that main effects are
confounded with, at worst, three-factor interactions, and two-factor
interactions are confounded with other two factor interactions.

Design
matrix

The design matrix, in standard order, is shown in Table 5.8 along with all
the two-factor interaction columns. Note that the column for X4 is
constructed by multiplying columns for X1, X2, and X3 together (i.e.,
4=123).

Table 5.8  The 24-1 design plus 2-factor interaction columns shown in
standard order. Note that 4=123.

Run     Two-Factor Interaction Columns
Number X1 X2 X3 X4   X1*X2 X1*X3 X1*X4 X2*X3 X2*X4 X3*X4

   
1 -1 -1 -1 -1   +1 +1 +1 +1 +1 +1
2 +1 -1 -1 +1   -1 -1 +1 +1 -1 -1
3 -1 +1 -1 +1   -1 +1 -1 -1 +1 -1
4 +1 +1 -1 -1   +1 -1 -1 -1 -1 +1
5 -1 -1 +1 +1   +1 -1 -1 -1 -1 +1

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/pri/pri.htm
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6 +1 -1 +1 -1   -1 +1 -1 -1 +1 -1
7 -1 +1 +1 -1   -1 -1 +1 +1 -1 -1
8 +1 +1 +1 +1   +1 +1 +1 +1 +1 +1

Confounding
of two-
factor
interactions

Note also that 12=34, 13=24, and 14=23. These follow from the
generating relationship 4=123 and tells us that we cannot estimate any
two-factor interaction that is free of some other two-factor alias.

Estimating
two-factor
interactions
free of
confounding

Suppose that we became interested in estimating some or all of the two-
factor interactions that involved factor X1; that is, we want to estimate
one or more of the interactions 12, 13, and 14 free of two-factor
confounding.

One way of doing this is to run the `other half' of the design—an
additional eight rows formed from the relationship 4 = -123. Putting these
two `halves' together—the original one and the new one, we'd obtain a 24

design in sixteen runs. Eight of these runs would already have been run,
so all we'd need to do is run the remaining half.

Alternative
method
requiring
fewer runs

There is a way, however, to obtain what we want while adding only four
more runs. These runs are selected in the following manner: take the four
rows of Table 5.8 that have `-1' in the `X1' column and switch the `-' sign
under X1 to `+' to obtain the four-row table of Table 5.9. This is called a
foldover on X1, choosing the subset of runs with X1 = -1. Note that this
choice of 4 runs is not unique, and that if the initial design suggested that
X1 = -1 were a desirable level, we would have chosen to experiment at
the other four treatment combinations that were omitted from the initial
design.

Table of the
additional
design
points

TABLE 5.9  Foldover on `X1' of the
24-1 design of Table 5.5

Run
Number X1 X2 X3 X4

 9 +1 -1 -1 -1
10 +1 +1 -1 +1
11 +1 -1 +1 +1
12 +1 +1 +1 -1

Table with
new design
points added
to the
original
design
points

Add this new block of rows to the bottom of Table 5.8 to obtain a design
in twelve rows. We show this in Table 5.10 and also add in the two-
factor interactions as well for illustration (not needed when we do the
runs).

TABLE 5.10  A twelve-run design based on the 24-1 also showing all
two-factor interaction columns

Run     Two-Factor Interaction Columns
Number X1 X2 X3 X4   X1*X2 X1*X3 X1*X4 X2*X3 X2*X4 X3*X4



5.5.7. What are John's 3/4 fractional factorial designs?

http://www.itl.nist.gov/div898/handbook/pri/section5/pri57.htm[6/27/2012 2:25:11 PM]

   
1 -1 -1 -1 -1   +1 +1 +1 +1 +1 +1
2 +1 -1 -1 +1   -1 -1 +1 +1 -1 -1
3 -1 +1 -1 +1   -1 +1 -1 -1 +1 -1
4 +1 +1 -1 -1   +1 -1 -1 -1 -1 +1
5 -1 -1 +1 +1   +1 -1 -1 -1 -1 +1
6 +1 -1 +1 -1   -1 +1 -1 -1 +1 -1
7 -1 +1 +1 -1   -1 -1 +1 +1 -1 -1
8 +1 +1 +1 +1   +1 +1 +1 +1 +1 +1
1 +1 -1 -1 -1   -1 -1 -1 +1 +1 +1

10 +1 +1 -1 +1   +1 -1 +1 -1 +1 -1
11 +1 -1 +1 +1   -1 +1 +1 -1 -1 +1
12 +1 +1 +1 -1   +1 +1 -1 +1 -1 -1

Design is
resolution V

Examine the two-factor interaction columns and convince yourself that
no two are alike. This means that no two-factor interaction involving X1
is aliased with any other two-factor interaction. Thus, the design is
resolution V, which is not always the case when constructing these types
of ¾ foldover designs.

Estimating
X1 two-
factor
interactions

What we now have is a design with 12 runs, with which we can estimate
all the two-factor interactions involving X1 free of aliasing with any
other two-factor interaction. It is called a ¾ design because it has ¾ the
number of rows of the next regular factorial design (a 24).

Standard
errors of
effect
estimates

If one fits a model with an intercept, a block effect, the four main effects
and the six two-factor interactions, then each coefficient has a standard
error of /81/2 - instead of /121/2 - because the design is not orthogonal
and each estimate is correlated with two other estimates. Note that no
degrees of freedom exists for estimating . Instead, one should plot the
10 effect estimates using a normal (or half-normal) effects plot to judge
which effects to declare significant.

Further
information

For more details on ¾ fractions obtained by adding a follow-up design
that is half the size of the original design, see Mee and Peralta (2000).

Next we consider an example in which a ¾ fraction arises when the (¾)
2k-p design is planned from the start because it is an efficient design that
allows estimation of a sufficient number of effects.

A 48-Run 3/4 Design Example

Estimate all
main effects
and two-
factor
interactions

Suppose we wish to run an experiment for k=8 factors, with which we
want to estimate all main effects and two-factor interactions. We could
use the  design described in the summary table of fractional factorial
designs, but this would require a 64-run experiment to estimate the 1 + 8
+ 28 = 37 desired coefficients. In this context, and especially for larger
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for 8 factors resolution V designs, ¾ of the design points will generally suffice.

Construction
of the 48-
run design

The 48 run-design is constructed as follows: start by creating the full 
 design using the generators 7 = 1234 and 8 = 1256. The defining

relation is I = 12347 = 12568 = 345678 (see the summary table details for
this design).

Next, arrange these 64 treatment combinations into four blocks of size 16,
blocking on the interactions 135 and 246 (i.e., block 1 has 135 = 246 = -1
runs, block 2 has 135 = -1, 246 = +1, block 3 has 135 = +1, 246 = -1 and
block 4 has 135 = 246 = +1). If we exclude the first block in which 135 =
246 = -1, we have the desired ¾ design reproduced below (the reader can
verify that these are the runs described in the summary table, excluding
the runs numbered 1, 6, 11, 16, 18, 21, 28, 31, 35, 40, 41,46, 52, 55, 58
and 61).

Table
containing
the design
matrix

X1 X2 X3 X4 X5 X6 X7 X8
+1 -1 -1 -1 -1 -1 -1 -1
-1 +1 -1 -1 -1 -1 -1 -1
+1 +1 -1 -1 -1 -1 +1 +1
-1 -1 +1 -1 -1 -1 -1 +1
-1 +1 +1 -1 -1 -1 +1 -1
+1 +1 +1 -1 -1 -1 -1 +1
-1 -1 -1 +1 -1 -1 -1 +1
+1 -1 -1 +1 -1 -1 +1 -1
+1 +1 -1 +1 -1 -1 -1 +1
-1 -1 +1 +1 -1 -1 +1 +1
+1 -1 +1 +1 -1 -1 -1 -1
-1 +1 +1 +1 -1 -1 -1 -1
-1 -1 -1 -1 +1 -1 +1 -1
-1 +1 -1 -1 +1 -1 -1 +1
+1 +1 -1 -1 +1 -1 +1 -1
+1 -1 +1 -1 +1 -1 +1 +1
-1 +1 +1 -1 +1 -1 +1 +1
+1 +1 +1 -1 +1 -1 -1 -1
-1 -1 -1 +1 +1 -1 -1 -1
+1 -1 -1 +1 +1 -1 +1 +1
-1 +1 -1 +1 +1 -1 +1 +1
-1 -1 +1 +1 +1 -1 +1 -1
+1 -1 +1 +1 +1 -1 -1 +1
+1 +1 +1 +1 +1 -1 +1 -1
-1 -1 -1 -1 -1 +1 +1 -1
+1 -1 -1 -1 -1 +1 -1 +1
+1 +1 -1 -1 -1 +1 +1 -1

http://www.itl.nist.gov/div898/handbook/pri/section3/eqns/2to8m2.txt
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-1 -1 +1 -1 -1 +1 -1 -1
+1 -1 +1 -1 -1 +1 +1 +1
-1 +1 +1 -1 -1 +1 +1 +1
+1 -1 -1 +1 -1 +1 +1 +1
-1 +1 -1 +1 -1 +1 +1 +1
+1 +1 -1 +1 -1 +1 -1 -1
-1 -1 +1 +1 -1 +1 +1 -1
-1 +1 +1 +1 -1 +1 -1 +1
+1 +1 +1 +1 -1 +1 +1 -1
-1 -1 -1 -1 +1 +1 +1 +1
+1 -1 -1 -1 +1 +1 -1 -1
-1 +1 -1 -1 +1 +1 -1 -1
-1 -1 +1 -1 +1 +1 -1 +1
+1 -1 +1 -1 +1 +1 +1 -1
+1 +1 +1 -1 +1 +1 -1 +1
-1 -1 -1 +1 +1 +1 -1 +1
-1 +1 -1 +1 +1 +1 +1 -1
+1 +1 -1 +1 +1 +1 -1 +1
+1 -1 +1 +1 +1 +1 -1 -1
-1 +1 +1 +1 +1 +1 -1 -1
+1 +1 +1 +1 +1 +1 +1 +1

Good
precision for
coefficient
estimates

This design provides 11 degrees of freedom for error and also provides
good precision for coefficient estimates (some of the coefficients have a
standard error of  and some have a standard error of 
).

Further
information

More about John's ¾ designs can be found in John (1971) or Diamond
(1989).

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/
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5.5.8. What are small composite designs?

Small
composite
designs save
runs,
compared to
Resolution V
response
surface
designs, by
adding star
points to a
Resolution
III design

Response surface designs (RSD) were described earlier. A
typical RSD requires about 13 runs for 2 factors, 20 runs for
3 factors, 31 runs for 4 factors, and 32 runs for 5 factors. It
is obvious that, once you have four or more factors you wish
to include in a RSD, you will need more than one lot (i.e.,
batch) of experimental units for your basic design. This is
what most statistical software today will give you. However,
there is a way to cut down on the number of runs, as
suggested by H.O. Hartley in his paper 'Smallest Composite
Designs for Quadratic Response Surfaces ', published in
Biometrics, December 1959.

This method addresses the theory that using a Resolution V
design as the smallest fractional design to create a RSD is
unnecessary. The method adds star points to designs of
Resolution III and uses the star points to clear the main
effects of aliasing with the two-factor interactions. The
resulting design allows estimation of the higher-order
interactions. It also provides poor interaction coefficient
estimates and should not be used unless the error variability
is negligible compared to the systematic effects of the
factors.

Useful for 4
or 5 factors

This could be particularly useful when you have a design
containing four or five factors and you wish to only use the
experimental units from one lot (i.e., batch).

Table
containing
design
matrix for
four factors

The following is a design for four factors. You would want
to randomize these runs before implementing them; -1 and
+1 represent the low and high settings, respectively, of each
factor.

TABLE 5.11 Four factors: Factorial design section
is based on a generator of I = X1*X2*X3,

Resolution III; -  and +  are the star points,
calculated beyond the factorial range; 0 represents

the midpoint of the factor range.
Row X1 X2 X3 X4

1 +1 -1 -1 -1
2 -1 +1 -1 -1

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/pri/pri.htm
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3 -1 -1 +1 -1
4 +1 +1 +1 -1
5 +1 -1 -1 +1
6 -1 +1 -1 +1
7 -1 -1 +1 +1
8 +1 +1 +1 +1
9 - 0 0 0

10 0 0 0
11 0 - 0 0
12 0 0 0
13 0 0 - 0
14 0 0 0
15 0 0 0 -
16 0 0 0
17 0 0 0 0
18 0 0 0 0
19 0 0 0 0
20 0 0 0 0

Determining  in Small Composite Designs

 based on
number of
treatment
combinations
in the
factorial
portion

To maintain rotatability for usual CCD's, the value of  is
determined by the number of treatment combinations in the
factorial portion of the central composite design:

Small
composite
designs not
rotatable

However, small composite designs are not rotatable,
regardless of the choice of . For small composite designs, 

 should not be smaller than [number of factorial runs]1/4

nor larger than k1/2.

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/
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5.5.9. An EDA approach to experimental design

Introduction This section presents an exploratory data analysis (EDA)
approach to analyzing the data from a designed experiment.
This material is meant to complement, not replace, the more
model-based approach for analyzing experiment designs
given in section 4 of this chapter.

Choosing an appropriate design is discussed in detail in
section 3 of this chapter.

Starting point

Problem
category

The problem category we will address is the screening
problem. Two characteristics of screening problems are:

1. There are many factors to consider.
2. Each of these factors may be either continuous or

discrete.

Desired
output

The desired output from the analysis of a screening problem
is:

A ranked list (by order of importance) of factors.
The best settings for each of the factors.
A good model.
Insight.

Problem
essentials

The essentials of the screening problem are:

There are k factors with n observations.
The generic model is:

Y = f(X1, X2, ..., Xk) + ε

Design type In particular, the EDA approach is applied to 2k full factorial
and 2k-p fractional factorial designs.

An EDA approach is particularly applicable to screening
designs because we are in the preliminary stages of
understanding our process.

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/pri/pri.htm
http://www.itl.nist.gov/div898/handbook/eda/eda.htm
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EDA
philosophy

EDA is not a single technique. It is an approach to analyzing
data.

EDA is data-driven. That is, we do not assume an
initial model. Rather, we attempt to let the data speak
for themselves.

EDA is question-based. That is, we select a technique
to answer one or more questions.

EDA utilizes multiple techniques rather than depending
on a single technique. Different plots have a different
basis, focus, and sensitivities, and therefore may bring
out different aspects of the data. When multiple
techniques give us a redundancy of conclusions, this
increases our confidence that our conclusions are valid.
When they give conflicting conclusions, this may be
giving us a clue as to the nature of our data.

EDA tools are often graphical. The primary objective is
to provide insight into the data, which graphical
techniques often provide more readily than quantitative
techniques.

10-Step
process

The following is a 10-step EDA process for analyzing the
data from 2k full factorial and 2k-p fractional factorial
designs.

1. Ordered data plot
2. DOE scatter plot
3. DOE mean plot
4. Interaction effects matrix plot
5. Block plot
6. DOE Youden plot
7. |Effects| plot
8. Half-normal probability plot
9. Cumulative residual standard deviation plot

10. DOE contour plot

Each of these plots will be presented with the following
format:

Purpose of the plot
Output of the plot
Definition of the plot
Motivation for the plot
An example of the plot using the defective springs data
A discussion of how to interpret the plot
Conclusions we can draw from the plot for the
defective springs data

Data set
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Defective
springs
data

The plots presented in this section are demonstrated with a
data set from Box and Bisgaard (1987).

These data are from a 23 full factorial data set that contains
the following variables:

1. Response variable Y = percentage of springs without
cracks

2. Factor 1 = oven temperature (2 levels: 1450 and 1600
F)

3. Factor 2 = carbon concentration (2 levels: 0.5% and
0.7%)

4. Factor 3 = quench temperature (2 levels: 70 and 120 F)

     Y         X1              X2            X3
  Percent     Oven           Carbon        Quench
Acceptable  Temperature  Concentration   
Temperature
--------------------------------------------------
--
    67         -1              -1            -1
    79         +1              -1            -1
    61         -1              +1            -1
    75         +1              +1            -1
    59         -1              -1            +1
    90         +1              -1            +1
    52         -1              +1            +1
    87         +1              +1            +1

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
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http://www.nist.gov/
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5.5.9.1. Ordered data plot

Purpose The ordered data plot answers the following two questions:

1. What is the best setting (based on the data) for each of the k factors?
2. What is the most important factor?

In the above two questions, the terms "best" and "important" need more precise
definitions.

Settings may be declared as "best" in three different ways:

1. "best" with respect to the data;
2. "best" on average;
3. "best" with respect to predicted values from an adequate model.

In the worst case, each of the above three criteria may yield different "best settings".
If that occurs, then the three answers must be consolidated at the end of the 10-step
process.

The ordered data plot will yield best settings based on the first criteria (data). That is,
this technique yields those settings that correspond to the best response value, with
the best value dependent upon the project goals:

1. maximization of the response;
2. minimization of the response;
3. hitting a target for the response.

This, in turn, trivially yields the best response value:

1. maximization: the observed maximum data point;
2. minimization: the observed minimum data point;
3. target: the observed data value closest to the specified target.

With respect to the most "important" factor, this by default refers to the single factor
which causes the greatest change in the value of the response variable as we proceed
from the "-" setting to the "+" setting of the factor. In practice, if a factor has one
setting for the best and near-best response values and the opposite setting for the
worst and near-worst response values, then that factor is usually the most important
factor.

Output The output from the ordered data plot is:

1. Primary: Best setting for each of the k factors.
2. Secondary: The name of the most important factor.
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Definition An ordered data plot is formed by:

Vertical Axis: The ordered (smallest to largest) raw response value for each of
the n runs in the experiment.
Horizontal Axis: The corresponding dummy run index (1 to n) with (at each
run) a designation of the corresponding settings (- or +) for each of the k
factors.

In essence, the ordered data plot may be viewed as a scatter plot of the ordered data
versus a single n-treatment consolidation factor.

Motivation To determine the best setting, an obvious place to start is the best response value.
What constitutes "best"? Are we trying to maximize the response, minimize the
response, or hit a specific target value? This non-statistical question must be
addressed and answered by the analyst. For example, if the project goal is ultimately
to achieve a large response, then the desired experimental goal is maximization. In
such a case, the analyst would note from the plot the largest response value and the
corresponding combination of the k-factor settings that yielded that best response.

Plot for
defective
springs
data

Applying the ordered response plot for the defective springs data set yields the
following plot.

How to
interpret

From the ordered data plot, we look for the following:

1. best settings;
2. most important factor.

http://www.itl.nist.gov/div898/handbook/pri/section5/gifs/ordered.gif
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Best Settings (Based on the Data):

At the best (highest or lowest or target) response value, what are the corresponding
settings for each of the k factors? This defines the best setting based on the raw data.

Most Important Factor:

For the best response point and for the nearby neighborhood of near-best response
points, which (if any) of the k factors has consistent settings? That is, for the subset
of response values that is best or near-best, do all of these values emanate from an
identical level of some factor?

Alternatively, for the best half of the data, does this half happen to result from some
factor with a common setting? If yes, then the factor that displays such consistency
is an excellent candidate for being declared the "most important factor". For a
balanced experimental design, when all of the best/near-best response values come
from one setting, it follows that all of the worst/near-worst response values will
come from the other setting of that factor. Hence that factor becomes "most
important".

At the bottom of the plot, step though each of the k factors and determine which
factor, if any, exhibits such behavior. This defines the "most important" factor.

Conclusions
for the
defective
springs
data

The application of the ordered data plot to the defective springs data set results in
the following conclusions:

1. Best Settings (Based on the Data):

(X1, X2, X3) = (+, -, +) = (+1, -1, +1) is the best setting since

1. the project goal is maximization of the percent acceptable springs;
2. Y = 90 is the largest observed response value; and
3. (X1, X2, X3) = (+, -, +) at Y = 90.

2. Most important factor:

X1 is the most important factor since the four largest response values (90, 87,
79, and 75) have factor X1 at +1, and the four smallest response values (52,
59, 61, and 67) have factor X1 at -1.
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5.5.9.2. DOE scatter plot

Purpose The DOE (design of experiments) scatter plot answers the following three questions:

1. What are the most important factors?
2. What is the best setting for each of these important factors?
3. What data points are outliers?

In the above questions, the terms "important", "best", and "outliers" need
clarification and specificity:

Important

A factor can be "important" if it leads to a significant shift in either the location or
the variation of the response variable as we go from the "-" setting to the "+" setting
of the factor. Both definitions are relevant and acceptable. The default definition of
"important" in engineering/scientific applications is a shift in location. Unless
specified otherwise, when a factor is claimed to be important, the implication is that
the factor caused a large location shift in the response.

Best

A factor setting is "best" if it results in a typical response that is closest, in location,
to the desired project goal (maximization, minimization, target). This desired project
goal is an engineering, not a statistical, question, and so the desired optimization
goal must be specified by the engineer.

Outlier

A data point is an "outlier" if it comes from a different probability distribution or
from a different deterministic model than the remainder of the data. A single outlier
in a data set can affect all effect estimates and so in turn can potentially invalidate
the factor rankings in terms of importance.

Given the above definitions, the DOE scatter plot is a useful early-step tool for
determining the important factors, best settings, and outliers. An alternate name for
the DOE scatter plot is "main effects plot".

Output The output for the DOE scatter plot is:

1. Primary: Identification of the important factors.
2. Secondary: Best setting for these factors and identification of outliers.

Definition The DOE scatter plot is formed by

http://www.itl.nist.gov/div898/handbook/index.htm
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Vertical Axis: The response (= the raw data) for a given setting (- or +) of a
factor for each of the k factors.

Horizontal Axis: The k factors, and the two settings (- and +) within each
factor.

Motivation The scatter plot is the primary data analysis tool for determining if and how a
response relates to another factor. Determining if such a relationship exists is a
necessary first step in converting statistical association to possible engineering
cause-and-effect. Looking at how the raw data change as a function of the different
levels of a factor is a fundamental step which, it may be argued, should never be
skipped in any data analysis.

From such a foundational plot, the analyst invariably extracts information dealing
with location shifts, variation shifts, and outliers. Such information may easily be
washed out by other "more advanced" quantitative or graphical procedures (even
computing and plotting means!). Hence there is motivation for the DOE scatter plot.

If we were interested in assessing the importance of a single factor, and since
"important" by default means shift in location, then the simple scatter plot is an ideal
tool. A large shift (with little data overlap) in the body of the data from the "-"
setting to the "+" setting of a given factor would imply that the factor is important.
A small shift (with much overlap) would imply the factor is not important.

The DOE scatter plot is actually a sequence of k such scatter plots with one scatter
plot for each factor.

Plot for
defective
springs
data

The DOE scatter plot for the defective springs data set is as follows.

http://www.itl.nist.gov/div898/handbook/pri/section5/gifs/dexscat.gif
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How to
interpret

As discussed previously, the DOE scatter plot is used to look for the following:

1. Most Important Factors;
2. Best Settings of the Most Important Factors;
3. Outliers.

Each of these will be discussed in turn.

Most Important Factors:

For each of the k factors, as we go from the "-" setting to the "+" setting within the
factor, is there a location shift in the body of the data? If yes, then

1. Which factor has the biggest such data location shift (that is, has least data
overlap)? This defines the "most important factor".

2. Which factor has the next biggest shift (that is, has next least data overlap)?
This defines the "second most important factor".

3. Continue for the remaining factors.

In practice, the DOE scatter plot will typically only be able to discriminate the most
important factor (largest shift) and perhaps the second most important factor (next
largest shift). The degree of overlap in remaining factors is frequently too large to
ascertain with certainty the ranking for other factors.

Best Settings for the Most Important Factors:

For each of the most important factors, which setting ("-" or "+") yields the "best"
response?

In order to answer this question, the engineer must first define "best". This is done
with respect to the overall project goal in conjunction with the specific response
variable under study. For some experiments (e.g., maximizing the speed of a chip),
"best" means we are trying to maximize the response (speed). For other experiments
(e.g., semiconductor chip scrap), "best" means we are trying to minimize the
response (scrap). For yet other experiments (e.g., designing a resistor) "best" means
we are trying to hit a specific target (the specified resistance). Thus the definition of
"best" is an engineering precursor to the determination of best settings.

Suppose the analyst is attempting to maximize the response. In such a case, the
analyst would proceed as follows:

1. For factor 1, for what setting (- or +) is the body of the data higher?
2. For factor 2, for what setting (- or +) is the body of the data higher?
3. Continue for the remaining factors.

The resulting k-vector of best settings:

(x1best, x2best, ..., xkbest)

is thus theoretically obtained by looking at each factor individually in the DOE
scatter plot and choosing the setting (- or +) that has the body of data closest to the
desired optimal (maximal, minimal, target) response.
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As indicated earlier, the DOE scatter plot will typically be able to estimate best
settings for only the first few important factors. Again, the degree of data overlap
precludes ascertaining best settings for the remaining factors. Other tools, such as
the DOE mean plot, will do a better job of determining such settings.

Outliers:

Do any data points stand apart from the bulk of the data? If so, then such values are
candidates for further investigation as outliers. For multiple outliers, it is of interest
to note if all such anomalous data cluster at the same setting for any of the various
factors. If so, then such settings become candidates for avoidance or inclusion,
depending on the nature (bad or good), of the outliers.

Conclusions
for the
defective
springs
data

The application of the DOE scatter plot to the defective springs data set results in the
following conclusions:

1. Most Important Factors:

1. X1 (most important);
2. X2 (of lesser importance);
3. X3 (of least importance).

that is,

factor 1 definitely looks important;
factor 2 is a distant second;
factor 3 has too much overlap to be important with respect to location,
but is flagged for further investigation due to potential differences in
variation.

2. Best Settings:

(X1, X2, X3) = (+, -, -) = (+1, -1, -1)

3. Outliers: None detected.
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5.5.9.3. DOE mean plot

Purpose The DOE (design of experiments) mean plot answers the following two questions:

1. What is the ranked list of factors (not including the interactions)? The ranking
is from the most important factor to least important factor.

2. What is the best setting for each of the k factors?

In the above two questions, the terms "important" and "best" need clarification and
specificity.

A factor can be important if it leads to a significant shift in the location of the
response variable as we go from the "-" setting of the factor to the "+" setting of the
factor. Alternatively, a factor can be important if it leads to a significant change in
variation (spread) as we go from the "-" to the "+" settings. Both definitions are
relevant and acceptable. The default definition of "important" in
engineering/scientific applications is the former (shift in location). Unless specified
to the contrary, when a factor is claimed to be important, the implication is that the
factor caused a large location shift in the response.

In this context, a factor setting is best if it results in a typical response that is closest
(in location) to the desired project goal (that is, a maximization, minimization, or
hitting a target). This desired project goal is an engineering, not a statistical,
question, and so the desired optimization goal must be overtly specified by the
engineer.

Given the above two definitions of important and best, the DOE mean plot is a
useful tool for determining the important factors and for determining the best
settings.

An alternate name for the DOE mean plot is the "main effects plot".

Output The output from the DOE mean plot is:

1. Primary: A ranked list of the factors (not including interactions) from most
important to least important.

2. Secondary: The best setting for each of the k factors.

Definition The DOE mean plot is formed by:

Vertical Axis: The mean response for a given setting ("-" or "+") of a factor,
for each of the k factors.
Horizontal Axis: The k factors and the two settings ("-" and "+") within each

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/pri/pri.htm


5.5.9.3. DOE mean plot

http://www.itl.nist.gov/div898/handbook/pri/section5/pri593.htm[6/27/2012 2:25:18 PM]

factor.

Motivation If we were interested in assessing the importance of a single factor, and since
important, by default, means shift in location, and the average is the simplest
location estimator, a reasonable graphics tool to assess a single factor's importance
would be a simple mean plot. The vertical axis of such a plot would be the mean
response for each setting of the factor and the horizontal axis is the two settings of
the factor: "-" and "+" (-1 and +1). A large difference in the two means would imply
the factor is important while a small difference would imply the factor is not
important.

The DOE mean plot is actually a sequence of k such plots, with one mean plot for
each factor. To assist in comparability and relative importance, all of the mean plots
are on the same scale.

Plot for
defective
springs
data

Applying the DOE mean plot to the defective springs data yields the following plot.

How to
interpret

From the DOE mean plot, we look for the following:

1. A ranked list of factors from most important to least important.
2. The best settings for each factor (on average).

Ranked List of Factors--Most Important to Least Important:

For each of the k factors, as we go from the "-" setting to the "+" setting for the
factor, is there a shift in location of the average response?

If yes, we would like to identify the factor with the biggest shift (the "most

http://www.itl.nist.gov/div898/handbook/eda/section3/meanplot.htm
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important factor"), the next biggest shift (the "second most important factor"), and
so on until all factors are accounted for.

Since we are only plotting the means and each factor has identical (-,+) = (-1,+1)
coded factor settings, the above simplifies to

1. What factor has the steepest line? This is the most important factor.
2. The next steepest line? This is the second most important factor.
3. Continue for the remaining factors.

This ranking of factors based on local means is the most important step in building
the definitive ranked list of factors as required in screening experiments.

Best Settings (on Average):

For each of the k factors, which setting (- or +) yields the "best" response?

In order to answer this, the engineer must first define "best". This is done with
respect to the overall project goal in conjunction with the specific response variable
under study. For some experiments, "best" means we are trying to maximize the
response (e.g., maximizing the speed of a chip). For other experiments, "best" means
we are trying to minimize the response (e.g., semiconductor chip scrap). For yet
other experiments, "best" means we are trying to hit a specific target (e.g., designing
a resistor to match a specified resistance). Thus the definition of "best" is a
precursor to the determination of best settings.

For example, suppose the analyst is attempting to maximize the response. In that
case, the analyst would proceed as follows:

1. For factor 1, what setting (- or +) has the largest average response?
2. For factor 2, what setting (- or +) has the largest average response?
3. Continue for the remaining factors.

The resulting k-vector of best settings:

(x1best, x2best, ..., xkbest)

is in general obtained by looking at each factor individually in the DOE mean plot
and choosing that setting (- or +) that has an average response closest to the desired
optimal (maximal, minimal, target) response.

This candidate for best settings is based on the averages. This k-vector of best
settings should be similar to that obtained from the DOE scatter plot, though the
DOE mean plot is easier to interpret.

Conclusions
for the
defective
springs
data

The application of the DOE mean plot to the defective springs data set results in the
following conclusions:

1. Ranked list of factors (excluding interactions):

1. X1 (most important). Qualitatively, this factor looks definitely
important.

2. X2 (of lesser importantance). Qualitatively, this factor is a distant
second to X1.



5.5.9.3. DOE mean plot

http://www.itl.nist.gov/div898/handbook/pri/section5/pri593.htm[6/27/2012 2:25:18 PM]

3. X3 (unimportant). Qualitatively, this factor appears to be unimportant.

2. Best settings (on average):

(X1, X2, X3) = (+, -, +) = (+1, -1, +1)
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5.5.9.4. Interaction effects matrix plot

Purpose The interaction effects matrix plot is an extension of the DOE mean plot to include
both main effects and 2-factor interactions (the DOE mean plot focuses on main
effects only). The interaction effects matrix plot answers the following two
questions:

1. What is the ranked list of factors (including 2-factor interactions), ranked from
most important to least important; and

2. What is the best setting for each of the k factors?

For a k-factor experiment, the effect on the response could be due to main effects
and various interactions all the way up to k-term interactions. As the number of
factors, k, increases, the total number of interactions increases exponentially. The
total number of possible interactions of all orders = 2k - 1 - k. Thus for k = 3, the
total number of possible interactions = 4, but for k = 7 the total number of possible
interactions = 120.

In practice, the most important interactions are likely to be 2-factor interactions. The
total number of possible 2-factor interactions is

Thus for k = 3, the number of 2-factor interactions = 3, while for k = 7, the number
of 2-factor interactions = 21.

It is important to distinguish between the number of interactions that are active in a
given experiment versus the number of interactions that the analyst is capable of
making definitive conclusions about. The former depends only on the physics and
engineering of the problem. The latter depends on the number of factors, k, the
choice of the k factors, the constraints on the number of runs, n, and ultimately on
the experimental design that the analyst chooses to use. In short, the number of
possible interactions is not necessarily identical to the number of interactions that
we can detect.

Note that

1. with full factorial designs, we can uniquely estimate interactions of all orders;
2. with fractional factorial designs, we can uniquely estimate only some (or at

times no) interactions; the more fractionated the design, the fewer interactions
that we can estimate.
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Output The output for the interaction effects matrix plot is

1. Primary: Ranked list of the factors (including 2-factor interactions) with the
factors are ranked from important to unimportant.

2. Secondary: Best setting for each of the k factors.

Definition The interaction effects matrix plot is an upper right-triangular matrix of mean plots
consisting of k main effects plots on the diagonal and k*(k-1)/2 2-factor interaction
effects plots on the off-diagonal.

In general, interactions are not the same as the usual (multiplicative) cross-products.
However, for the special case of 2-level designs coded as (-, +) = (-1, +1), the
interactions are identical to cross-products. By way of contrast, if the 2-level
designs are coded otherwise (e.g., the (1, 2) notation espoused by Taguchi and
others), then this equivalance is not true. Mathematically,

{-1, +1} x {-1, +1} => {-1, +1}

but

{1, 2} x {1, 2} => {1, 2, 4}

Thus, coding does make a difference. We recommend the use of the (-, +) coding.

It is remarkable that with the - and + coding, the 2-factor interactions are dealt with,
interpreted, and compared in the same way that the k main effects are handled. It is
thus natural to include both 2-factor interactions and main effects within the same
matrix plot for ease of comparison.

For the off-diagonal terms, the first construction step is to form the horizontal axis
values, which will be the derived values (also - and +) of the cross-product. For
example, the settings for the X1*X2 interaction are derived by simple multiplication
from the data as shown below.

X1 X2 X1*X2

- - +
+ - -
- + -
+ + +

Thus X1, X2, and X1*X2 all form a closed (-, +) system. The advantage of the closed
system is that graphically interactions can be interpreted in the exact same fashion as
the k main effects.

After the entire X1*X2 vector of settings has been formed in this way, the vertical
axis of the X1*X2 interaction plot is formed:

1. the plot point above X1*X2 = "-" is simply the mean of all response values for
which X1*X2 = "-"

2. the plot point above X1*X2 = "+" is simply the mean of all response values for

http://www.itl.nist.gov/div898/handbook/eda/section3/meanplot.htm
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which X1*X2 = "+".

We form the plots for the remaining 2-factor interactions in a similar fashion.

All the mean plots, for both main effects and 2-factor interactions, have a common
scale to facilitate comparisons. Each mean plot has

1. Vertical Axis: The mean response for a given setting (- or +) of a given factor
or a given 2-factor interaction.

2. Horizontal Axis: The 2 settings (- and +) within each factor, or within each 2-
factor interaction.

3. Legend:

1. A tag (1, 2, ..., k, 12, 13, etc.), with 1 = X1, 2 = X2, ..., k = Xk, 12 =
X1*X2, 13 = X1*X3, 35 = X3*X5, 123 = X1*X2*X3, etc.) which
identifies the particular mean plot; and

2. The least squares estimate of the factor (or 2-factor interaction) effect.
These effect estimates are large in magnitude for important factors and
near-zero in magnitude for unimportant factors.

In a later section, we discuss in detail the models associated with full and fractional
factorial 2-level designs. One such model representation is

Y = μ + β1*X1 + β2*X2 + β12*X1*X2 + ... + 
ε

For factor variables coded with + and - settings, the βi coefficient is one half of the
effect estimate due to factor Xi. Thus, if we multiply the least-squares coefficients
by two, due to orthogonality, we obtain the simple difference of means at the +
setting and the - setting. This is true for the k main factors. It is also true for all two-
factor and multi-factor interactions.

Thus, visually, the difference in the mean values on the plot is identically the least
squares estimate for the effect. Large differences (steep lines) imply important
factors while small differences (flat lines) imply unimportant factors.

Motivation As discussed in detail above, the next logical step beyond main effects is displaying
2-factor interactions, and this plot matrix provides a convenient graphical tool for
examining the relative importance of main effects and 2-factor interactions in
concert. To do so, we make use of the striking aspect that in the context of 2-level
designs, the 2-factor interactions are identical to cross-products and the 2-factor
interaction effects can be interpreted and compared the same way as main effects.

Plot for
defective
springs
data

Constructing the interaction effects matrix plot for the defective springs data set
yields the following plot.
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How to
interpret

From the interaction effects matrix, we can draw three important conclusions:

1. Important Factors (including 2-factor interactions);
2. Best Settings;
3. Confounding Structure (for fractional factorial designs).

We discuss each of these in turn.

1. Important factors (including 2-factor interactions):

Jointly compare the k main factors and the k*(k-1)/2 2-factor interactions. For
each of these subplots, as we go from the "-" setting to the "+" setting within
a subplot, is there a shift in location of the average data (yes/no)? Since all
subplots have a common (-1, +1) horizontal axis, questions involving shifts in
location translate into questions involving steepness of the mean lines (large
shifts imply steep mean lines while no shifts imply flat mean lines).

1. Identify the factor or 2-factor interaction that has the largest shift (based
on averages). This defines the "most important factor". The largest shift
is determined by the steepest line.

2. Identify the factor or 2-factor interaction that has the next largest shift
(based on averages). This defines the "second most important factor".
This shift is determined by the next steepest line.

3. Continue for the remaining factors.

This ranking of factors and 2-factor interactions based on local means is a
major step in building the definitive list of ranked factors as required for
screening experiments.
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2. Best settings:

For each factor (of the k main factors along the diagonal), which setting (- or
+) yields the "best" (highest/lowest) average response?

Note that the experimenter has the ability to change settings for only the k
main factors, not for any 2-factor interactions. Although a setting of some 2-
factor interaction may yield a better average response than the alternative
setting for that same 2-factor interaction, the experimenter is unable to set a 2-
factor interaction setting in practice. That is to say, there is no "knob" on the
machine that controls 2-factor interactions; the "knobs" only control the
settings of the k main factors.

How then does this matrix of subplots serve as an improvement over the k
best settings that one would obtain from the DOE mean plot? There are two
common possibilities:

1. Steep Line:

For those main factors along the diagonal that have steep lines (that is,
are important), choose the best setting directly from the subplot. This
will be the same as the best setting derived from the DOE mean plot.

2. Flat line:

For those main factors along the diagonal that have flat lines (that is, are
unimportant), the naive conclusion to use either setting, perhaps giving
preference to the cheaper setting or the easier-to-implement setting,
may be unwittingly incorrect. In such a case, the use of the off-diagonal
2-factor interaction information from the interaction effects matrix is
critical for deducing the better setting for this nominally "unimportant"
factor.

To illustrate this, consider the following example:

Suppose the factor X1 subplot is steep (important) with the best
setting for X1 at "+".
Suppose the factor X2 subplot is flat (unimportant) with both
settings yielding about the same mean response.

Then what setting should be used for X2? To answer this, consider the
following two cases:

1. Case 1. If the X1*X2 interaction plot happens also to be flat
(unimportant), then choose either setting for X2 based on cost or
ease.

2. Case 2. On the other hand, if the X1*X2 interaction plot is steep
(important), then this dictates a prefered setting for X2 not based
on cost or ease.

To be specific for case 2, if X1*X2 is important, with X1*X2 = "+" being
the better setting, and if X1 is important, with X1 = "+" being the better



5.5.9.4. Interaction effects matrix plot

http://www.itl.nist.gov/div898/handbook/pri/section5/pri594.htm[6/27/2012 2:25:19 PM]

setting, then this implies that the best setting for X2 must be "+" (to
assure that X1*X2 (= +*+) will also be "+"). The reason for this is that
since we are already locked into X1 = "+", and since X1*X2 = "+" is
better, then the only way we can obtain X1*X2 = "+" with X1 = "+" is
for X2 to be "+" (if X2 were "-", then X1*X2 with X1 = "+" would yield
X1*X2 = "-").

In general, if X1 is important, X1*X2 is important, and X2 is not
important, then there are four distinct cases for deciding what the best
setting is for X2:

X1 X1*X2 => X2

+ + +
+ - -
- + -
- - +

By similar reasoning, examining each factor and pair of factors, we thus
arrive at a resulting vector of the k best settings:

(x1best, x2best, ..., xkbest)

This average-based k-vector should be compared with best settings k-
vectors obtained from previous steps (in particular, from step 1 in which
the best settings were drawn from the best data value).

When the average-based best settings and the data-based best settings
agree, we benefit from the increased confidence given our conclusions.

When the average-based best settings and the data-based best settings
disagree, then what settings should the analyst finally choose? Note that
in general the average-based settings and the data-based settings will
invariably be identical for all "important" factors. Factors that do differ
are virtually always "unimportant". Given such disagreement, the
analyst has three options:

1. Use the average-based settings for minor factors. This has the
advantage of a broader (average) base of support.

2. Use the data-based settings for minor factors. This has the
advantage of demonstrated local optimality.

3. Use the cheaper or more convenient settings for the local factor.
This has the advantage of practicality.

Thus the interaction effects matrix yields important information not only about
the ranked list of factors, but also about the best settings for each of the k
main factors. This matrix of subplots is one of the most important tools for the
experimenter in the analysis of 2-level screening designs.

3. Confounding Structure (for Fractional Factorial Designs)

When the interaction effects matrix is used to analyze 2-level fractional (as
opposed to full) factorial designs, important additional information can be
extracted from the matrix regarding confounding structure.
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It is well-known that all fractional factorial designs have confounding, a
property whereby every estimated main effect is
confounded/contaminated/biased by some high-order interactions. The
practical effect of this is that the analyst is unsure of how much of the
estimated main effect is due to the main factor itself and how much is due to
some confounding interaction. Such contamination is the price that is paid by
examining k factors with a sample size n that is less than a full factorial n = 2k

runs.

It is a "fundamental theorem" of the discipline of experimental design that for
a given number of factors k and a given number of runs n, some fractional
factorial designs are better than others. "Better" in this case means that the
intrinsic confounding that must exist in all fractional factorial designs has
been minimized by the choice of design. This minimization is done by
constructing the design so that the main effect confounding is pushed to as
high an order interaction as possible.

The rationale behind this is that in physical science and engineering systems it
has been found that the "likelihood" of high-order interactions being
significant is small (compared to the likelihood of main effects and 2-factor
interactions being significant). Given this, we would prefer that such
inescapable main effect confounding be with the highest order interaction
possible, and hence the bias to the estimated main effect be as small as
possible.

The worst designs are those in which the main effect confounding is with 2-
factor interactions. This may be dangerous because in physical/engineering
systems, it is quite common for Nature to have some real (and large) 2-factor
interactions. In such a case, the 2-factor interaction effect will be inseparably
entangled with some estimated main effect, and so the experiment will be
flawed in that

1. ambiguous estimated main effects and
2. an ambiguous list of ranked factors

will result.

If the number of factors, k, is large and the number of runs, n, is constrained to
be small, then confounding of main effects with 2-factor interactions is
unavoidable. For example, if we have k = 7 factors and can afford only n = 8
runs, then the corresponding 2-level fractional factorial design is a 27-4 which
necessarily will have main effects confounded with (3) 2-factor interactions.
This cannot be avoided.

On the other hand, situations arise in which 2-factor interaction confounding
with main effects results not from constraints on k or n, but on poor design
construction. For example, if we have k = 7 factors and can afford n = 16
runs, a poorly constructed design might have main effects counfounded with
2-factor interactions, but a well-constructed design with the same k = 7, n =
16 would have main effects confounded with 3-factor interactions but no 2-
factor interactions. Clearly, this latter design is preferable in terms of
minimizing main effect confounding/contamination/bias.
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For those cases in which we do have main effects confounded with 2-factor
interactions, an important question arises:

For a particular main effect of interest, how do we know which 2-factor
interaction(s) confound/contaminate that main effect?

The usual answer to this question is by means of generator theory,
confounding tables, or alias charts. An alternate complementary approach is
given by the interaction effects matrix. In particular, if we are examining a 2-
level fractional factorial design and

1. if we are not sure that the design has main effects confounded with 2-
factor interactions, or

2. if we are sure that we have such 2-factor interaction confounding but
are not sure what effects are confounded,

then how can the interaction effects matrix be of assistance? The answer to
this question is that the confounding structure can be read directly from the
interaction effects matrix.

For example, for a 7-factor experiment, if, say, the factor X3 is confounded
with the 2-factor interaction X2*X5, then

1. the appearance of the factor X3 subplot and the appearance of the 2-
factor interaction X2*X5 subplot will necessarily be identical, and

2. the value of the estimated main effect for X3 (as given in the legend of
the main effect subplot) and the value of the estimated 2-factor
interaction effect for X2*X5 (as given in the legend of the 2-factor
interaction subplot) will also necessarily be identical.

The above conditions are necessary, but not sufficient for the effects to be
confounded.

Hence, in the abscence of tabular descriptions (from your statistical software
program) of the confounding structure, the interaction effect matrix offers the
following graphical alternative for deducing confounding structure in
fractional factorial designs:

1. scan the main factors along the diagonal subplots and choose the subset
of factors that are "important".

2. For each of the "important" factors, scan all of the 2-factor interactions
and compare the main factor subplot and estimated effect with each 2-
factor interaction subplot and estimated effect.

3. If there is no match, this implies that the main effect is not confounded
with any 2-factor interaction.

4. If there is a match, this implies that the main effect may be confounded
with that 2-factor interaction.

5. If none of the main effects are confounded with any 2-factor
interactions, we can have high confidence in the integrity (non-
contamination) of our estimated main effects.

6. In practice, for highly-fractionated designs, each main effect may be
confounded with several 2-factor interactions. For example, for a 27-4

fractional factorial design, each main effect will be confounded with
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three 2-factor interactions. These 1 + 3 = 4 identical subplots will be
blatantly obvious in the interaction effects matrix.

Finally, what happens in the case in which the design the main effects are not
confounded with 2-factor interactions (no diagonal subplot matches any off-
diagonal subplot). In such a case, does the interaction effects matrix offer any
useful further insight and information?

The answer to this question is yes because even though such designs have
main effects unconfounded with 2-factor interactions, it is fairly common for
such designs to have 2-factor interactions confounded with one another, and
on occasion it may be of interest to the analyst to understand that
confounding. A specific example of such a design is a 24-1 design formed
with X4 settings = X1*X2*X3. In this case, the 2-factor-interaction
confounding structure may be deduced by comparing all of the 2-factor
interaction subplots (and effect estimates) with one another. Identical subplots
and effect estimates hint strongly that the two 2-factor interactions are
confounded. As before, such comparisons provide necessary (but not
sufficient) conditions for confounding. Most statistical software for analyzing
fractional factorial experiments will explicitly list the confounding structure.

Conclusions
for the
defective
springs
data

The application of the interaction effects matrix plot to the defective springs data set
results in the following conclusions:

1. Ranked list of factors (including 2-factor interactions):

1. X1 (estimated effect = 23.0)
2. X1*X3 (estimated effect = 10.0)
3. X2 (estimated effect = -5.0)
4. X3 (estimated effect = 1.5)
5. X1*X2 (estimated effect = 1.5)
6. X2*X3 (estimated effect = 0.0)

Factor 1 definitely looks important. The X1*X3 interaction looks important.
Factor 2 is of lesser importance. All other factors and 2-factor interactions
appear to be unimportant.

2. Best Settings (on the average):

(X1, X2, X3) = (+, -, +) = (+1, -1, +1)

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/
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5.5. Advanced topics 
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5.5.9.5. Block plot

Purpose The block plot answers the following two general questions:

1. What are the important factors (including interactions)?
2. What are the best settings for these important factors?

The basic (single) block plot is a multifactor EDA technique to determine if a factor
is important and to ascertain if that importance is unconditional (robust) over all
settings of all other factors in the system. In an experimental design context, the
block plot is actually a sequence of block plots with one plot for each of the k
factors.

Due to the ability of the block plot to determine whether a factor is important over
all settings of all other factors, the block plot is also referred to as a DOE robustness
plot.

Output The block plot provides specific information on

1. Important factors (of the k factors and the  2-factor interactions); and

2. Best settings of the important factors.

Definition The block plot is a series of k basic block plots with each basic block plot for a main
effect. Each basic block plot asks the question as to whether that particular factor is
important:

1. The first block plot asks the question: "Is factor X1 important?
2. The second block plot asks the question: "Is factor X2 important?
3. Continue for the remaining factors.

The i-th basic block plot, which targets factor i and asks whether factor Xi is
important, is formed by:

Vertical Axis: Response

Horizontal Axis: All 2k-1 possible combinations of the (k-1) non-target factors
(that is, "robustness" factors). For example, for the block plot focusing on
factor X1 from a 23 full factorial experiment, the horizontal axis will consist of
all 23-1 = 4 distinct combinations of factors X2 and X3. We create this
robustness factors axis because we are interested in determining if X1 is

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/pri/pri.htm
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important robustly. That is, we are interested in whether X1 is important not
only in a general/summary kind of way, but also whether the importance of X
is universally and consistently valid over each of the 23-1 = 4 combinations of
factors X2 and X3. These four combinations are (X2, X3) = (+, +), (+, -), (-,
+), and (-, -). The robustness factors on the horizontal axis change from one
block plot to the next. For example, for the k = 3 factor case:

1. the block plot targeting X1 will have robustness factors X2 and X3;
2. the block plot targeting X2 will have robustness factors X1 and X3;
3. the block plot targeting X3 will have robustness factors X1 and X2.

Plot Character: The setting (- or +) for the target factor Xi. Each point in a
block plot has an associated setting for the target factor Xi. If Xi = "-", the
corresponding plot point will be "-"; if Xi = "+", the corresponding plot point
will be "+".

For a particular combination of robustness factor settings (horizontally), there will
be two points plotted above it (vertically):

1. one plot point for Xi = "-"; and
2. the other plot point for Xi = "+".

In a block plot, these two plot points are surrounded by a box (a block) to focus the
eye on the internal within-block differences as opposed to the distraction of the
external block-to-block differences. Internal block differences reflect on the
importance of the target factor (as desired). External block-to-block differences
reflect on the importance of various robustness factors, which is not of primary
interest.

Large within-block differences (that is, tall blocks) indicate a large local effect on
the response which, since all robustness factors are fixed for a given block, can only
be attributed to the target factor. This identifies an "important" target factor. Small
within-block differences (small blocks) indicate that the target factor Xi is
unimportant.

For a given block plot, the specific question of interest is thus

Is the target factor Xi important? That is, as we move within a block from the
target factor setting of "-" to the target factor setting of "+", does the response
variable value change by a large amount?

The height of the block reflects the "local" (that is, for that particular combination of
robustness factor settings) effect on the response due to a change in the target factor
settings. The "localized" estimate for the target factor effect for Xi is in fact identical
to the difference in the response between the target factor Xi at the "+" setting and at
the "-" setting. Each block height of a robustness plot is thus a localized estimate of
the target factor effect.

In summary, important factors will have both

1. consistently large block heights; and
2. consistent +/- sign arrangements
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where the "consistency" is over all settings of robustness factors. Less important
factors will have only one of these two properties. Unimportant factors will have
neither property.

Plot for
defective
springs
data

Applying the ordered response plot to the defective springs data set yields the
following plot.

How to
interpret

From the block plot, we are looking for the following:

1. Important factors (including 2-factor interactions);
2. Best settings for these factors.

We will discuss each of these in turn.

Important factors (including 2-factor interactions):

Look at each of the k block plots. Within a given block plot,

Are the corresponding block heights consistently large as we scan across the
within-plot robustness factor settings--yes/no; and are the within-block sign
patterns (+ above -, or - above +) consistent across all robustness factors
settings--yes/no?

To facilitate intercomparisons, all block plots have the same vertical axis scale.
Across such block plots,

1. Which plot has the consistently largest block heights, along with consistent
arrangement of within-block +'s and -'s? This defines the "most important
factor".

http://www.itl.nist.gov/div898/handbook/pri/section5/gifs/blockplt.gif
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2. Which plot has the consistently next-largest block heights, along with
consistent arrangement of within-block +'s and -'s? This defines the "second
most important factor".

3. Continue for the remaining factors.

This scanning and comparing of the k block plots easily leads to the identification of
the most important factors. This identification has the additional virtue over
previous steps in that it is robust. For a given important factor, the consistency of
block heights and sign arrangement across robustness factors gives additional
credence to the robust importance of that factor. The factor is important (the change
in the response will be large) irrespective of what settings the robustness factors
have. Having such information is both important and comforting.

Important Special Case; Large but Inconsistent:

What happens if the block heights are large but not consistent? Suppose, for
example, a 23 factorial experiment is being analyzed and the block plot focusing on
factor X1 is being examined and interpreted so as to address the usual question of
whether factor X1 is important.

Let us consider in some detail how such a block plot might appear. This X1 block
plot will have 23-1 = 4 combinations of the robustness factors X2 and X3 along the
horizontal axis in the following order:

(X2, X3) = (+, +); (X2, X3) = (+, -); (X2, X3) = (-, +); (X2, X3) = (-, -).

If the block heights are consistently large (with "+" above "-" in each block) over
the four combinations of settings for X2 and X3, as in

(X2, X3) block height (= local X1 effect)

(+, +) 30
(+, -) 29
(-, +) 29
(-, -) 31

then from binomial considerations there is one chance in 24-1 = 1/8  12.5 % of the
the four local X1 effects having the same sign (i.e., all positive or all negative). The
usual statistical cutoff of 5 % has not been achieved here, but the 12.5 % is
suggestive. Further, the consistency of the four X1 effects (all near 30) is evidence of
a robustness of the X effect over the settings of the other two factors. In summary,
the above suggests:

1. Factor 1 is probably important (the issue of how large the effect has to be in
order to be considered important will be discussed in more detail in a later
section); and

2. The estimated factor 1 effect is about 30 units.

On the other hand, suppose the 4 block heights for factor 1 vary in the following
cyclic way:



5.5.9.5. Block plot

http://www.itl.nist.gov/div898/handbook/pri/section5/pri595.htm[6/27/2012 2:25:22 PM]

(X2, X3) block height (= local X1 effect)

(+, +) 30
(+, -) 20
(-, +) 30
(-, -) 20

then how is this to be interpreted?

The key here to such interpretation is that the block plot is telling us that the
estimated X1 effect is in fact at least 20 units, but not consistent. The effect is
changing, but it is changing in a structured way. The "trick" is to scan the X2 and X3
settings and deduce what that substructure is. Doing so from the above table, we see
that the estimated X1 effect is 30

for point 1 (X2, X3) = (+, +) and
for point 3 (X2, X3) = (-, +)

and then the estimated X1 effect drops 10 units to 20

for point 2 (X2, X3) = (+, -) and
for point 4 (X2, X3) = (-, -)

We thus deduce that the estimated X1 effect is

1. 30 whenever X3 = "+"
2. 20 whenever X3 = "-"

When the factor X1 effect is not consistent, but in fact changes depending on the
setting of factor X3, then definitionally that is said to be an "X1*X3 interaction".
That is precisely the case here, and so our conclusions would be:

1. factor X1 is probably important;
2. the estimated factor X1 effect is 25 (the average of 30, 20, 30, and 20);
3. the X1*X3 interaction is probably important;
4. the estimated X1*X3 interaction is about 10 (the change in the factor X1 effect

as X3 changes = 30 - 20 = 10);
5. hence the X1*X3 interaction is less important than the X1 effect.

Note that we are using the term important in a qualitative sense here. More precise
determinations of importance in terms of statistical or engineering significance are
discussed in later sections.

The block plot gives us the structure and the detail to allow such conclusions to be
drawn and to be understood. It is a valuable adjunct to the previous analysis steps.

Best settings:

After identifying important factors, it is also of use to determine the best settings for
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these factors. As usual, best settings are determined for main effects only (since main
effects are all that the engineer can control). Best settings for interactions are not
done because the engineer has no direct way of controlling them.

In the block plot context, this determination of best factor settings is done simply by
noting which factor setting (+ or -) within each block is closest to that which the
engineer is ultimately trying to achieve. In the defective springs case, since the
response variable is percent acceptable springs, we are clearly trying to maximize
(as opposed to minimize, or hit a target) the response and the ideal optimum point is
100 %. Given this, we would look at the block plot of a given important factor and
note within each block which factor setting (+ or -) yields a data value closest to
100 % and then select that setting as the best for that factor.

From the defective springs block plots, we would thus conclude that

1. the best setting for factor 1 is +;
2. the best setting for factor 2 is -;
3. the best setting for factor 3 cannot be easily determined.

Conclusions
for the
defective
springs
data

In summary, applying the block plot to the defective springs data set results in the
following conclusions:

1. Unranked list of important factors (including interactions):

X1 is important;
X2 is important;
X1*X3 is important.

2. Best Settings:

(X1, X2, X3) = (+, -, ?) = (+1, -1, ?)

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
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5.5.9. An EDA approach to experimental design 

5.5.9.6. DOE Youden plot

Purpose The DOE (design of experiments) Youden plot answers the following question:

What are the important factors (including interactions)?

In its original interlab rendition, the Youden plot was a graphical technique
developed in the 1960's by Jack Youden of NIST for assessing between-lab biases
and within-lab variation problems in the context of interlab experimentation. In
particular, it was appropriate for the analysis of round-robin data when exactly two
materials, batches, etc. were used in the design.

In a design of experiments context, we borrow this duality emphasis and apply it to
2-level designs. The 2-component emphasis of the Youden plot makes it a natural to
be applied to such designs.

Output The DOE Youden plot provides specific information on

1. Ranked list of factors (including interactions); and
2. Separation of factors into two categories: important and unimportant.

The primary output from a DOE Youden plot is the ranked list of factors (out of the
k factors and interactions). For full factorial designs, interactions include the full
complement of interactions at all orders; for fractional factorial designs, interactions
include only some, and occasionally none, of the actual interactions. Further, the
DOE Youden plot yields information identifying which factors/interactions are
important and which are unimportant.

Definition The DOE Youden plot consists of the following:

Vertical Axis: Mean response at the "+" setting for each factor and each
interaction. For a given factor or interaction, n/2 response values will go into
computing the "+" mean.

Horizontal Axis: Mean response at the "-" setting for each factor and each
interaction. For a given factor or interaction, n/2 response values will go into
computing the "-" mean.

Plot Character: Factor/interaction identification for which

1 indicates factor X1;
2 indicates factor X2;
...
12 indicates the 2-factor X1*X2 interaction

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/pri/pri.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/youdplot.htm
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123 indicates the 3-factor X1*X2*X3 interaction
etc.

In essence, the DOE Youden plot is a scatter plot of the "+" average responses
versus the "-" average responses. The plot will consist of n - 1 points with one point
for each factor and one point for each (available) interaction. Each point on the plot
is annotated to identify which factor or interaction is being represented.

Motivation Definitionally, if a factor is unimportant, the "+" average will be approximately the
same as the "-" average, and if a factor is important, the "+" average will be
considerably different from the "-" average. Hence a plot that compares the "+"
averages with the "-" averages directly seems potentially informative.

From the definition above, the DOE Youden plot is a scatter plot with the "+"
averages on the vertical axis and the "-" averages on the horizontal axis. Thus,
unimportant factors will tend to cluster in the middle of the plot and important
factors will tend to be far removed from the middle.

Because of an arithmetic identity which requires that the average of any
corresponding "+" and "-" means must equal the grand mean, all points on a DOE
Youden plot will lie on a -45 degree diagonal line. Or to put it another way, for each
factor

average (+) + average (-) = constant (with constant = grand mean)

So

average (+) = constant - average (-)

Therefore, the slope of the line is -1 and all points lie on the line. Important factors
will plot well-removed from the center because average (+) = average (-) at the
center.

Plot for
defective
springs
data

Applying the DOE Youden plot for the defective springs data set yields the
following plot.
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How to
interpret

In the DOE Youden plot, we look for the following:

1. A ranked list of factors (including interactions). The intersecting dotted lines
at the center of the plot are the value of the grand mean on both the vertical
and horizontal axes. Scan the points along the negative-slope diagonal line
and note as to whether such points are clustered around the grand mean or are
displaced up or down the diagonal line.

1. Which point is farthest away from the center? This defines the "most
important" factor.

2. Which point is next farthest away from the center? This defines the
"second most important" factor.

3. Continue in a similar manner for the remaining points. The points
closest to the center define the "least important" factors.

2. Separation of factors into important/unimportant categories. Interpretationally,
if a factor is unimportant, the "+" average will be about the same as the "-"
average, so the plot of "+" vertically and "-" horizontally will be near the
grand mean of all n - 1 data points.

Conversely, if a factor is important, the "+" average will differ greatly from
the "-" average, and so the plot of "+" vertically and "-" horizontally will be
considerably displaced up into the top left quadrant or down into the bottom
right quadrant.

The separation of factors into important/unimportant categories is thus done by
answering the question:

Which points visually form a cluster around the center? (these define
the "unimportant factors"--all remaining factors are "important").

http://www.itl.nist.gov/div898/handbook/pri/section5/gifs/youden.gif
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This ranked list of important factors derived from the DOE Youden plot is to be
compared with the ranked lists obtained from previous steps. Invariably, there will
be a large degree of consistency exhibited across all/most of the techniques.

Conclusions
for the
defective
springs
data

The application of the DOE Youden plot to the defective springs data set results in
the following conclusions:

1. Ranked list of factors (including interactions):

1. X1 (most important)
2. X1*X3 (next most important)
3. X2
4. other factors are of lesser importance

2. Separation of factors into important/unimportant categories:

"Important": X1, X1*X3, and X2
"Unimportant": the remainder
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5.5.9.7. |Effects| plot

Purpose The |effects| plot answers the question:

What are the important factors (including interactions)?

Quantitatively, the question as to what is the estimated effect of a given factor or
interaction and what is its rank relative to other factors and interactions is answered
via the least squares estimation criterion (that is, forming effect estimates that
minimize the sum of the squared differences between the raw data and the fitted
values from such estimates). Based on such an estimation criterion, one could then
construct a tabular list of the factors and interactions ordered by the effect
magnitude.

The |effects| plot provides a graphical representation of these ordered estimates,
Pareto-style from largest to smallest.

The |effects| plot, as presented here, yields both of the above: the plot itself, and the
ranked list table. Further, the plot also presents auxiliary confounding information,
which is necessary in forming valid conclusions for fractional factorial designs.

Output The output of the |effects| plot is:

1. Primary: A ranked list of important effects (and interactions). For full factorial
designs, interactions include the full complement of interactions at all orders;
for fractional factorial designs, interactions include only some, and
occasionally none, of the actual interactions.

2. Secondary: Grouping of factors (and interactions) into two categories:
important and unimportant.

Definition The |effects| plot is formed by:

Vertical Axis: Ordered (largest to smallest) absolute value of the estimated
effects for the main factors and for (available) interactions. For n data points
(no replication), typically (n-1) effects will be estimated and the (n-1) |effects|
will be plotted.

Horizontal Axis : Factor/interaction identification:
1 indicates factor X1;
2 indicates factor X2;
...
12 indicates the 2-factor X1*X2 interaction

http://www.itl.nist.gov/div898/handbook/index.htm
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123 indicates the 3-factor X1*X2*X3 interaction,
etc.

Far right margin : Factor/interaction identification (built-in redundancy):
1 indicates factor X1;
2 indicates factor X2;
...
12 indicates the 2-factor X1*X2 interaction
123 indicates the 3-factor X1*X2*X3 interaction,
etc.

If the design is a fractional factorial,the confounding structure is provided for
main factors and 2-factor interactions.

Upper right table: Ranked (largest to smallest by magnitude) list of the least
squares estimates for the main effects and for (available) interactions.

As before, if the design is a fractional factorial, the confounding structure is
provided for main factors and 2-factor interactions.

The estimated effects that form the basis for the vertical axis are optimal in the least
squares sense. No other estimators exist that will yield a smaller sum of squared
deviations between the raw data and the fitted values based on these estimates.

For both the 2k full factorial designs and 2k-p fractional factorial designs, the form
for the least squares estimate of the factor i effect, the 2-factor interaction effect,
and the multi-factor interaction effect has the following simple form:

factor i effect = (+) - (-) 
2-factor interaction effect = (+) - (-) 
multi-factor interaction effect = (+) - (-)

with (+) denoting the average of all response values for which factor i (or the 2-
factor or multi-factor interaction) takes on a "+" value, and (-) denoting the
average of all response values for which factor i (or the 2-factor or multi-factor
interaction) takes on a "-" value.

The essence of the above simplification is that the 2-level full and fractional
factorial designs are all orthogonal in nature, and so all off-diagonal terms in the
least squares X'X matrix vanish.

Motivation Because of the difference-of-means definition of the least squares estimates, and
because of the fact that all factors (and interactions) are standardized by taking on
values of -1 and +1 (simplified to - and +), the resulting estimates are all on the
same scale. Therefore, comparing and ranking the estimates based on magnitude
makes eminently good sense.

Moreover, since the sign of each estimate is completely arbitrary and will reverse
depending on how the initial assignments were made (e.g., we could assign "-" to
treatment A and "+" to treatment B or just as easily assign "+" to treatment A and "-
" to treatment B), forming a ranking based on magnitudes (as opposed to signed
effects) is preferred.

Given that, the ultimate and definitive ranking of factor and interaction effects will
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be made based on the ranked (magnitude) list of such least squares estimates. Such
rankings are given graphically, Pareto-style, within the plot; the rankings are given
quantitatively by the tableau in the upper right region of the plot. For the case when
we have fractional (versus full) factorial designs, the upper right tableau also gives
the confounding structure for whatever design was used.

If a factor is important, the "+" average will be considerably different from the "-"
average, and so the absolute value of the difference will be large. Conversely,
unimportant factors have small differences in the averages, and so the absolute value
will be small.

We choose to form a Pareto chart of such |effects|. In the Pareto chart, the largest
effects (most important factors) will be presented first (to the left) and then progress
down to the smallest effects (least important) factors to the right.

Plot for
defective
springs
data

Applying the |effects| plot to the defective springs data yields the following plot.

How to
interpret

From the |effects| plot, we look for the following:

1. The ranked list of factors (including interactions) is given by the left-to-right
order of the spikes. These spikes should be of decreasing height as we move
from left to right. Note the factor identifier associated with each of these bars.

2. Identify the important factors. Forming the ranked list of factors is important,
but is only half of the analysis. The second part of the analysis is to take the
ranking and "draw the (horizontal) line" in the list and on the graph so that
factors above the line are deemed "important while factors below the line are
deemed unimportant.

http://www.itl.nist.gov/div898/handbook/pri/section5/gifs/effects.gif
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Since factor effects are frequently a continuum ranging from the very large
through the moderate and down to the very small, the separation of all such
factors into two groups (important and unimportant) may seem arbitrary and
severe. However, in practice, from both a research funding and a modeling
point of view, such a bifurcation is both common and necessary.

From an engineering research-funding point of view, one must frequently
focus on a subset of factors for future research, attention, and money, and
thereby necessarily set aside other factors from any further consideration.
From a model-building point of view, a final model either has a term in it or it
does not--there is no middle ground. Parsimonious models require in-or-out
decisions. It goes without saying that as soon as we have identified the
important factors, these are the factors that will comprise our (parsimonious)
good model, and those that are declared as unimportant will not be in the
model.

Given that, where does such a bifurcation line go?

There are four ways, each discussed in turn, to draw such a line:

1. Statistical significance;
2. Engineering significance;
3. Numerical significance; and
4. Pattern significance.

The ranked list and segregation of factors derived from the |effects| plot are to be
compared with the ranked list of factors obtained in previous steps. Invariably, there
will be a considerable degree of consistency exhibited across all of the techniques.

Conclusions
for the
defective
springs
data

The application of the |effects| plot to the defective springs data set results in the
following conclusions:

1. Ranked list of factors (including interactions):
1. X1 (most important)
2. X1*X3 (next most important)
3. X2
4. other factors are of lesser importance

2. Separation of factors into important/unimportant categories:
Important: X1, X1*X3, and X2
Unimportant: the remainder
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5.5.9.7.1. Statistical significance

Formal
statistical
methods

Formal statistical methods to answer the question of
statistical significance commonly involve the use of

ANOVA (analysis of variance); and
t-based confidence intervals for the effects.

ANOVA The virtue of ANOVA is that it is a powerful, flexible tool
with many applications. The drawback of ANOVA is that

it is heavily quantitative and non-intuitive;
it must have an assumed underlying model; and
its validity depends on assumptions of a constant
error variance and normality of the errors.

t confidence
intervals

T confidence intervals for the effects, using the t-
distribution, are also heavily used for determining factor
significance. As part of the t approach, one first needs to
determine sd(effect), the standard deviation of an effect.
For 2-level full and fractional factorial designs, such a
standard deviation is related to , the standard deviation of
an observation under fixed conditions, via the formula:

which in turn leads to forming 95% confidence intervals
for an effect via

c * sd(effect)

for an appropriate multiple c (from the t distribution). Thus
in the context of the |effects| plot, "drawing the line" at c *
sd(effect) would serve to separate, as desired, the list of
effects into 2 domains:

significant (that is, important); and
not significant (that is, unimportant).
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Estimating
sd(effect)

The key in the above approach is to determine an estimate
for sd(effect). Three statistical approaches are common:

1. Prior knowledge about :

If  is known, we can compute sd(effect) from the
above expression and make use of a conservative
(normal-based) 95% confidence interval by drawing
the line at

This method is rarely used in practice because  is
rarely known.

2. Replication in the experimental design:

Replication will allow  to be estimated from the
data without depending on the correctness of a
deterministic model. This is a real benefit. On the
other hand, the downside of such replication is that it
increases the number of runs, time, and expense of
the experiment. If replication can be afforded, this
method should be used. In such a case, the analyst
separates important from unimportant terms by
drawing the line at

with t denoting the 97.5 percent point from the
appropriate Student's-t distribution.

3. Assume 3-factor interactions and higher are zero:

This approach "assumes away" all 3-factor
interactions and higher and uses the data pertaining
to these interactions to estimate . Specifically,

with h denoting the number of 3-factor interactions
and higher, and SSQ is the sum of squares for these
higher-order effects. The analyst separates important
from unimportant effects by drawing the line at

with t denoting the 97.5 percent point from the
appropriate (with h degrees of freedom) Student's-t
distribution.
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This method warrants caution:

it involves an untestable assumption (that such
interactions = 0);
it can result in an estimate for sd(effect) based
on few terms (even a single term); and
it is virtually unusable for highly-fractionated
designs (since high-order interactions are not
directly estimable).

Non-
statistical
considerations

The above statistical methods can and should be used.
Additionally, the non-statistical considerations discussed in
the next few sections are frequently insightful in practice
and have their place in the EDA approach as advocated
here.
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5.5.9.7.2. Engineering significance

Engineering
cutoff

Draw the horizontal line on the chart at that value which you
as an engineer have declared beforehand as the engineering
cutoff. Any effect larger than this cutoff will be considered
as significant from an engineering point of view.

Specifying a
cutoff value
requires
non-
statistical
thinking,
but is
frequently
useful

This approach requires preliminary, data-free thinking on the
part of the analyst as to how big (= what number?) an effect
(any effect) must be before the analyst would "care" as an
engineer/scientist? In other words, in the units of the
response variable, how much would the response variable
have to change consistently before the analyst would say
"that's a big enough change for me from an engineering point
of view"? An engineering number, a cutoff value, is needed
here. This value is non-statistical; thie value must emanate
from the engineer's head.

If upon reflection the analyst does not have such a value in
mind, this "engineering significance" approach would be set
aside. From experience, it has been found that the
engineering soul-searching that goes into evoking such a
cutoff value is frequently useful and should be part of the
decision process, independent of statistical considerations, of
separating the effects into important/unimportant categories.

A rough
engineering
cutoff

In the absence of a known engineering cutoff, a rough cutoff
value is commonly 5 % or 10 % of the average (or current)
production response for the system. Thus, if a chemical
reaction production process is yielding a reaction rate of
about 70, then 
5 % of 70 = 3. The engineer may declare any future effect
that causes an average change of 3 or more units in the
response (that is, any estimated effect whose magnitude
exceeds 3) to be "engineering significant". In the context of
the |effects| plot, the engineer would draw the line at a height
of 3 on the plot, and all effects that are above the line are
delared as significant and all below the line are declared not
significant.
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5.5.9.7.3. Numerical significance

10 % of
the largest
effect

Note the height of the largest bar (= the magnitude of the
largest effect). Declare as "significant" any effect that exceeds
10 % of the largest effect. The 10 % is arbitrary and has no
statistical (or engineering) basis, but it does have a "numeric"
basis in that it results in keeping the largest effect and any
effects that are within 90 % of the largest effect.

Apply with
caution

As with any rule-of-thumb, some caution should be used in
applying this critierion. Specifically, if the largest effect is in
fact not very large, this rule-of-thumb may not be useful.
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5.5.9.7.4. Pattern significance

Look for
L-shaped
pattern

The |effects| plot has a characteristic horizontally-elongated L-
shaped pattern. The vertical arm of the L consists of important
factors. The horizontal arm is comprised of unimportant
factors. If a factor is important, the bar height will be large
and succeeding bar heights may drop off considerably
(perhaps by 50 %)--such factors make up the left arm of the L.
On the other hand, if a factor is not important, its bar height
will tend to be small and near-zero--such factors make up the
bottom arm of the L. It is of interest to note where the kink is
in the L. Factors to the left of that kink are arguably declared
important while factors at the kink point and to the right of it
are declared unimportant.

Factor
labels

As a consequence of this "kinking", note the labels on the far
right margin of the plot. Factors to the left and above the kink
point tend to have far-right labels distinct and isolated. Factors
at, to the right, and below the kink point tend to have far right
labels that are overstruck and hard to read. A (rough) rule-of-
thumb would then be to declare as important those
factors/interactions whose far-right labels are easy to
distinguish, and to declare as unimportant those
factors/interactions whose far-right labels are overwritten and
hard to distinguish.
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5.5.9.8. Half-normal probability plot

Purpose The half-normal probability plot answers the question:

What are the important factors (including interactions)?

Quantitatively, the estimated effect of a given main effect or interaction and its rank
relative to other main effects and interactions is given via least squares estimation
(that is, forming effect estimates that minimize the sum of the squared differences
between raw data and the fitted values from such estimates). Having such estimates
in hand, one could then construct a list of the main effects and interactions ordered
by the effect magnitude.

The half-normal probability plot is a graphical tool that uses these ordered estimated
effects to help assess which factors are important and which are unimportant.

A half-normal distribution is the distribution of the |X| with X having a normal
distribution.

Output The outputs from the half-normal probablity plot are

1. Primary: Grouping of factors and interactions into two categories: important
and unimportant. For full factorial designs, interactions include the full
complement of interactions of all orders; for fractional factorial designs,
interactions include only some, and occasionally none, of the actual
interactions (when they aren't estimable).

2. Secondary: Ranked list of factors and interactions from most important down
to least important.

Definition A half-normal probability plot is formed by

Vertical Axis: Ordered (largest to smallest) absolute value of the estimated
effects for the main factors and available interactions. If n data points (no
replication) have been collected, then typically (n-1) effects will be estimated
and the (n-1) |effects| will be plotted.

Horizontal Axis: (n-1) theoretical order statistic medians from a half-normal
distribution. These (n-1) values are not data-dependent. They depend only on
the half-normal distribution and the number of items plotted (= n-1). The
theoretical medians represent an "ideal" typical ordered data set that would
have been obtained from a random drawing of (n-1) samples from a half-
normal distribution.
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Far right margin : Factor/interaction identification:
1 indicates factor X1;
2 indicates factor X2;
...
12 indicates the 2-factor X1*X2 interaction
123 indicates the 3-factor X1*X2*X3 interaction,
etc.

If the design is a fractional factorial, the confounding structure is provided for
main effects and 2-factor interactions.

Motivation To provide a rationale for the half-normal probability plot, we first dicuss the
motivation for the normal probability plot (which also finds frequent use in these 2-
level designs).

The basis for the normal probability plot is the mathematical form for each (and all)
of the estimated effects. As discussed for the |effects| plot, the estimated effects are
the optimal least squares estimates. Because of the orthogonality of the 2k full
factorial and the 2k-p fractional factorial designs, all least squares estimators for
main effects and interactions simplify to the form:

estimated effect = (+) - (-)

with (+) the average of all response values for which the factor or interaction takes
on a "+" value, and where (-) is the average of all response values for which the
factor or interaction takes on a "-" value.

Under rather general conditions, the Central Limit Thereom allows that the
difference-of-sums form for the estimated effects tends to follow a normal
distribution (for a large enough sample size n) a normal distribution.

The question arises as to what normal distribution; that is, a normal distribution with
what mean and what standard deviation? Since all estimators have an identical form
(a difference of averages), the standard deviations, though unknown, will in fact be
the same under the assumption of constant . This is good in that it simplifies the
normality analysis.

As for the means, however, there will be differences from one effect to the next, and
these differences depend on whether a factor is unimportant or important.
Unimportant factors are those that have near-zero effects and important factors are
those whose effects are considerably removed from zero. Thus, unimportant effects
tend to have a normal distribution centered near zero while important effects tend
to have a normal distribution centered at their respective true large (but unknown)
effect values.

In the simplest experimental case, if the experiment were such that no factors were
important (that is, all effects were near zero), the (n-1) estimated effects would
behave like random drawings from a normal distribution centered at zero. We can
test for such normality (and hence test for a null-effect experiment) by using the
normal probability plot. Normal probability plots are easy to interpret. In simplest
terms:
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if linear, then normal

If the normal probability plot of the (n-1) estimated effects is linear, this implies that
all of the true (unknown) effects are zero or near-zero. That is, no factor is
important.

On the other hand, if the truth behind the experiment is that there is exactly one
factor that was important (that is, significantly non-zero), and all remaining factors
are unimportant (that is, near-zero), then the normal probability plot of all (n-1)
effects is near-linear for the (n-2) unimportant factors and the remaining single
important factor would stand well off the line.

Similarly, if the experiment were such that some subset of factors were important
and all remaining factors were unimportant, then the normal probability plot of all
(n-1) effects would be near-linear for all unimportant factors with the remaining
important factors all well off the line.

In real life, with the number of important factors unknown, this suggests that one
could form a normal probability plot of the (n-1) estimated effects and draw a line
through those (unimportant) effects in the vicinity of zero. This identifies and
extracts all remaining effects off the line and declares them as important.

The above rationale and methodology works well in practice, with the net effect that
the normal probability plot of the effects is an important, commonly used and
successfully employed tool for identifying important factors in 2-level full and
factorial experiments. Following the lead of Cuthbert Daniel (1976), we augment the
methodology and arrive at a further improvement. Specifically, the sign of each
estimate is completely arbitrary and will reverse depending on how the initial
assignments were made (e.g., we could assign "-" to treatment A and "+" to
treatment B or just as easily assign "+" to treatment A and "-" to treatment B).

This arbitrariness is addressed by dealing with the effect magnitudes rather than the
signed effects. If the signed effects follow a normal distribution, the absolute values
of the effects follow a half-normal distribution.

In this new context, one tests for important versus unimportant factors by generating
a half-normal probability plot of the absolute value of the effects. As before,
linearity implies half-normality, which in turn implies all factors are unimportant.
More typically, however, the half-normal probability plot will be only partially
linear. Unimportant (that is, near-zero) effects manifest themselves as being near
zero and on a line while important (that is, large) effects manifest themselves by
being off the line and well-displaced from zero.

Plot for
defective
springs
data

The half-normal probability plot of the effects for the defectice springs data set is as
follows.
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How to
interpret

From the half-normal probability plot, we look for the following:

1. Identifying Important Factors:

Determining the subset of important factors is the most important task of the
half-normal probability plot of |effects|. As discussed above, the estimated
|effect| of an unimportant factor will typically be on or close to a near-zero
line, while the estimated |effect| of an important factor will typically be
displaced well off the line.

The separation of factors into important/unimportant categories is thus done by
answering the question:

Which points on the half-normal probability plot of |effects| are large
and well-off the linear collection of points drawn in the vicinity of the
origin?

This line of unimportant factors typically encompasses the majority of the
points on the plot. The procedure consists, therefore, of the following:

1. identifying this line of near-zero (unimportant) factors; then
2. declaring the remaining off-line factors as important.

Note that the half-normal probability plot of |effects| and the |effects| plot
have the same vertical axis; namely, the ordered |effects|, so the following
discussion about right-margin factor identifiers is relevant to both plots. As a
consequence of the natural on-line/off-line segregation of the |effects| in half-
normal probability plots, factors off-line tend to have far-right labels that are
distinct and isolated while factors near the line tend to have far-right labels
that are overstruck and hard to read. The rough rule-of-thumb would then be

http://www.itl.nist.gov/div898/handbook/pri/section5/gifs/halfnorm.gif
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to declare as important those factors/interactions whose far-right labels are
easy to distinguish and to declare as unimportant those factors/interactions
whose far-right labels are overwritten and hard to distinguish.

2. Ranked List of Factors (including interactions):

This is a minor objective of the half-normal probability plot (it is better done
via the |effects| plot). To determine the ranked list of factors from a half-
normal probability plot, simply scan the vertical axis |effects|

1. Which |effect| is largest? Note the factor identifier associated with this
largest |effect| (this is the "most important factor").

2. Which |effect| is next in size? Note the factor identifier associated with
this next largest |effect| (this is the "second most important factor").

3. Continue for the remaining factors. In practice, the bottom end of the
ranked list (the unimportant factors) will be hard to extract because of
overstriking, but the top end of the ranked list (the important factors)
will be easy to determine.

In summary, it should be noted that since the signs of the estimated effects are
arbitrary, we recommend the use of the half-normal probability plot of |effects|
technique over the normal probability plot of the |effects|. These probability plots
are among the most commonly-employed EDA procedure for identification of
important factors in 2-level full and factorial designs. The half-normal probability
plot enjoys widespread usage across both "classical" and Taguchi camps. It
deservedly plays an important role in our recommended 10-step graphical procedure
for the analysis of 2-level designed experiments.

Conclusions
for the
defective
springs
data

The application of the half-normal probability plot to the defective springs data set
results in the following conclusions:

1. Ranked list of factors (including interactions):
1. X1 (most important)
2. X1*X3 (next most important)
3. X2
4. other factors are of lesser importance

2. Separation of factors into important/unimportant categories:
Important: X1, X1*X3, and X2
Unimportant: the remainder
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5.5.9.9. Cumulative residual standard deviation plot

Purpose The cumulative residual sd (standard deviation) plot answers the question:

What is a good model for the data?

The prior 8 steps in this analysis sequence addressed the two important goals:

1. Factors: determining the most important factors that affect the response, and
2. Settings: determining the best settings for these factors.

In addition to the above, a third goal is of interest:

3. Model: determining a model (that is, a prediction equation) that functionally
relates the observed response Y with the various main effects and interactions.

Such a function makes particular sense when all of the individual factors are
continuous and ordinal (such as temperature, pressure, humidity, concentration, etc.)
as opposed to any of the factors being discrete and non-ordinal (such as plant,
operator, catalyst, supplier).

In the continuous-factor case, the analyst could use such a function for the
following purposes.

1. Reproduction/Smoothing: predict the response at the observed design points.
2. Interpolation: predict what the response would be at (unobserved) regions

between the design points.
3. Extrapolation: predict what the response would be at (unobserved) regions

beyond the design points.

For the discrete-factor case, the methods developed below to arrive at such a
function still apply, and so the resulting model may be used for reproduction.
However, the interpolation and extrapolation aspects do not apply.

In modeling, we seek a function f in the k factors X1, X2, ..., Xk such that the
predicted values

are "close" to the observed raw data values Y. To this end, two tasks exist:

1. Determine a good functional form f;
2. Determine good estimates for the coefficients in that function f.

For example, if we had two factors X1 and X2, our goal would be to

http://www.itl.nist.gov/div898/handbook/index.htm
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1. determine some function f(X1,X2); and
2. estimate the parameters in f

such that the resulting model would yield predicted values  that are as close as
possible to the observed response values Y. If the form f has been wisely chosen, a
good model will result and that model will have the characteristic that the
differences ("residuals" = Y - ) will be uniformly near zero. On the other hand, a
poor model (from a poor choice of the form f) will have the characteristic that some
or all of the residuals will be "large".

For a given model, a statistic that summarizes the quality of the fit via the typical
size of the n residuals is the residual standard deviation:

with p denoting the number of terms in the model (including the constant term) and
r denoting the ith residual. We are also assuming that the mean of the residuals is
zero, which will be the case for models with a constant term that are fit using least
squares.

If we have a good-fitting model, sres will be small. If we have a poor-fitting model,
sres will be large.

For a given data set, each proposed model has its own quality of fit, and hence its
own residual standard deviation. Clearly, the residual standard deviation is more of a
model-descriptor than a data-descriptor. Whereas "nature" creates the data, the
analyst creates the models. Theoretically, for the same data set, it is possible for the
analyst to propose an indefinitely large number of models.

In practice, however, an analyst usually forwards only a small, finite number of
plausible models for consideration. Each model will have its own residual standard
deviation. The cumulative residual standard deviation plot is simply a graphical
representation of this collection of residual standard deviations for various models.
The plot is beneficial in that

1. good models are distinguished from bad models;
2. simple good models are distinguished from complicated good models.

In summary, then, the cumulative residual standard deviation plot is a graphical tool
to help assess

1. which models are poor (least desirable); and
2. which models are good but complex (more desirable); and
3. which models are good and simple (most desirable).

Output The outputs from the cumulative residual standard deviation plot are

1. Primary: A good-fitting prediction equation consisting of an additive constant
plus the most important main effects and interactions.
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2. Secondary: The residual standard deviation for this good-fitting model.

Definition A cumulative residual sd plot is formed by

1. Vertical Axis: Ordered (largest to smallest) residual standard deviations of a
sequence of progressively more complicated fitted models.

2. Horizontal Axis: Factor/interaction identification of the last term included into
the linear model:

1 indicates factor X1; 
2 indicates factor X2; 
... 
12 indicates the 2-factor X1*X2 interaction 
123 indicates the 3-factor X1*X2*X3 interaction 
etc.

3. Far right margin: Factor/interaction identification (built-in redundancy):

1 indicates factor X1; 
2 indicates factor X2; 
... 
12 indicates the 2-factor X1*X2 interaction 
123 indicates the 3-factor X1*X2*X3 interaction 
etc.

If the design is a fractional factorial, the confounding structure is provided for
main effects and 2-factor interactions.

The cumulative residual standard deviations plot is thus a Pareto-style, largest to
smallest, graphical summary of residual standard deviations for a selected series of
progressively more complicated linear models.

The plot shows, from left to right, a model with only a constant and the model then
augmented by including, one at a time, remaining factors and interactions. Each
factor and interaction is incorporated into the model in an additive (rather than in a
multiplicative or logarithmic or power, etc. fashion). At any stage, the ordering of
the next term to be added to the model is such that it will result in the maximal
decrease in the resulting residual standard deviation.

Motivation This section addresses the following questions:

1. What is a model?
2. How do we select a goodness-of-fit metric for a model?
3. How do we construct a good model?
4. How do we know when to stop adding terms?
5. What is the final form for the model?
6. What are the advantages of the linear model?
7. How do we use the model to generate predicted values?
8. How do we use the model beyond the data domain?
9. What is the best confirmation point for interpolation?

10. How do we use the model for interpolation?
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11. How do we use the model for extrapolation?

Plot for
defective
springs
data

Applying the cumulative residual standard deviation plot to the defective springs
data set yields the following plot.

How to
interpret

As discussed in detail under question 4 in the Motivation section, the cumulative
residual standard deviation "curve" will characteristically decrease left to right as we
add more terms to the model. The incremental improvement (decrease) tends to be
large at the beginning when important factors are being added, but then the decrease
tends to be marginal at the end as unimportant factors are being added.

Including all terms would yield a perfect fit (residual standard deviation = 0) but
would also result in an unwieldy model. Including only the first term (the average)
would yield a simple model (only one term!) but typically will fit poorly. Although a
formal quantitative stopping rule can be developed based on statistical theory, a less-
rigorous (but good) alternative stopping rule that is graphical, easy to use, and
highly effective in practice is as follows:

Keep adding terms to the model until the curve's "elbow" is encountered. The
"elbow point" is that value in which there is a consistent, noticeably shallower
slope (decrease) in the curve. Include all terms up to (and including) the elbow
point (after all, each of these included terms decreased the residual standard
deviation by a large amount). Exclude any terms after the elbow point since
all such successive terms decreased the residual standard deviation so slowly
that the terms were "not worth the complication of keeping".

From the residual standard deviation plot for the defective springs data, we note the
following:

http://www.itl.nist.gov/div898/handbook/pri/section5/gifs/cumressd.gif
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1. The residual standard deviation (rsd) for the "baseline" model

is sres = 13.7.

2. As we add the next term, X1, the rsd drops nearly 7 units (from 13.7 to 6.6).

3. If we add the term X1*X3, the rsd drops another 3 units (from 6.6 to 3.4).

4. If we add the term X2, the rsd drops another 2 units (from 3.4 to 1.5).

5. When the term X3 is added, the reduction in the rsd (from about 1.5 to 1.3) is
negligible.

6. Thereafter to the end, the total reduction in the rsd is from only 1.3 to 0.

In step 5, note that when we have effects of equal magnitude (the X3 effect is equal
to the X1*X2 interaction effect), we prefer including a main effect before an
interaction effect and a lower-order interaction effect before a higher-order
interaction effect.

In this case, the "kink" in the residual standard deviation curve is at the X2 term.
Prior to that, all added terms (including X2) reduced the rsd by a large amount (7,
then 3, then 2). After the addition of X2, the reduction in the rsd was small (all less
than 1): 0.2, then 0.8, then 0.5, then 0.

The final recommended model in this case thus involves p = 4 terms:

1. the average
2. factor X1
3. the X1*X3 interaction
4. factor X2

The fitted model thus takes on the form

 = average + B1*X1 + B13*X1*X3 + B2*X2

The least-squares estimates for the coefficients in this model are

average = 71.25 
B1 = 11.5 
B13 = 5 
B2 = -2.5

The B1 = 11.5, B13 = 5, and B2 = -2.5 least-squares values are, of course, one half of
the estimated effects E1 = 23, E13 = 10, and E2 = -5. Effects, calculated as (+1) - 

(-1), were previously derived in step 7 of the recommended 10-step DOE analysis
procedure.

The final fitted model is thus
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 = 71.25 + 11.5*X1 + 5*X1*X3 - 2.5*X2

Applying this prediction equation to the 8 design points yields: predicted values 
that are close to the data Y, and residuals (Res = Y - ) that are close to zero:

X1 X2 X3 Y Res
- - - 67 67.25 -0.25
+ - - 79 80.25 -1.25
- + - 61 62.25 -1.25
+ + - 75 75.25 -0.25
- - + 59 57.25 +1.75
+ - + 90 90.25 -0.25
- + + 52 52.25 -0.25
+ + + 87 85.25 +1.75

Computing the residual standard deviation:

with n = 8 data points, and p = 4 estimated coefficients (including the average)
yields

sres = 1.54 (or 1.5 if rounded to 1 decimal place)

The detailed sres = 1.54 calculation brings us full circle, for 1.54 is the value given
above the X3 term on the cumulative residual standard deviation plot.

Conclusions
for the
defective
springs
data

The application of the Cumulative Residual Standard Deviation Plot to the defective
springs data set results in the following conclusions:

1. Good-fitting Parsimonious (constant + 3 terms) Model:

 = 71.25 + 11.5*X1 + 5*X1*X3 - 2.5*X2

2. Residual Standard Deviation for this Model (as a measure of the goodness-of-
fit for the model):

sres = 1.54
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5.5.9.9.1. Motivation: What is a Model?

Mathematical
models:
functional
form and
coefficients

A model is a mathematical function that relates the response
Y to the factors X1 to Xk. A model has a

1. functional form; and
2. coefficients.

An excellent and easy-to-use functional form that we find
particularly useful is a linear combination of the main
effects and the interactions (the selected model is a subset
of the full model and almost always a proper subset). The
coefficients in this linear model are easy to obtain via
application of the least squares estimation criterion
(regression). A given functional form with estimated
coefficients is referred to as a "fitted model" or a
"prediction equation".

Predicted
values and
residuals

For given settings of the factors X1 to Xk, a fitted model will
yield predicted values. For each (and every) setting of the
Xi's, a "perfect-fit" model is one in which the predicted
values are identical to the observed responses Y at these
Xi's. In other words, a perfect-fit model would yield a
vector of predicted values identical to the observed vector
of response values. For these same Xi's, a "good-fitting"
model is one that yields predicted values "acceptably near",
but not necessarily identical to, the observed responses Y.

The residuals (= deviations = error) of a model are the
vector of differences (Y - ) between the responses and the
predicted values from the model. For a perfect-fit model,
the vector of residuals would be all zeros. For a good-fitting
model, the vector of residuals will be acceptably (from an
engineering point of view) close to zero.
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5.5.9.9.2. Motivation: How do we Construct a
Goodness-of-fit Metric for a Model?

Motivation This question deals with the issue of how to construct a
metric, a statistic, that may be used to ascertain the quality of
the fitted model. The statistic should be such that for one range
of values, the implication is that the model is good, whereas
for another range of values, the implication is that the model
gives a poor fit.

Sum of
absolute
residuals

Since a model's adequacy is inversely related to the size of its
residuals, one obvious statistic is the sum of the absolute
residuals.

Clearly, for a fixed n,the smaller this sum is, the smaller are
the residuals, which implies the closer the predicted values are
to the raw data Y, and hence the better the fitted model. The
primary disadvantage of this statistic is that it may grow larger
simply as the sample size n grows larger.

Average
absolute
residual

A better metric that does not change (much) with increasing
sample size is the average absolute residual:

with n denoting the number of response values. Again, small
values for this statistic imply better-fitting models.

Square
root of the
average
squared
residual

An alternative, but similar, metric that has better statistical
properties is the square root of the average squared residual.

As with the previous statistic, the smaller this statistic, the
better the model.
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Residual
standard
deviation

Our final metric, which is used directly in inferential statistics,
is the residual standard deviation

with p denoting the number of fitted coefficients in the model.
This statistic is the standard deviation of the residuals from a
given model. The smaller is this residual standard deviation,
the better fitting is the model. We shall use the residual
standard deviation as our metric of choice for evaluating and
comparing various proposed models.
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5.5.9.9.3. Motivation: How do we Construct a
Good Model?

Models for
2k and 2k-p

designs

Given that we have a statistic to measure the quality of a
model, any model, we move to the question of how to
construct reasonable models for fitting data from 2k and 2k-p

designs.

Initial
simple
model

The simplest such proposed model is

that is, the response Y = a constant + random error. This
trivial model says that all of the factors (and interactions) are
in fact worthless for prediction and so the best-fit model is
one that consists of a simple horizontal straight line through
the body of the data. The least squares estimate for this
constant c in the above model is the sample mean . The
prediction equation for this model is thus

The predicted values  for this fitted trivial model are thus
given by a vector consisting of the same value (namely )
throughout. The residual vector for this model will thus
simplify to simple deviations from the mean:

Since the number of fitted coefficients in this model is 1
(namely the constant c), the residual standard deviation is the
following:

which is of course the familiar, commonly employed sample
standard deviation. If the residual standard deviation for this
trivial model were "small enough", then we could terminate
the model-building process right there with no further
inclusion of terms. In practice, however, this trivial model
does not yield a residual standard deviation that is small
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enough (because the common value  will not be close
enough to some of the raw responses Y) and so the model
must be augmented--but how?

Next-step
model

The logical next-step proposed model will consist of the
above additive constant plus some term that will improve the
predicted values the most. This will equivalently reduce the
residuals the most and thus reduce the residual standard
deviation the most.

Using the
most
important
effects

As it turns out, it is a mathematical fact that the factor or
interaction that has the largest estimated effect

will necessarily, after being included in the model, yield the
"biggest bang for the buck" in terms of improving the
predicted values toward the response values Y. Hence at this
point the model-building process and the effect estimation
process merge.

In the previous steps in our analysis, we developed a ranked
list of factors and interactions. We thus have a ready-made
ordering of the terms that could be added, one at a time, to the
model. This ranked list of effects is precisely what we need to
cumulatively build more complicated, but better fitting,
models.

Step
through
the ranked
list of
factors

Our procedure will thus be to step through, one by one, the
ranked list of effects, cumulatively augmenting our current
model by the next term in the list, and then compute (for all n
design points) the predicted values, residuals, and residual
standard deviation. We continue this one-term-at-a-time
augmentation until the predicted values are acceptably close to
the observed responses Y (and hence the residuals and residual
standard deviation become acceptably close to zero).

Starting with the simple average, each cumulative model in
this iteration process will have its own associated residual
standard deviation. In practice, the iteration continues until the
residual standard deviations become sufficiently small.

Cumulative
residual
standard
deviation
plot

The cumulative residual standard deviation plot is a graphical
summary of the above model-building process. On the
horizontal axis is a series of terms (starting with the average,
and continuing on with various main effects and interactions).
After the average, the ordering of terms on the horizontal axis
is identical to the ordering of terms based on the half-normal
probability plot ranking based on effect magnitude.

On the vertical axis is the corresponding residual standard
deviation that results when the cumulative model has its
coefficients fitted via least squares, and then has its predicted
values, residuals, and residual standard deviations computed.
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The first residual standard deviation (on the far left of the
cumulative residual standard deviation plot) is that which
results from the model consisting of

1. the average.

The second residual standard deviation plotted is from the
model consisting of

1. the average, plus
2. the term with the largest |effect|.

The third residual standard deviation plotted is from the model
consisting of

1. the average, plus
2. the term with the largest |effect|, plus
3. the term with the second largest |effect|.

and so forth.
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5.5.9.9.4. Motivation: How do we Know When
to Stop Adding Terms?

Cumulative
residual
standard
deviation
plot
typically
has a
hockey
stick
appearance

Proceeding left to right, as we add more terms to the model,
the cumulative residual standard deviation "curve" will
typically decrease. At the beginning (on the left), as we add
large-effect terms, the decrease from one residual standard
deviation to the next residual standard deviation will be large.
The incremental improvement (decrease) then tends to drop
off slightly. At some point the incremental improvement will
typically slacken off considerably. Appearance-wise, it is thus
very typical for such a curve to have a "hockey stick"
appearance:

1. starting with a series of large decrements between
successive residual standard deviations; then

2. hitting an elbow; then

3. having a series of gradual decrements thereafter.

Stopping
rule

The cumulative residual standard deviation plot provides a
visual answer to the question:

What is a good model?

by answering the related question:

When do we stop adding terms to the cumulative
model?

Graphically, the most common stopping rule for adding terms
is to cease immediately upon encountering the "elbow". We
include all terms up to and including the elbow point since
each of these terms decreased the residual standard deviation
by a large amount. However, we exclude any terms afterward
since these terms do not decrease the residual standard
deviation fast enough to warrant inclusion in the model.
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5.5.9.9.5. Motivation: What is the Form of the
Model?

Models for
various
values of k

From the above discussion, we thus note and recommend a
form of the model that consists of an additive constant plus a
linear combination of main effects and interactions. What
then is the specific form for the linear combination?

The following are the full models for various values of k.
The selected final model will be a subset of the full model.

For the k = 1 factor case:

Y = f(X1) + ε = c + B1·X1 + ε

For the k = 2 factor case:

Y = f(X1,X2) + ε
  = c + B1·X1 + B2·X2 + 
B12·X1·X2 + ε

For the k = 3 factor case:

Y = f(X1,X2,X3) + ε
  = c + B1·X1 + B2·X2 + B3·X3 
+ B12·X1·X2 + B13·X1·X3 + 
    B23·X2·X3 + B123·X1·X2·X2 
+ ε

and for the general k case:

Y = f(X1,X2, ..., Xk) + ε
  = c + (linear combination 
of all main effects and all 
interactions) + ε

Note that the model equations shown above include
coefficients that represent the change in Y for a one-unit
change in Xi. To obtain an effect estimate, which represents a
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two-unit change in Xi if the levels of Xi are +1 and -1, simply
multiply the coefficient by two.

Ordered
linear
combination

The listing above has the terms ordered with the main effects,
then the 2-factor interactions, then the 3-factor interactions,
etc. In practice, it is recommended that the terms be ordered
by importance (whether they be main effects or interactions).
Aside from providing a functional representation of the
response, models should help reinforce what is driving the
response, which such a re-ordering does. Thus for k = 2, if
factor 2 is most important, the 2-factor interaction is next in
importance, and factor 1 is least important, then it is
recommended that the above ordering of

Y = f(X1,X2) + ε
  = c + B1·X1 + B2·X2 + 
B12·X1·X2 + ε

be rewritten as

Y = f(X1,X2) + ε
  = c + B2·X2 + B12·X1·X2 + 
B1·X1 + ε
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5.5.9.9.6. Motivation: What are the Advantages
of the Linear Combinatoric Model?

Advantages:
perfect fit
and
comparable
coefficients

The linear model consisting of main effects and all
interactions has two advantages:

1. Perfect Fit: If we choose to include in the model all of
the main effects and all interactions (of all orders), then
the resulting least squares fitted model will have the
property that the predicted values will be identical to
the raw response values Y. We will illustrate this in the
next section.

2. Comparable Coefficients: Since the model fit has been
carried out in the coded factor (-1, +1) units rather
than the units of the original factor (temperature, time,
pressure, catalyst concentration, etc.), the factor
coefficients immediately become comparable to one
another, which serves as an immediate mechanism for
the scale-free ranking of the relative importance of the
factors.

Example To illustrate in detail the above latter point, suppose the (-1,
+1) factor X1 is really a coding of temperature T with the
original temperature ranging from 300 to 350 degrees and the
(-1, +1) factor X2 is really a coding of time t with the
original time ranging from 20 to 30 minutes. Given that, a
linear model in the original temperature T and time t would
yield coefficients whose magnitude depends on the
magnitude of T (300 to 350) and t (20 to 30), and whose
value would change if we decided to change the units of T
(e.g., from Fahrenheit degrees to Celsius degrees) and t (e.g.,
from minutes to seconds). All of this is avoided by carrying
out the fit not in the original units for T (300,350) and t (20,
30), but in the coded units of X1 (-1, +1) and X2 (-1, +1).
The resulting coefficients are unit-invariant, and thus the
coefficient magnitudes reflect the true contribution of the
factors and interactions without regard to the unit of
measurement.

Coding Such coding leads to no loss of generality since the coded
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does not
lead to loss
of
generality

factor may be expressed as a simple linear relation of the
original factor (X1 to T, X2 to t). The unit-invariant coded
coefficients may be easily transformed to unit-sensitive
original coefficients if so desired.
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5.5.9.9.7. Motivation: How do we use the Model
to Generate Predicted Values?

Design matrix
with response
for two
factors

To illustrate the details as to how a model may be used for
prediction, let us consider a simple case and generalize
from it. Consider the simple Yates-order 22 full factorial
design in X1 and X2, augmented with a response vector Y:

X1 X2 Y
- - 2
+ - 4
- + 6
+ + 8

Geometric
representation

This can be represented geometrically

Determining
the prediction
equation

For this case, we might consider the model

Y = c + B1*X1 + B2*X2 + 
B12*X1*X2 + ε

From the above diagram, we may deduce that the estimated
factor effects are:

c = the average response =  
(2 + 4 + 6 + 8) / 4 = 5
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=
E1 =

=

average change in Y as X1 goes from -1 to +1

((4-2) + (8-6)) / 2 = (2 + 2) / 2 = 2

Note: the (4-2) is the change in Y (due to X1)
on the lower axis; the (8-6) is the change in Y
(due to X1) on the upper axis.

E2 =

=

average change in Y as X2 goes from -1 to +1

((6-2) + (8-4)) / 2 = (4 + 4) / 2 = 4
E12 =

=

interaction = (the less obvious) average
change in Y as X1*X2 goes from -1 to +1 
((2-4) + (8-6)) / 2 = (-2 + 2) / 2 = 0

For factors coded using +1 and -1, the least-squares
estimate of a coefficient is one half of the effect estimate
(Bi = Ei / 2), so the fitted model (that is, the prediction
equation) is

 = 5 + 1*X1 + 2*X2 + 0*X1*X2

or with the terms rearranged in descending order of
importance

 = 5 + 2*X2 + X1

Table of fitted
values

Substituting the values for the four design points into this
equation yields the following fitted values

X1 X2 Y
- - 2 2
+ - 4 4
- + 6 6
+ + 8 8

Perfect fit This is a perfect-fit model. Such perfect-fit models will
result anytime (in this orthogonal 2-level design family)
we include all main effects and all interactions.
Remarkably, this is true not only for k = 2 factors, but for
general k.

Residuals For a given model (any model), the difference between the
response value Y and the predicted value  is referred to as
the "residual":

residual = Y - 
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The perfect-fit full-blown (all main factors and all
interactions of all orders) models will have all residuals
identically zero.

The perfect fit is a mathematical property that comes if we
choose to use the linear model with all possible terms.

Price for
perfect fit

What price is paid for this perfect fit? One price is that the
variance of  is increased unnecessarily. In addition, we
have a non-parsimonious model. We must compute and
carry the average and the coefficients of all main effects
and all interactions. Including the average, there will in
general be 2k coefficients to fully describe the fitting of the
n = 2k points. This is very much akin to the Y = f(X)
polynomial fitting of n distinct points. It is well known that
this may be done "perfectly" by fitting a polynomial of
degree n-1. It is comforting to know that such perfection is
mathematically attainable, but in practice do we want to do
this all the time or even anytime? The answer is generally
"no" for two reasons:

1. Noise: It is very common that the response data Y has
noise (= error) in it. Do we want to go out of our
way to fit such noise? Or do we want our model to
filter out the noise and just fit the "signal"? For the
latter, fewer coefficients may be in order, in the same
spirit that we may forego a perfect-fitting (but
jagged) 11-th degree polynomial to 12 data points,
and opt out instead for an imperfect (but smoother)
3rd degree polynomial fit to the 12 points.

2. Parsimony: For full factorial designs, to fit the n = 2k

points we would need to compute 2k coefficients.
We gain information by noting the magnitude and
sign of such coefficients, but numerically we have n
data values Y as input and n coefficients B as output,
and so no numerical reduction has been achieved.
We have simply used one set of n numbers (the data)
to obtain another set of n numbers (the coefficients).
Not all of these coefficients will be equally
important. At times that importance becomes clouded
by the sheer volume of the n = 2k coefficients.
Parsimony suggests that our result should be simpler
and more focused than our n starting points. Hence
fewer retained coefficients are called for.

The net result is that in practice we almost always give up
the perfect, but unwieldy, model for an imperfect, but
parsimonious, model.

Imperfect fit The above calculations illustrated the computation of
predicted values for the full model. On the other hand, as
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discussed above, it will generally be convenient for signal
or parsimony purposes to deliberately omit some
unimportant factors. When the analyst chooses such a
model, we note that the methodology for computing
predicted values  is precisely the same. In such a case,
however, the resulting predicted values will in general not
be identical to the original response values Y; that is, we no
longer obtain a perfect fit. Thus, linear models that omit
some terms will have virtually all non-zero residuals.

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/


5.5.9.9.8. Motivation: How do we Use the Model Beyond the Data Domain?

http://www.itl.nist.gov/div898/handbook/pri/section5/pri5998.htm[6/27/2012 2:25:42 PM]

 

5. Process Improvement 
5.5. Advanced topics 
5.5.9. An EDA approach to experimental design 
5.5.9.9. Cumulative residual standard deviation plot 

5.5.9.9.8. Motivation: How do we Use the Model
Beyond the Data Domain?

Interpolation
and
extrapolation

The previous section illustrated how to compute predicted
values at the points included in the design. One of the
virtues of modeling is that the resulting prediction equation
is not restricted to the design data points. From the
prediction equation, predicted values can be computed
elsewhere and anywhere:

1. within the domain of the data (interpolation);
2. outside of the domain of the data (extrapolation).

In the hands of an expert scientist/engineer/analyst, the
ability to predict elsewhere is extremely valuable. Based on
the fitted model, we have the ability to compute predicted
values for the response at a large number of internal and
external points. Thus the analyst can go beyond the handful
of factor combinations at hand and can get a feel (typically
via subsequent contour plotting) as to what the nature of the
entire response surface is.

This added insight into the nature of the response is "free"
and is an incredibly important benefit of the entire model-
building exercise.

Predict with
caution

Can we be fooled and misled by such a mathematical and
computational exercise? After all, is not the only thing that
is "real" the data, and everything else artificial? The answer
is "yes", and so such interpolation/extrapolation is a double-
edged sword that must be wielded with care. The best
attitude, and especially for extrapolation, is that the derived
conclusions must be viewed with extra caution.

By construction, the recommended fitted models should be
good at the design points. If the full-blown model were
used, the fit will be perfect. If the full-blown model is
reduced just a bit, then the fit will still typically be quite
good. By continuity, one would expect perfection/goodness
at the design points would lead to goodness in the
immediate vicinity of the design points. However, such
local goodness does not guarantee that the derived model
will be good at some distance from the design points.
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Do
confirmation
runs

Modeling and prediction allow us to go beyond the data to
gain additional insights, but they must be done with great
caution. Interpolation is generally safer than extrapolation,
but mis-prediction, error, and misinterpretation are liable to
occur in either case.

The analyst should definitely perform the model-building
process and enjoy the ability to predict elsewhere, but the
analyst must always be prepared to validate the interpolated
and extrapolated predictions by collection of additional real,
confirmatory data. The general empirical model that we
recommend knows "nothing" about the engineering, physics,
or chemistry surrounding your particular measurement
problem, and although the model is the best generic model
available, it must nonetheless be confirmed by additional
data. Such additional data can be obtained pre-
experimentally or post-experimentally. If done pre-
experimentally, a recommended procedure for checking the
validity of the fitted model is to augment the usual 2k or 2k-p

designs with additional points at the center of the design.
This is discussed in the next section.

Applies only
for
continuous
factors

Of course, all such discussion of interpolation and
extrapolation makes sense only in the context of continuous
ordinal factors such as temperature, time, pressure, size, etc.
Interpolation and extrapolation make no sense for discrete
non-ordinal factors such as supplier, operators, design types,
etc.
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5.5.9.9.9. Motivation: What is the Best
Confirmation Point for Interpolation?

Augment via
center point

For the usual continuous factor case, the best (most efficient
and highest leverage) additional model-validation point that
may be added to a 2k or 2k-p design is at the center point.
This center point augmentation "costs" the experimentalist
only one additional run.

Example For example, for the k = 2 factor (Temperature (300 to 350),
and time (20 to 30)) experiment discussed in the previous
sections, the usual 4-run 22 full factorial design may be
replaced by the following 5-run 22 full factorial design with
a center point.

X1 X2 Y
- - 2
+ - 4
- + 6
+ + 8
0 0  

Predicted
value for the
center point

Since "-" stands for -1 and "+" stands for +1, it is natural to
code the center point as (0,0). Using the recommended
model

 = 5 + 2*X2 + X1

we can substitute 0 for X1 and X2 to generate the predicted
value of 5 for the confirmatory run.

Importance
of the
confirmatory
run

The importance of the confirmatory run cannot be
overstated. If the confirmatory run at the center point yields
a data value of, say, Y = 5.1, since the predicted value at the
center is 5 and we know the model is perfect at the corner
points, that would give the analyst a greater confidence that
the quality of the fitted model may extend over the entire
interior (interpolation) domain. On the other hand, if the
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confirmatory run yielded a center point data value quite
different (e.g., Y = 7.5) from the center point predicted value
of 5, then that would prompt the analyst to not trust the
fitted model even for interpolation purposes. Hence when
our factors are continuous, a single confirmatory run at the
center point helps immensely in assessing the range of trust
for our model.

Replicated
center points

In practice, this center point value frequently has two, or
even three or more, replications. This not only provides a
reference point for assessing the interpolative power of the
model at the center, but it also allows us to compute model-
free estimates of the natural error in the data. This in turn
allows us a more rigorous method for computing the
uncertainty for individual coefficients in the model and for
rigorously carrying out a lack-of-fit test for assessing
general model adequacy.
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5.5.9.9.10. Motivation: How do we Use the
Model for Interpolation?

Design table
in original
data units

As for the mechanics of interpolation itself, consider a
continuation of the prior k = 2 factor experiment. Suppose
temperature T ranges from 300 to 350 and time t ranges
from 20 to 30, and the analyst can afford n = 4 runs. A 22

full factorial design is run. Forming the coded temperature
as X1 and the coded time as X2, we have the usual:

Temperature Time X1 X2 Y
300 20 - - 2
350 20 + - 4
300 30 - + 6
350 30 + + 8

Graphical
representation

Graphically the design and data are as follows: 

Typical
interpolation
question

As before, from the data, the prediction equation is

 = 5 + 2*X2 + X1

We now pose the following typical interpolation question:

From the model, what is the predicted response at,
say, temperature = 310 and time = 26?

In short:
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(T = 310, t = 26) = ?

To solve this problem, we first view the k = 2 design and
data graphically, and note (via an "X") as to where the
desired (T = 310, t = 26) interpolation point is:

Predicting the
response for
the
interpolated
point

The important next step is to convert the raw (in units of
the original factors T and t) interpolation point into a coded
(in units of X1 and X2) interpolation point. From the graph
or otherwise, we note that a linear translation between T
and X1, and between t and X2 yields

T = 300 => X1 = -1 
T = 350 => X1 = +1

thus

X1 = 0 is at T = 325

        |-------------|-------------|
       -1     ?       0            +1
       300   310     325           350
   

which in turn implies that

T = 310 => X1 = -0.6

Similarly,

t = 20 => X2 = -1 
t = 30 => X2 = +1

therefore,

X2 = 0 is at t = 25

        |-------------|-------------|
       -1             0   ?        +1
       20             25 26        30
   

thus



5.5.9.9.10. Motivation: How do we Use the Model for Interpolation?

http://www.itl.nist.gov/div898/handbook/pri/section5/pri599a.htm[6/27/2012 2:25:43 PM]

t = 26 => X2 = +0.2

Substituting X1 = -0.6 and X2 = +0.2 into the prediction
equation

 = 5 + 2*X2 + X1

yields a predicted value of 4.8.

Graphical
representation
of response
value for
interpolated
data point

Thus
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5.5.9.9.11. Motivation: How do we Use the
Model for Extrapolation?

Graphical
representation
of
extrapolation

Extrapolation is performed similarly to interpolation. For
example, the predicted value at temperature T = 375 and
time t = 28 is indicated by the "X":

and is computed by substituting the values X1 = +2.0
(T=375) and X2 = +0.8 (t=28) into the prediction equation

 = 5 + 2*X2 + X1

yielding a predicted value of 8.6. Thus we have

Pseudo-data The predicted value from the modeling effort may be
viewed as pseudo-data, data obtained without the
experimental effort. Such "free" data can add tremendously
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to the insight via the application of graphical techniques (in
particular, the contour plots and can add significant insight
and understanding as to the nature of the response surface
relating Y to the X's.

But, again, a final word of caution: the "pseudo data" that
results from the modeling process is exactly that, pseudo-
data. It is not real data, and so the model and the model's
predicted values must be validated by additional
confirmatory (real) data points. A more balanced approach
is that:

Models may be trusted as "real" [that is, to generate
predicted values and contour curves], but must
always be verified [that is, by the addition of
confirmatory data points].

The rule of thumb is thus to take advantage of the available
and recommended model-building mechanics for these 2-
level designs, but do treat the resulting derived model with
an equal dose of both optimism and caution.

Summary In summary, the motivation for model building is that it
gives us insight into the nature of the response surface
along with the ability to do interpolation and extrapolation;
further, the motivation for the use of the cumulative
residual standard deviation plot is that it serves as an easy-
to-interpret tool for determining a good and parsimonious
model.
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5.5.9.9.12. Motivation: How do we Use the
Model for Extrapolation?

Graphical
representation
of
extrapolation

Extrapolation is performed similarly to interpolation. For
example, the predicted value at temperature T = 375 and
time t = 28 is indicated by the "X":

and is computed by substituting the values X1 = +2.0
(T=375) and X2 = +0.8 (t=28) into the prediction equation

yielding a predicted value of 8.6. Thus we have

Pseudo-data The predicted value from the modeling effort may be
viewed as pseudo-data, data obtained without the
experimental effort. Such "free" data can add tremendously
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to the insight via the application of graphical techniques (in
particular, the contour plots and can add significant insight
and understanding as to the nature of the response surface
relating Y to the X's.

But, again, a final word of caution: the "pseudo data" that
results from the modeling process is exactly that, pseudo-
data. It is not real data, and so the model and the model's
predicted values must be validated by additional
confirmatory (real) data points. A more balanced approach
is that:

Models may be trusted as "real" [that is, to generate
predicted values and contour curves], but must
always be verified [that is, by the addition of
confirmatory data points].

The rule of thumb is thus to take advantage of the available
and recommended model-building mechanics for these 2-
level designs, but do treat the resulting derived model with
an equal dose of both optimism and caution.

Summary In summary, the motivation for model building is that it
gives us insight into the nature of the response surface
along with the ability to do interpolation and extrapolation;
further, the motivation for the use of the cumulative
residual standard deviation plot is that it serves as an easy-
to-interpret tool for determining a good and parsimonious
model.
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5.5.9.10. DOE contour plot

Purpose The DOE contour plot answers the question:

Where else could we have run the experiment to optimize the response?

Prior steps in this analysis have suggested the best setting for each of the k factors.
These best settings may have been derived from

1. Data: which of the n design points yielded the best response, and what were
the settings of that design point, or from

2. Averages: what setting of each factor yielded the best response "on the
average".

This 10th (and last) step in the analysis sequence goes beyond the limitations of the
n data points already chosen in the design and replaces the data-limited question

"From among the n data points, what was the best setting?"

to a region-related question:

"In general, what should the settings have been to optimize the response?"

Output The outputs from the DOE contour plot are

1. Primary: Best setting (X10, X20, ..., Xk0) for each of the k factors. This derived
setting should yield an optimal response.

2. Secondary: Insight into the nature of the response surface and the
importance/unimportance of interactions.

Definition A DOE contour plot is formed by

Vertical Axis: The second most important factor in the experiment.
Horizontal Axis: The most important factor in the experiment.

More specifically, the DOE contour plot is constructed and utilized via the following
7 steps:

1. Axes
2. Contour Curves
3. Optimal Response Value
4. Best Corner

http://www.itl.nist.gov/div898/handbook/index.htm
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5. Steepest Ascent/Descent
6. Optimal Curve
7. Optimal Setting

with

1. Axes: Choose the two most important factors in the experiment as the two
axes on the plot.

2. Contour Curves: Based on the fitted model and the best data settings for all of
the remaining factors, draw contour curves involving the two dominant
factors. This yields a graphical representation of the response surface. The
details for constructing linear contour curves are given in a later section.

3. Optimal Value: Identify the theoretical value of the response that constitutes
"best." In particular, what value would we like to have seen for the response?

4. Best "Corner": The contour plot will have four "corners" for the two most
important factors Xi and Xj: (Xi, Xj) = (-, -), (-, +), (+, -), and (+, +). From the
data, identify which of these four corners yields the highest average response 

.

5. Steepest Ascent/Descent: From this optimum corner point, and based on the
nature of the contour lines near that corner, step out in the direction of steepest
ascent (if maximizing) or steepest descent (if minimizing).

6. Optimal Curve: Identify the curve on the contour plot that corresponds to the
ideal optimal value.

7. Optimal Setting: Determine where the steepest ascent/descent line intersects
the optimum contour curve. This point represents our "best guess" as to where
we could have run our experiment so as to obtain the desired optimal
response.

Motivation In addition to increasing insight, most experiments have a goal of optimizing the
response. That is, of determining a setting (X10, X20, ..., Xk0) for which the response
is optimized.

The tool of choice to address this goal is the DOE contour plot. For a pair of factors
Xi and Xj, the DOE contour plot is a 2-dimensional representation of the 3-
dimensional Y = f(Xi, Xj) response surface. The position and spacing of the
isocurves on the DOE contour plot are an easily interpreted reflection of the nature
of the surface.

In terms of the construction of the DOE contour plot, there are three aspects of note:

1. Pairs of Factors: A DOE contour plot necessarily has two axes (only); hence
only two out of the k factors can be represented on this plot. All other factors
must be set at a fixed value (their optimum settings as determined by the
ordered data plot, the DOE mean plot, and the interaction effects matrix plot).

2. Most Important Factor Pair: Many DOE contour plots are possible. For an
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experiment with k factors, there are 

possible contour plots. For example, for k = 4 factors there are 6 possible
contour plots: X1 and X2, X1 and X3, X1 and X4, X2 and X3, X2 and X4, and X3
and X4. In practice, we usually generate only one contour plot involving the
two most important factors.

3. Main Effects Only: The contour plot axes involve main effects only, not
interactions. The rationale for this is that the "deliverable" for this step is k
settings, a best setting for each of the k factors. These k factors are real and
can be controlled, and so optimal settings can be used in production.
Interactions are of a different nature as there is no "knob on the machine" by
which an interaction may be set to -, or to +. Hence the candidates for the
axes on contour plots are main effects only--no interactions.

In summary, the motivation for the DOE contour plot is that it is an easy-to-use
graphic that provides insight as to the nature of the response surface, and provides a
specific answer to the question "Where (else) should we have collected the data so
to have optimized the response?".

Plot for
defective
springs
data

Applying the DOE contour plot for the defective springs data set yields the
following plot.

How to
interpret

From the DOE contour plot for the defective springs data, we note the following
regarding the 7 framework issues:

Axes
Contour curves

http://www.itl.nist.gov/div898/handbook/pri/section5/gifs/contour.gif
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Optimal response value
Optimal response curve
Best corner
Steepest Ascent/Descent
Optimal setting

Conclusions
for the
defective
springs
data

The application of the DOE contour plot to the defective springs data set results in
the following conclusions:

1. Optimal settings for the "next" run:

Coded : (X1, X2, X3) = (+1.5, +1.0, +1.3) 
Uncoded: (OT, CC, QT) = (1637.5, 0.7, 127.5)

2. Nature of the response surface:

The X1*X3 interaction is important, hence the effect of factor X1 will change
depending on the setting of factor X3.
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5.5.9.10.1. How to Interpret: Axes

What factors
go on the two
axes?

For this first item, we choose the two most important
factors in the experiment as the plot axes.

These are determined from the ranked list of important
factors as discussed in the previous steps. In particular, the
|effects| plot includes a ranked factor table. For the
defective springs data, that ranked list consists of

Factor/Interaction Effect Estimate
X1 23
X1*X3 10
X2 -5
X3 1.5
X1*X2 1.5
X1*X2*X3 0.5
X2*X3 0

Possible
choices

In general, the two axes of the contour plot could consist of

X1 and X2,
X1 and X3, or
X2 and X3.

In this case, since X1 is the top item in the ranked list, with
an estimated effect of 23, X1 is the most important factor
and so will occupy the horizontal axis of the contour plot.
The admissible list thus reduces to

X1 and X2, or
X1 and X3.

To decide between these two pairs, we look to the second
item in the ranked list. This is the interaction term X1*X3,
with an estimated effect of 10. Since interactions are not
allowed as contour plot axes, X1*X3 must be set aside. On
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the other hand, the components of this interaction (X1 and
X3) are not to be set aside. Since X1 has already been
identified as one axis in the contour plot, this suggests that
the other component (X3) be used as the second axis. We
do so. Note that X3 itself does not need to be important (in
fact, it is noted that X3 is ranked fourth in the listed table
with a value of 1.5).

In summary then, for this example the contour plot axes
are:

Horizontal Axis: X1 
Vertical Axis: X3

Four cases
for
recommended
choice of
axes

Other cases can be more complicated. In general, the
recommended rule for selecting the two plot axes is that
they be drawn from the first two items in the ranked list of
factors. The following four cases cover most situations in
practice:

Case 1:
1. Item 1 is a main effect (e.g., X3)
2. Item 2 is another main effect (e.g., X5)

Recommended choice:

1. Horizontal axis: item 1 (e.g., X3);
2. Vertical axis: item 2 (e.g., X5).

Case 2:
1. Item 1 is a main effect (e.g., X3)
2. Item 2 is a (common-element) interaction (e.g.,

X3*X4)

Recommended choice:

1. Horizontal axis: item 1 (e.g., X3);
2. Vertical axis: the remaining component in item

2 (e.g., X4).

Case 3:
1. Item 1 is a main effect (e.g., X3)
2. Item 2 is a (non-common-element) interaction

(e.g., X2*X4)

Recommended choice:

1. Horizontal axis: item 1 (e.g., X3);
2. Vertical axis: either component in item 2 (e.g.,

X2, or X4), but preferably the one with the
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largest individual effect (thus scan the rest of
the ranked factors and if the X2 |effect| > X4
|effect|, choose X2; otherwise choose X4).

Case 4:
1. Item 1 is a (2-factor) interaction (e.g., X2*X4)
2. Item 2 is anything

Recommended choice:

1. Horizontal axis: component 1 from the item 1
interaction (e.g., X2);

2. Horizontal axis: component 2 from the item 1
interaction (e.g., X4).

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/


5.5.9.10.2. How to Interpret: Contour Curves

http://www.itl.nist.gov/div898/handbook/pri/section5/pri59a2.htm[6/27/2012 2:25:49 PM]

 

5. Process Improvement 
5.5. Advanced topics 
5.5.9. An EDA approach to experimental design 
5.5.9.10. DOE contour plot 

5.5.9.10.2. How to Interpret: Contour Curves

Non-linear
appearance
of contour
curves
implies
strong
interaction

Based on the fitted model (cumulative residual standard
deviation plot) and the best data settings for all of the
remaining factors, we draw contour curves involving the two
dominant factors. This yields a graphical representation of
the response surface.

Before delving into the details as to how the contour lines
were generated, let us first note as to what insight can be
gained regarding the general nature of the response surface.
For the defective springs data, the dominant characteristic of
the contour plot is the non-linear (fan-shaped, in this case)
appearance. Such non-linearity implies a strong X1*X3
interaction effect. If the X1*X3 interaction were small, the
contour plot would consist of a series of near-parallel lines.
Such is decidedly not the case here.

Constructing
the contour
curves

As for the details of the construction of the contour plot, we
draw on the model-fitting results that were achieved in the
cumulative residual standard deviation plot. In that step, we
derived the following good-fitting prediction equation:

 = 71.25 + 11.5*X1 + 5*X1*X3 - 2.5*X2

The contour plot has axes of X1 and X3. X2 is not included
and so a fixed value of X2 must be assigned. The response
variable is the percentage of acceptable springs, so we are
attempting to maximize the response. From the ordered data
plot, the main effects plot, and the interaction effects matrix
plot of the general analysis sequence, we saw that the best
setting for factor X2 was "-". The best observed response
data value (Y = 90) was achieved with the run (X1, X2, X3) =
(+, -, +), which has X2 = "-". Also, the average response for
X2 = "-" was 73 while the average response for X2 = "+" was
68. We thus set X2 = -1 in the prediction equation to obtain

 = 71.25 + 11.5*X1 + 5*X1*X3 - 2.5*(-1) 
 = 73.75 + 11.5*X1 + 5*X1*X3
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This equation involves only X1 and X3 and is immediately
usable for the X1 and X3 contour plot. The raw response
values in the data ranged from 52 to 90. The response
implies that the theoretical worst is Y = 0 and the theoretical
best is Y = 100.

To generate the contour curve for, say, Y = 70, we solve

70 = 73.75 + 11.5*X1 + 5*X1*X3

by rearranging the equation in X3 (the vertical axis) as a
function of X1 (the horizontal axis). By substituting various
values of X1 into the rearranged equation, the above
equation generates the desired response curve for Y = 70.
We do so similarly for contour curves for any desired
response value Y.

Values for
X1

For these X3 = g(X1) equations, what values should be used
for X1? Since X1 is coded in the range -1 to +1, we
recommend expanding the horizontal axis to -2 to +2 to
allow extrapolation. In practice, for the DOE contour plot
generated previously, we chose to generate X1 values from -
2, at increments of 0.05, up to +2. For most data sets, this
gives a smooth enough curve for proper interpretation.

Values for Y What values should be used for Y? Since the total theoretical
range for the response Y (= percent acceptable springs) is 0
% to 100 %, we chose to generate contour curves starting
with 0, at increments of 5, and ending with 100. We thus
generated 21 contour curves. Many of these curves did not
appear since they were beyond the -2 to +2 plot range for
the X1 and X3 factors.

Summary In summary, the contour plot curves are generated by
making use of the (rearranged) previously derived prediction
equation. For the defective springs data, the appearance of
the contour plot implied a strong X1*X3 interaction.
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5.5.9.10.3. How to Interpret: Optimal Response
Value

Need to
define
"best"

We need to identify the theoretical value of the response that
would constitute "best". What value would we like to have
seen for the response?

For example, if the response variable in a chemical experiment
is percent reacted, then the ideal theoretical optimum would be

100 %. If the response variable in a manufacturing experiment
is amount of waste, then the ideal theoretical optimum would
be zero. If the response variable in a flow experiment is the
fuel flow rate in an engine, then the ideal theoretical optimum
(as dictated by engine specifications) may be a specific value
(e.g., 175 cc/sec). In any event, for the experiment at hand,
select a number that represents the ideal response value.

Optimal
value for
this
example

For the defective springs data, the response (percentage of
acceptable springs) ranged from Y = 52 to 90. The
theoretically worst value would be 0 (= no springs are
acceptable), and the theoretically best value would be 100 (100
% of the springs are acceptable). Since we are trying to
maximize the response, the selected optimal value is 100.
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5.5.9.10.4. How to Interpret: Best Corner

Four
corners
representing
2 levels for
2 factors

The contour plot will have four "corners" (two factors times
two settings per factor) for the two most important factors Xi
and Xj: (Xi, Xj) = (-, -), (-, +), (+, -), or (+, +). Which of
these four corners yields the highest average response ?
That is, what is the "best corner"?

Use the raw
data

This is done by using the raw data, extracting out the two
"axes factors", computing the average response at each of the
four corners, then choosing the corner with the best average.

For the defective springs data, the raw data were

X1 X2 X3 Y
- - - 67
+ - - 79
- + - 61
+ + - 75
- - + 59
+ - + 90
- + + 52
+ + + 87

The two plot axes are X1 and X3 and so the relevant raw data
collapses to

X1 X3 Y
- - 67
+ - 79
- - 61
+ - 75
- + 59
+ + 90
- + 52
+ + 87
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Averages which yields averages

X1 X3 Y
- - (67 + 61)/2 = 64
+ - (79 + 75)/2 = 77
- + (59 + 52)/2 = 55.5
+ + (90 + 87)/2 = 88.5

These four average values for the corners are annotated on
the plot. The best (highest) of these values is 88.5. This
comes from the (+, +) upper right corner. We conclude that
for the defective springs data the best corner is (+, +).
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5.5.9.10.5. How to Interpret: Steepest
Ascent/Descent

Start at
optimum
corner point

From the optimum corner point, based on the nature of the
contour surface at that corner, step out in the direction of
steepest ascent (if maximizing) or steepest descent (if
minimizing).

Defective
springs
example

Since our goal for the defective springs problem is to
maximize the response, we seek the path of steepest ascent.
Our starting point is the best corner (the upper right corner
(+, +)), which has an average response value of 88.5. The
contour lines for this plot have increments of 5 units. As we
move from left to right across the contour plot, the contour
lines go from low to high response values. In the plot, we
have drawn the maximum contour level, 105, as a thick line.
For easier identification, we have also drawn the contour
level of 90 as thick line. This contour level of 90 is
immediately to the right of the best corner

Conclusions
on steepest
ascent for
defective
springs
example

The nature of the contour curves in the vicinity of (+, +)
suggests a path of steepest ascent

1. in the "northeast" direction
2. about 30 degrees above the horizontal.
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5.5.9.10.6. How to Interpret: Optimal Curve

Corresponds
to ideal
optimum
value

The optimal curve is the curve on the contour plot that
corresponds to the ideal optimum value.

Defective
springs
example

For the defective springs data, we search for the Y = 100
contour curve. As determined in the steepest ascent/descent
section, the Y = 90 curve is immediately outside the (+, +)
point. The next curve to the right is the Y = 95 curve, and
the next curve beyond that is the Y = 100 curve. This is the
optimal response curve.
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5.5.9.10.7. How to Interpret: Optimal Setting

Optimal
setting

The "near-point" optimality setting is the intersection of the
steepest-ascent line with the optimal setting curve.

Theoretically, any (X1, X3) setting along the optimal curve
would generate the desired response of Y = 100. In practice,
however, this is true only if our estimated contour surface is
identical to "nature's" response surface. In reality, the plotted
contour curves are truth estimates based on the available
(and "noisy") n = 8 data values. We are confident of the
contour curves in the vicinity of the data points (the four
corner points on the chart), but as we move away from the
corner points, our confidence in the contour curves
decreases. Thus the point on the Y = 100 optimal response
curve that is "most likely" to be valid is the one that is
closest to a corner point. Our objective then is to locate that
"near-point".

Defective
springs
example

In terms of the defective springs contour plot, we draw a line
from the best corner, (+, +), outward and perpendicular to
the Y = 90, Y = 95, and Y = 100 contour curves. The Y = 100
intersection yields the "nearest point" on the optimal
response curve.

Having done so, it is of interest to note the coordinates of
that optimal setting. In this case, from the graph, that setting
is (in coded units) approximately at

(X1 = 1.5, X3 = 1.3)

Table of
coded and
uncoded
factors

With the determination of this setting, we have thus, in
theory, formally completed our original task. In practice,
however, more needs to be done. We need to know "What is
this optimal setting, not just in the coded units, but also in
the original (uncoded) units"? That is, what does (X1=1.5,
X3=1.3) correspond to in the units of the original data?

To deduce his, we need to refer back to the original
(uncoded) factors in this problem. They were:
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Coded
Factor

Uncoded Factor

X1 OT: Oven Temperature
X2 CC: Carbon Concentration
X3 QT: Quench Temperature

Uncoded
and coded
factor
settings

These factors had settings-- what were the settings of the
coded and uncoded factors? From the original description of
the problem, the uncoded factor settings were:

1. Oven Temperature (1450 and 1600 degrees)
2. Carbon Concentration (0.5 % and 0.7 %)
3. Quench Temperature (70 and 120 degrees)

with the usual settings for the corresponding coded factors:

1. X1 (-1, +1)
2. X2 (-1, +1)
3. X3 (-1, +1)

Diagram To determine the corresponding setting for (X1=1.5,
X3=1.3), we thus refer to the following diagram, which
mimics a scatter plot of response averages--oven
temperature (OT) on the horizontal axis and quench
temperature (QT) on the vertical axis:

The "X" on the chart represents the "near point" setting on
the optimal curve.

Optimal
setting for
X1 (oven

To determine what "X" is in uncoded units, we note (from
the graph) that a linear transformation between OT and X1
as defined by
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temperature)
OT = 1450 => X1 = -1 
OT = 1600 => X1 = +1

yields

X1 = 0 being at OT = (1450 + 1600) / 2 = 1525

thus

           |-------------|-------------|
X1:       -1             0            +1
OT:      1450          1525          1600

and so X1 = +2, say, would be at oven temperature OT =
1675:

           |-------------|-------------|---------
----|
X1:       -1             0            +1            
+2
OT:      1450          1525          1600          
1675

and hence the optimal X1 setting of 1.5 must be at

OT = 1600 + 0.5*(1675-1600) = 1637.5

Optimal
setting for
X3 (quench
temperature)

Similarly, from the graph we note that a linear
transformation between quench temperature QT and coded
factor X3 as specified by

QT = 70 => X3 = -1 
QT = 120 => X3 = +1

yields

X3 = 0 being at QT = (70 + 120) / 2 = 95

as in

        |-------------|-------------|
X3:    -1             0            +1
QT:    70            95           120

and so X3 = +2, say, would be quench temperature = 145:

        |-------------|-------------|------------
-|
X3:    -1             0            +1            
+2
QT:    70            95           120           
145

Hence, the optimal X3 setting of 1.3 must be at

QT = 120 + 0.3*(145-120) 
QT = 127.5
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Summary of
optimal
settings

In summary, the optimal setting is

coded : (X1 = +1.5, X3 = +1.3) 
uncoded: (OT = 1637.5 degrees, QT = 127.5 degrees)

and finally, including the best setting of the fixed X2 factor
(carbon concentration CC) of X2 = -1 (CC = 0.5 %), we thus
have the final, complete recommended optimal settings for
all three factors:

coded : (X1 = +1.5, X2 = -1.0, X3 = +1.3) 
uncoded: (OT = 1637.5, CC = 0.7 %, QT = 127.5)

If we were to run another experiment, this is the point (based
on the data) that we would set oven temperature, carbon
concentration, and quench temperature with the hope/goal of
achieving 100 % acceptable springs.

Options for
next step

In practice, we could either

1. collect a single data point (if money and time are an
issue) at this recommended setting and see how close
to 100 % we achieve, or

2. collect two, or preferably three, (if money and time are
less of an issue) replicates at the center point
(recommended setting).

3. if money and time are not an issue, run a 22 full
factorial design with center point. The design is
centered on the optimal setting (X1 = +1, 5, X3 = +1.3)
with one overlapping new corner point at (X1 = +1, X3
= +1) and with new corner points at (X1, X3) = (+1,
+1), (+2, +1), (+1, +1.6), (+2, +1.6). Of these four
new corner points, the point (+1, +1) has the
advantage that it overlaps with a corner point of the
original design.
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5. Process Improvement 

5.6. Case Studies

Contents The purpose of this section is to illustrate the analysis of
designed experiments with data collected from experiments
run at the National Institute of Standards and Technology and
SEMATECH.

1. Eddy current probe sensitivity study
2. Sonoluminescent light intensity study
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5.6.1. Eddy Current Probe Sensitivity Case
Study

Analysis of
a 23 Full
Factorial
Design

This case study demonstrates the analysis of a 23 full factorial
design.

The analysis for this case study is based on the EDA approach
discussed in an earlier section.

Contents The case study is divided into the following sections:

1. Background and data
2. Initial plots/main effects
3. Interaction effects
4. Main and interaction effects: block plots
5. Estimate main and interaction effects
6. Modeling and prediction equations
7. Intermediate conclusions
8. Important factors and parsimonious prediction
9. Validate the fitted model

10. Using the model
11. Conclusions and next step
12. Work this example yourself
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5.6.1.1. Background and Data

Background The data for this case study is a subset of a study performed
by Capobianco, Splett, and Iyer. Capobianco was a member
of the NIST Electromagnetics Division and Splett and Iyer
were members of the NIST Statistical Engineering Division
at the time of this study.

The goal of this project is to develop a nondestructive
portable device for detecting cracks and fractures in metals. A
primary application would be the detection of defects in
airplane wings. The internal mechanism of the detector would
be for sensing crack-induced changes in the detector's
electromagnetic field, which would in turn result in changes
in the impedance level of the detector. This change of
impedance is termed "sensitivity" and it is a sub-goal of this
experiment to maximize such sensitivity as the detector is
moved from an unflawed region to a flawed region on the
metal.

Statistical
Goals

The case study illustrates the analysis of a 23 full factorial
experimental design. The specific statistical goals of the
experiment are:

1. Determine the important factors that affect sensitivity.
2. Determine the settings that maximize sensitivity.
3. Determine a predicition equation that functionally

relates sensitivity to various factors.

Software The analyses used in this case study can be generated using
both Dataplot code and R code.

Data Used
in the
Analysis

There were three detector wiring component factors under
consideration:

1. X1 = Number of wire turns
2. X2 = Wire winding distance
3. X3 = Wire gauge

Since the maximum number of runs that could be afforded
timewise and costwise in this experiment was n = 10, a 23

full factoral experiment (involving n = 8 runs) was chosen.
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With an eye to the usual monotonicity assumption for two-
level factorial designs, the selected settings for the three
factors were as follows:

1. X1 = Number of wire turns : -1 = 90, +1 = 180
2. X2 = Wire winding distance: -1 = 0.38, +1 = 1.14
3. X3 = Wire gauge : -1 = 40, +1 = 48

The experiment was run with the eight settings executed in
random order. The following data resulted.

    Y          X1        X2        X3
  Probe      Number   Winding     Wire     Run
Impedance   of Turns  Distance    Gauge  Sequence
-------------------------------------------------
  1.70         -1        -1        -1           2
  4.57         +1        -1        -1           8
  0.55         -1        +1        -1           3
  3.39         +1        +1        -1           6
  1.51         -1        -1        +1           7
  4.59         +1        -1        +1           1
  0.67         -1        +1        +1           4
  4.29         +1        +1        +1           5

Note that the independent variables are coded as +1 and -1.
These represent the low and high settings for the levels of
each variable. Factorial designs often have two levels for
each factor (independent variable) with the levels being
coded as -1 and +1. This is a scaling of the data that can
simplify the analysis. If desired, these scaled values can be
converted back to the original units of the data for
presentation.
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5.6.1.2. Initial Plots/Main Effects

Plot the
Data:
Ordered
Data Plot

The first step in the analysis is to generate an ordered data plot.

Conclusions
from the
Ordered
Data Plot

We can make the following conclusions based on the ordered data plot.

1. Important Factors: The four highest response values have X1 = + while the four
lowest response values have X1 = -. This implies X1 is the most important factor.
When X1 = -, the - values of X2 are higher than the + values of X2. Similarly, when
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X1 = +, the - values of X2 are higher than the + values of X2. This implies X2 is
important, but less so than X1. There is no clear pattern for X3.

2. Best Settings: In this experiment, we are using the device as a detector, and so high
sensitivities are desirable. Given this, our first pass at best settings yields (X1 = +1,
X2 = -1, X3 = either).

Plot the
Data: DOE
Scatter Plot

The next step in the analysis is to generate a DOE scatter plot.

Conclusions
from the
DOE
Scatter Plot

We can make the following conclusions based on the DOE scatter plot.

1. Important Factors: X1 (Number of Turns) is clearly important. When X1 = -1, all four
senstivities are low, and when X1 = +1, all four sensitivities are high. X2 (Winding
Distance) is less important. The four sensitivities for X2 = -1 are slightly higher, as a
group, than the four sensitivities for X2 = +1. X3 (Wire Gauge) does not appear to be
important at all. The sensitivity is about the same (on the average) regardless of the
settings for X3.

2. Best Settings: In this experiment, we are using the device as a detector, so high
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sensitivities are desirable. Given this, our first pass at best settings yields (X1 = +1,
X2 = -1, X3 = either).

3. There does not appear to be any significant outliers.

Check for
Main
Effects:
DOE Mean
Plot

One of the primary questions is: what are the most important factors? The ordered data plot
and the DOE scatter plot provide useful summary plots of the data. Both of these plots
indicated that X1 is clearly important, X2 is somewhat important, and X3 is probably not
important.

The DOE mean plot shows the main effects. This provides probably the easiest to interpret
indication of the important factors.

Conclusions
from the
DOE Mean
Plot

The DOE mean plot (or main effects plot) reaffirms the ordering of the DOE scatter plot, but
additional information is gleaned because the eyeball distance between the mean values
gives an approximation to the least-squares estimate of the factor effects.

We can make the following conclusions from the DOE mean plot.
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1. Important Factors: 
X1 (effect = large: about 3 ohms) 
X2 (effect = moderate: about -1 ohm) 
X3 (effect = small: about 1/4 ohm) 

2. Best Settings: As before, choose the factor settings that (on the average) maximize the
sensitivity:

(X1,X2,X3) = (+,-,+)

Comparison
of Plots

All of these plots are used primarily to detect the most important factors. Because it plots a
summary statistic rather than the raw data, the DOE mean plot shows the main effects most
clearly. However, it is still recommended to generate either the ordered data plot or the DOE
scatter plot (or both). Since these plot the raw data, they can sometimes reveal features of
the data that might be masked by the DOE mean plot.
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5.6.1.3. Interaction Effects

Check for
Interaction
Effects:
DOE
Interaction
Plot

In addition to the main effects, it is also important to check for interaction effects, especially
two-factor interaction effects. The DOE interaction effects plot is an effective tool for this.
The effects on the plot represent the change in sensitivity from low to high levels of the
factors.

Conclusions
from the

We can make the following conclusions from the DOE interaction effects plot.

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/pri/pri.htm
http://www.itl.nist.gov/div898/handbook/pri/section6/splett3/gifs/dexeff_f.gif


5.6.1.3. Interaction Effects

http://www.itl.nist.gov/div898/handbook/pri/section6/pri613.htm[6/27/2012 2:25:57 PM]

DOE
Interaction
Effects Plot

1. Important Factors: Looking for the plots that have the steepest lines (that is, largest
effects), we note that:

X1 (number of turns) is the most important effect: estimated effect = -3.1025;
X2 (winding distance) is next most important: estimated effect = -0.8675;
X3 (wire gauge) is relatively unimportant;
All three two-factor interactions are relatively unimporant.

2. Best Settings: As with the main effects plot, the best settings to maximize the
sensitivity are

(X1,X2,X3) = (+1,-1,+1)

but with the X3 setting of +1 mattering little.
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5.6.1.4. Main and Interaction Effects: Block Plots

Block Plots Block plots are a useful adjunct to the DOE mean plot and the DOE interaction effects plot to confirm the importance of factors,
to establish the robustness of main effect conclusions, and to determine the existence of interactions. Specifically,

1. The first plot below answers the question: Is X1 important? If X1 is important, is this importance robust over all four
settings of X2 and X3?

2. The second plot below answers the question: Is X2 important? If X2 is important, is this importance robust over all four
settings of X1 and X3?

3. The third plot below answers the question: Is X3 important? If X3 is important, is this importance robust over all four
settings of X1 and X2?

For block plots, it is the height of the bars that is important, not the relative positioning of each bar. Hence we focus on the size
and internals of the blocks, not "where" the blocks are one relative to another.
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Conclusions
from the
Block Plots

Recall that the block plot will access factor importance by the degree of consistency (robustness) of the factor effect over a
variety of conditions. In this light, we can make the following conclusions from the block plots.

1. Relative Importance of Factors: All of the bar heights in plot 1 (turns) are greater than the bar heights in plots 2 and 3.
Hence, X1 is more important than X2 and X3.

2. Statistical Significance: In plot 1, looking at the levels within each bar, we note that the response for level 2 is higher than
level 1 in each of the four bars. By chance, this happens with probability 1/(24) = 1/16 = 6.25 %. Hence, X1 is near-
statistically significant at the 5 % level. Similarly, for plot 2, level 1 is greater than level 2 for all four bars. Hence, X2 is
near-statistically significant. For X3, there is no consistent ordering within all four bars, and hence X3 is not statistically
significant. Rigorously speaking then, X1 and X2 are not statistically significant (since 6.25 % is not < 5 %); on the other
hand such near-significance is suggestive to the analyst that such factors may in fact be important, and hence warrant
further attention.

Note that the usual method for determining statistical significance is to perform an analysis of variance (ANOVA).
ANOVA is based on normality assumptions. If these normality assumptions are valid, then ANOVA methods are the most
powerful method for determining statistical signficance. The advantage of the block-plot method is that it is based on less
rigorous assumptions than ANOVA. At an exploratory stage, it is useful to know that our conclusions regarding important
factors are valid under a wide range of assumptions.
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3. Interactions: For X1, the four bars do not change height in any systematic way and hence there is no evidence of X1
interacting with either X2 or X3. Similarly, there is no evidence of interactions for X2.
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5.6.1.5. Estimate Main and Interaction Effects

Effects
Estimation

Although the effect estimates were given on the DOE
interaction plot on a previous page, we also display them in
tabular form.

The full model for the 23 factorial design is

Data from factorial designs with two levels can be analyzed
using least-squares regression. The regresson coefficients
represent the change per one unit of the factor variable, the
effects shown on the interaction plot represent changes
between high and low factor levels so they are twice as large
as the regression coefficients.

Effect
Estimates

The parameter estimates from a least-squares regression
analysis for the full model are shown below.

     Effect    Estimate
     ------    --------
     Mean       2.65875
     X1         1.55125
     X2        -0.43375
     X3         0.10625
     X1*X2      0.06375
     X1*X3      0.12375
     X2*X3      0.14875
     X1*X2*X3   0.07125

Because we fit the full model to the data, there are no degrees
of freedom for error and no significance tests are available.

If we sort the effects from largest to smallest (excluding the
mean), the four most important factors are: X1 (number of
turns), X2 (winding distance), X2*X3 (winding distance by
wire gauge interaction), and X1*X3 (number of turns by wire
gauge interaction).
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5.6.1.6. Modeling and Prediction Equations

Parameter
Estimates
Don't
Change as
Additional
Terms
Added

In most cases of least-squares fitting, the model coefficient
estimates for previously added terms change depending on
what was successively added. For example, the estimate for
the X1 coefficient might change depending on whether or not
an X2 term was included in the model. This is not the case
when the design is orthogonal, as is this 23 full factorial
design. In such a case, the estimates for the previously
included terms do not change as additional terms are added.
This means the list of effect estimates in section 5.6.1.5 serves
as the least-squares coefficient estimates for progressively
more complicated models.

Default
Model:
Grand
Mean

If none of the factors are important, the prediction equation
defaults to the mean of all the response values (the overall or
grand mean). That is,

For our example, the default model has a grand mean of
2.65875 with a residual standard deviation (a measure of
goodness of fit) of 1.74106 ohms.

Possible
Prediction
Equations

We add effects to the default model in decreasing order of
absolute magnitude and compute the residual standard
deviation after adding each effect. The prediction equations
and their residual standard deviations are shown below.

                                                            
Residual 
Model Terms                                                
Std. Dev.
---------------------------------------------------
--      ---------
Mean + X1                                                    
0.57272
Mean + X1 + X2                                               
0.30429
Mean + X1 + X2 + X2*X3                                       
0.26737
Mean + X1 + X2 + X2*X3 + X1*X3                               
0.23341
Mean + X1 + X2 + X2*X3 + X1*X3 + X3                          
0.19121
Mean + X1 + X2 + X2*X3 + X1*X3 + X3 + X1*X2*X3               
0.18031
Mean + X1 + X2 + X2*X3 + X1*X3 + X3 + X1*X2*X3 + 
X1*X2            NA

Note that the full model is a perfect fit to the data.
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5.6.1.7. Intermediate Conclusions

Important
Factors

Taking stock from all of the graphical and quantitative
analyses of the previous sections, we conclude that X1
(number of turns) is the most important engineering factor
affecting sensitivity, followed by X2 (wire distance) as next in
importance, followed then by some less important interactions
and X3 (wire gauge).

Best
Settings

Also, from the various analyses, we conclude that the best
design settings (on the average) for a high-sensitivity detector
are

(X1,X2,X3) = (+,-,+)

that is

number of turns = 180, 
winding distance = 0.38, and 
wire gauge = 48.

Can We
Extract
More
From the
Data?

Thus, in a very real sense, the analysis is complete. We have
achieved the two most important stated goals of the
experiment:

1. gaining insight into the most important factors, and

2. ascertaining the optimal production settings.

On the other hand, more information can be squeezed from the
data, and that is what this section and the remaining sections
address.

1. First of all, we focus on the problem of taking the
ranked list of factors and objectively ascertaining which
factors are "important" versus "unimportant".

2. In a parallel fashion, we use the subset of important
factors derived above to form a "final" prediction
equation that is good (that is, having a sufficiently small
residual standard deviation) while being parsimonious
(having a small number of terms), compared to the full
model, which is perfect (having a residual standard
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deviation = 0, that is, the predicted values = the raw
data), but is unduly complicated (consisting of a
constant + 7 terms).
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5.6.1.8. Important Factors and Parsimonious Prediction

Identify
Important
Factors

The two problems discussed in the previous section (important factors and a parsimonious
model) will be handled in parallel since determination of one yields the other. In regard to
the "important factors", our immediate goal is to take the full subset of seven main effects
and interactions and extract a subset that we will declare as "important", with the
complementary subset being "unimportant". Seven criteria are discussed in detail in section
1.3.5.18.2 in Chapter 1. The relevant criteria will be applied here. These criteria are not all
equally important, nor will they yield identical subsets, in which case a consensus subset or
a weighted consensus subset must be extracted.

Criteria for
Including
Terms in
the Model

The criteria that we can use in determining whether to keep a factor in the model can be
summarized as follows.

1. Effects: Engineering Significance
2. Effects: 90 % Numerical Significance
3. Effects: Statistical Significance
4. Effects: Normal Probability Plot
5. Averages: Youden Plot

The first four criteria focus on effect estimates with three numerical criteria and one
graphical criterion. The fifth criterion focuses on averages. We discuss each of these criteria
in detail in the following sections.

The last section summarizes the conclusions based on all of the criteria.

Effects:
Engineering
Significance

The minimum engineering significant difference is defined as

where  is the absolute value of the parameter estimate (i.e., the effect) and  is the
minimum engineering significant difference. That is, declare a factor as "important" if the
effect is greater than some a priori declared engineering difference. We use a rough rule-of-
thumb of keeping only those factors whose effect is greater than 10 % of the current
production average. In this case, let's say that the average detector has a sensitivity of 1.25
ohms. This suggests that we would declare all factors whose effect is greater than 10 % of
1.25 ohms = 0.125 ohms to be significant from an engineering point of view.

Based on this minimum engineering-significant-difference criterion, we conclude to keep
two terms: X1 (1.55125) and X2 (-0.43375).

Effects: 90
%
Numerical

The 90 % numerical significance criterion is defined as
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Significance
That is, declare a factor as important if it exceeds 10 % of the largest effect. For the current
case study, the largest effect is from X1 (1.55125 ohms), and so 10 % of that is 0.155 ohms.
This suggests keeping all factors whose effects exceed 0.155 ohms.

Based on the 90 % numerical criterion, we would keep two terms: X1 (1.55125) and X2 (-
0.43375). The X2*X3 term, (0.14875), is just under the cutoff.

Effects:
Statistical
Significance

Statistical significance is defined as

That is, declare a factor as "important" if its effect is more than 2 standard deviations away
from 0 (0, by definition, meaning "no effect"). The difficulty with this is that in order to
invoke this rule we need the  is the standard deviation of an observation.

For the eddy current case study, ignoring three-factor and higher interactions leads to an
estimate of  based on omitting only a single term: the X1*X2*X3 interaction.

Thus for our example, if one assumes that the three-factor interaction is nil and hence
represents a single drawing from a population centered at zero, an estimate of the standard
deviation of an effect is simply the estimate of the interaction effect (0.07125). Two such
effect standard deviations is 0.1425. This rule becomes to keep all  > 0.1425. This results
in keeping three terms: X1 (1.55125), X2 (-0.43375), and X1*X2 (0.14875).

Effects:
Probability
Plot

The normal probability plot can be used to identify important factors. The following graph
shows the normal probability plot of the effects.
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The normal probablity plot clearly shows two factors displaced off the line, and we see that
those two factors are X1 and X2. Thus, we would keep X1 (1.55125) and X2 (-0.43375).

Effects:
Youden Plot

A DOE Youden plot can be used in the following way. A factor is "important" if it is
displaced away from the central-tendency bunch in a Youden plot of high and low averages.
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For our example, the Youden plot clearly shows a cluster of points near the grand average
(2.65875) with two displaced points above (X1) and below (X2). Based on the Youden plot,
we keep two factors: X1 (1.55125) and X2 (-0.43375).

Conclusions In summary, the criterion for specifying "important" factors yielded the following:

1. Effects, Engineering Significant: X1 X2

2. Effects, Numerically Significant: X1 X2 (X2*X3 is borderline)

3. Effects, Statistically Significant: X1 X2 X2*X3

4. Effects, Normal Probability Plot: X1 X2

5. Averages, Youden Plot: X1 X2

All the criteria select X1 and X2. One also includes the X2*X3 interaction term (and it is
borderline for another criteria).
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We thus declare the following consensus:

1. Important Factors: X1 and X2
2. Parsimonious Prediction Equation:

(with a residual standard deviation of 0.30429 ohms)
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5.6.1.9. Validate the Fitted Model

Model
Validation

In the Important Factors and Parsimonious Prediction section, we selected the following model

The residual standard deviation for this model is 0.30429.

The next step is to validate the model. The primary method of model validation is graphical residual analysis; that is, through an
assortment of plots of the differences between the observed data Y and the predicted value  from the model. For example, the
design point (-1, -1, -1) has an observed data point (from the Background and data section) of Y = 1.70, while the predicted value
from the above fitted model for this design point is

which leads to the residual 0.15875.

Table of
Residuals

If the model fits well,  should be near Y for all eight design points. Hence the eight residuals should all be near zero. The eight
predicted values and residuals for the model with these data are:

   X1   X2   X3  Observed Predicted  Residual
----------------------------------------------
   -1   -1   -1    1.70    1.54125    0.15875
   +1   -1   -1    4.57    4.64375   -0.07375
   -1   +1   -1    0.55    0.67375   -0.12375
   +1   +1   -1    3.39    3.77625   -0.38625
   -1   -1   +1    1.51    1.54125   -0.03125
   +1   -1   +1    4.59    4.64375   -0.05375
   -1   +1   +1    0.67    0.67375   -0.00375
   +1   +1   +1    4.29    3.77625    0.51375

Residual
Standard
Deviation

What is the magnitude of the typical residual? There are several ways to compute this, but the statistically optimal measure is the
residual standard deviation:

with ri denoting the ith residual, N = 8 is the number of observations, and P = 3 is the number of fitted parameters. From the
table of prediction equations, the residual standard deviation is 0.30429.

How Should
Residuals
Behave?

If the prediction equation is adequate, the residuals from that equation should behave like random drawings (typically from an
approximately normal distribution), and should, since presumably random, have no structural relationship with any factor. This
includes any and all potential terms (X1, X2, X3, X1*X2, X1*X3, X2*X3, X1*X2*X3).

Further, if the model is adequate and complete, the residuals should have no structural relationship with any other variables that
may have been recorded. In particular, this includes the run sequence (time), which is really serving as a surrogate for any
physical or environmental variable correlated with time. Ideally, all such residual scatter plots should appear structureless. Any
scatter plot that exhibits structure suggests that the factor should have been formally included as part of the prediction equation.

Validating the prediction equation thus means that we do a final check as to whether any other variables may have been
inadvertently left out of the prediction equation, including variables drifting with time.

The graphical residual analysis thus consists of scatter plots of the residuals versus all three factors and four interactions (all such
plots should be structureless), a scatter plot of the residuals versus run sequence (which also should be structureless), and a
normal probability plot of the residuals (which should be near linear). We present such plots below.

Residual
Plots

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/pri/pri.htm
http://www.itl.nist.gov/div898/handbook/pmd/section4/pmd44.htm
http://www.itl.nist.gov/div898/handbook/eda/section2/eda21.htm


5.6.1.9. Validate the Fitted Model

http://www.itl.nist.gov/div898/handbook/pri/section6/pri619.htm[6/27/2012 2:26:03 PM]

The first plot is a normal probability plot of the residuals. The second plot is a run sequence plot of the residuals. The remaining
plots show the residuals plotted against each of the factors and each of the interaction terms.

Conclusions We make the following conclusions based on the above plots.

1. Main Effects and Interactions: The X1 and X2 scatter plots are "flat" (as they must be since X1 and X2 were explicitly
included in the model). The X3 plot shows some structure as does the X1*X3, the X2*X3, and the X1*X2*X3 plots. The
X1*X2 plot shows little structure. The net effect is that the relative ordering of these scatter plots is very much in
agreement (again, as it must be) with the relative ordering of the "unimportant" factors. From the table of effects and the
X2*X3 residual plot, the third most influential term to be added to the model would be X2*X3. In effect, these plots offer a
higher-resolution confirmation of the ordering of effects. On the other hand, none of these other factors "passed" the
criteria given in the previous section, and so these factors, suggestively influential as they might be, are still not influential
enough to be added to the model.

2. Time Drift: The run sequence scatter plot is random. Hence there does not appear to be a drift either from time, or from
any factor (e.g., temperature, humidity, pressure, etc.) possibly correlated with time.

3. Normality: The normal probability plot of the eight residuals has some trend, which suggests that additional terms might be
added. On the other hand, the correlation coefficient of the 8 ordered residuals and the eight theoretical normal N(0,1)
order statistic medians (which define the two axes of the plot) has the value 0.934, which is well within acceptable (5 %)
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limits of the normal probability plot correlation coefficient test for normality. Thus, the plot is not so non-linear as to reject
normality.

In summary, therefore, we accept the fitted model

as a parsimonious, but good, representation of the sensitivity phenomenon under study.
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5.6.1.10. Using the Fitted Model

Model
Provides
Additional
Insight

Although deriving the fitted model was not the primary purpose of the study, it does have
two benefits in terms of additional insight:

1. Global prediction
2. Global determination of best settings

Global
Prediction

How does one predict the response at points other than those used in the experiment? The
prediction equation yields good results at the eight combinations of coded -1 and +1 values
for the three factors:

1. X1 = Number of turns = 90 and 180
2. X2 = Winding distance = 0.38 and 1.14
3. X3 = Wire gauge = 40 and 48

What, however, would one expect the detector to yield at target settings of, say,

1. Number of turns = 150
2. Winding distance = 0.50
3. Wire gauge = 46

Based on the fitted equation, we first translate the target values into coded target values as
follows:

coded target = -1 + 2*(target-low)/(high-low)

Hence the coded target values are

1. X1 = -1 + 2*(150-90)/(180-90) = 0.333333
2. X2 = -1 + 2*(0.50-0.38)/(1.14-0.38) = -0.684211
3. X3 = -1 + 2*(46-40)/(48-40) = 0.5000

Thus the raw data

(Number of turns, Winding distance, Wire gauge) = (150, 0.50, 46)

translates into the coded

(X1, X2, X3) = (0.333333, -0.684211, 0.50000)

on the -1 to +1 scale.

Inserting these coded values into the fitted equation yields, as desired, a predicted value of
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 = 2.65875 + 1.55125(0.333333) - 0.43375(-0.684211) = 3.47261

The above procedure can be carried out for any values of turns, distance, and gauge. This is
subject to the usual cautions that equations that are good near the data point vertices may not
necessarily be good everywhere in the factor space. Interpolation is a bit safer than
extrapolation, but it is not guaranteed to provide good results, of course. One would feel
more comfortable about interpolation (as in our example) if additional data had been
collected at the center point and the center point data turned out to be in good agreement
with predicted values at the center point based on the fitted model. In our case, we had no
such data and so the sobering truth is that the user of the equation is assuming something in
which the data set as given is not capable of suggesting one way or the other. Given that
assumption, we have demonstrated how one may cautiously but insightfully generate
predicted values that go well beyond our limited original data set of eight points.

Global
Determination
of Best
Settings

In order to determine the best settings for the factors, we can use a DOE contour plot. The
DOE contour plot is generated for the two most significant factors and shows the value of
the response variable at the vertices (i.e, the -1 and +1 settings for the factor variables) and
indicates the direction that maximizes (or minimizes) the response variable. If you have
more than two significant factors, you can generate a series of DOE contour plots with each
one using two of the important factors.

DOE Contour
Plot

The following is the DOE contour plot of the number of turns and the winding distance.
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The maximum value of the response variable (eddy current) corresponds to X1 (number of
turns) equal to -1 and X2 (winding distance) equal to +1. The lower right corner of the
contour plot corresponds to the direction that maximizes the response variable. This
information can be used in planning the next phase of the experiment.
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5.6.1.11. Conclusions and Next Step

Conclusions The goals of this case study were:

1. Determine the most important factors.
2. Determine the best settings for the factors.
3. Determine a good prediction equation for the data.

The various plots and analysis showed that the number of
turns (X1) and the winding distance (X2) were the most
important factors and a good prediction equation for the data
is:

The DOE contour plot gave us the best settings for the factors
(X1 = -1 and X2 = 1).

Next Step Full and fractional designs are typically used to identify the
most important factors. In some applications, this is
sufficient and no further experimentation is performed. In
other applications, it is desired to maximize (or minimize) the
response variable. This typically involves the use of response
surface designs. The DOE contour plot can provide guidance
on the settings to use for the factor variables in this next
phase of the experiment.

This is a common sequence for designed experiments in
engineering and scientific applications. Note the iterative
nature of this approach. That is, you typically do not design
one large experiment to answer all your questions. Rather,
you run a series of smaller experiments. The initial
experiment or experiments are used to identify the important
factors. Once these factors are identified, follow-up
experiments can be run to fine tune the optimal settings (in
terms of maximizing/minimizing the response variable) for
these most important factors.

For this particular case study, a response surface design was
not used.
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5.6.1.12. Work This Example Yourself

View
Dataplot
Macro for
this Case
Study

This page allows you to repeat the analysis outlined in the
case study description on the previous page using Dataplot. It
is required that you have already downloaded and installed
Dataplot and configured your browser to run Dataplot. Output
from each analysis step below will be displayed in one or
more of the Dataplot windows. The four main windows are the
Output window, the Graphics window, the Command History
window, and the Data Sheet window. Across the top of the
main windows are menus for executing Dataplot commands.
Across the bottom is a command entry window where
commands can be typed in.

Data Analysis Steps Results and
Conclusions

Click on the links below to start Dataplot and
run this case study yourself. Each step may use
results from previous steps, so please be patient.
Wait until the software verifies that the current
step is complete before clicking on the next step. 

The links in this column
will connect you with
more detailed
information about each
analysis step from the
case study description. 

1. Get set up and started.

   1. Read in the data.  1. You have read 4 
columns of numbers 
    into Dataplot: 
variables Y, X1, X2,
    and X3.

2. Plot the main effects.

   1. Ordered data plot.

   2. DOE scatter plot.

   3. DOE mean plot.

 1. Ordered data plot 
shows factor 1
    clearly 
important, factor 2 
    somewhat 
important.

 2. DOE scatter plot 
shows significant
    differences for 
factors 1 and 2.
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 3. DOE mean plot 
shows significant
    differences in 
means for factors
    1 and 2.

3. Plots for interaction effects

   1. Generate a DOE interaction
      effects matrix plot.

 1. The DOE 
interaction effects 
matrix
    plot does not 
show any major
    interaction 
effects.

4. Block plots for main and interaction 
effects

   1. Generate block plots.
 1. The block plots 
show that the
    factor 1 and 
factor 2 effects
    are consistent 
over all
    combinations of 
the other
    factors.

5. Estimate main and interaction effects

   1. Perform a Yates fit to estimate 
the
      main effects and interaction 
effects.

 1. The Yates 
analysis shows that 
the
    factor 1 and 
factor 2 main effects
    are significant, 
and the interaction
    for factors 2 and 
3 is at the
    boundary of 
statistical 
significance.

6. Model selection

   1. Generate half-normal
      probability plots of the effects.

   2. Generate a Youden plot of the
      effects.

 1. The probability 
plot indicates
    that the model 
should include
    main effects for 
factors 1 and 2.

 2. The Youden plot 
indicates
    that the model 
should include
    main effects for 
factors 1 and 2.

7. Model validation

   1. Compute residuals and predicted 
values
      from the partial model suggested 
by
      the Yates analysis.

 1. Check the link 
for the
    values of the 
residual and
    predicted values.
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   2. Generate residual plots to 
validate
      the model.

 2. The residual 
plots do not
    indicate any 
major problems
    with the model 
using main
    effects for 
factors 1 and 2.

8. DOE contour plot

   1. Generate a DOE contour plot using
      factors 1 and 2.

 1. The DOE contour 
plot shows
    X1 = -1 and X2 = 
+1 to be the
    best settings.
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5.6.2. Sonoluminescent Light Intensity Case
Study

Analysis of
a 27-3

Fractional
Factorial
Design

This case study demonstrates the analysis of a 27-3 fractional
factorial design. The purpose of the study is to optimize
sonoluminescent light intensity.

The case study is based on the EDA approach to experimental
design discussed in an earlier section.

Contents The case study is divided into the following sections:

1. Background and data
2. Initial plots/main effects
3. Interaction effects
4. Main and interaction effects: block plots
5. Important Factors: Youden plot
6. Important Factors: |effects| plot
7. Important Factors: half-normal probability plot
8. Cumulative Residual SD plot
9. Next step: DOE contour plot

10. Summary of conclusions
11. Work this example yourself
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5.6.2.1. Background and Data

Background
and
Motivation

Sonoluminescence is the process of turning sound energy into
light. An ultrasonic horn is used to resonate a bubble of air in
a medium, usually water. The bubble is ultrasonically
compressed and then collapses to light-emitting plasma.

In the general physics community, sonoluminescence studies
are being carried out to characterize it, to understand it, and
to uncover its practical uses. An unanswered question in the
community is whether sonoluminescence may be used for
cold fusion.

NIST's motive for sonoluminescent investigations is to assess
its suitability for the dissolution of physical samples, which is
needed in the production of homogeneous Standard
Reference Materials (SRMs). It is believed that maximal
dissolution coincides with maximal energy and maximal light
intensity. The ultimate motivation for striving for maximal
dissolution is that this allows improved determination of
alpha-and beta-emitting radionuclides in such samples.

The objectives of the NIST experiment were to determine the
important factors that affect sonoluminescent light intensity
and to ascertain optimal settings of such factors that will
predictably achieve high intensities. An original list of 49
factors was reduced, based on physics reasons, to the
following seven factors: molarity (amount of solute), solute
type, pH, gas type in the water, water depth, horn depth, and
flask clamping.

Time restrictions caused the experiment to be about one
month, which in turn translated into an upper limit of roughly
20 runs. A 7-factor, 2-level fractional factorial design
(Resolution IV) was constructed and run. The factor level
settings are given below.

Eva Wilcox and Ken Inn of the NIST Physics Laboratory
conducted this experiment during 1999. Jim Filliben of the
NIST Statistical Engineering Division performed the analysis
of the experimental data.

Software The analyses used in this case study can be generated using
both Dataplot code and R code.
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Response
Variable,
Factor
Variables,
and Factor-
Level
Settings

This experiment utilizes the following response and factor
variables.

1. Response Variable (Y) = The sonoluminescent light
intensity.

2. Factor 1 (X1) = Molarity (amount of Solute). The
coding is -1 for 0.10 mol and +1 for 0.33 mol.

3. Factor 2 (X2) = Solute type. The coding is -1 for sugar
and +1 for glycerol.

4. Factor 3 (X3) = pH. The coding is -1 for 3 and +1 for
11.

5. Factor 4 (X4) = Gas type in water. The coding is -1 for
helium and +1 for air.

6. Factor 5 (X5) = Water depth. The coding is -1 for half
and +1 for full.

7. Factor 6 (X6) = Horn depth. The coding is -1 for 5 mm
and +1 for 10 mm.

8. Factor 7 (X7) = Flask clamping. The coding is -1 for
unclamped and +1 for clamped.

This data set has 16 observations. It is a 27-3 design with no
center points.

Goal of the
Experiment

This case study demonstrates the analysis of a 27-3 fractional
factorial experimental design. The goals of this case study
are:

1. Determine the important factors that affect the
sonoluminescent light intensity. Specifically, we are
trying to maximize this intensity.

2. Determine the best settings of the seven factors so as to
maximize the sonoluminescent light intensity.

Data Used
in the
Analysis

The following are the data used for this analysis. This data set
is given in Yates order.

  Y           X1      X2      X3      X4      X5      
X6      X7
Light             Solute             Gas   Water    
Horn    Flask
Intensity Molarity  type     pH     Type   Depth   
Depth  Clamping
---------------------------------------------------
---------------
 80.6       -1.0    -1.0    -1.0    -1.0    -1.0    
-1.0    -1.0
 66.1        1.0    -1.0    -1.0    -1.0    -1.0     
1.0     1.0
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 59.1       -1.0     1.0    -1.0    -1.0     1.0    
-1.0     1.0
 68.9        1.0     1.0    -1.0    -1.0     1.0     
1.0    -1.0
 75.1       -1.0    -1.0     1.0    -1.0     1.0     
1.0     1.0
373.8        1.0    -1.0     1.0    -1.0     1.0    
-1.0    -1.0
 66.8       -1.0     1.0     1.0    -1.0    -1.0     
1.0    -1.0
 79.6        1.0     1.0     1.0    -1.0    -1.0    
-1.0     1.0
114.3       -1.0    -1.0    -1.0     1.0     1.0     
1.0    -1.0
 84.1        1.0    -1.0    -1.0     1.0     1.0    
-1.0     1.0
 68.4       -1.0     1.0    -1.0     1.0    -1.0     
1.0     1.0
 88.1        1.0     1.0    -1.0     1.0    -1.0    
-1.0    -1.0
 78.1       -1.0    -1.0     1.0     1.0    -1.0    
-1.0     1.0
327.2        1.0    -1.0     1.0     1.0    -1.0     
1.0    -1.0
 77.6       -1.0     1.0     1.0     1.0     1.0    
-1.0    -1.0
 61.9        1.0     1.0     1.0     1.0     1.0     
1.0     1.0
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5.6.2.2. Initial Plots/Main Effects

Plot the
Data:
Ordered
Data Plot

The first step in the analysis is to generate an ordered data plot.

Conclusions
from the
Ordered
Data Plot

We can make the following conclusions based on the ordered data plot.

1. Two points clearly stand out. The first 13 points lie in the 50 to 100 range, the
next point is greater than 100, and the last two points are greater than 300.

2. Important Factors: For these two highest points, factors X1, X2, X3, and X7
have the same value (namely, +, -, +, -, respectively) while X4, X5, and X6
have differing values. We conclude that X1, X2, X3, and X7 are potentially
important factors, while X4, X5, and X6 are not.

3. Best Settings: Our first pass makes use of the settings at the observed
maximum (Y = 373.8). The settings for this maximum are (+, -, +, -, +, -, -).

Plot the The next step in the analysis is to generate a DOE scatter plot.
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Data: DOE
Scatter Plot

Conclusions
from the
DOE
Scatter Plot

We can make the following conclusions based on the DOE scatter plot.

1. Important Factors: Again, two points dominate the plot. For X1, X2, X3, and
X7, these two points emanate from the same setting, (+, -, +, -), while for X4,
X5, and X6 they emanate from different settings. We conclude that X1, X2, X3,
and X7 are potentially important, while X4, X5, and X6 are probably not
important.

2. Best Settings: Our first pass at best settings yields (X1 = +, X2 = -, X3 = +, X4
= either, X5 = either, X6 = either, X7 = -).

Check for
Main
Effects:
DOE Mean
Plot

The DOE mean plot is generated to more clearly show the main effects:

http://www.itl.nist.gov/div898/handbook/pri/section6/inn/gifs/dexsct_f.gif
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Conclusions
from the
DOE Mean
Plot

We can make the following conclusions from the DOE mean plot.

1. Important Factors: 
X2 (effect = large: about -80) 
X7 (effect = large: about -80) 
X1 (effect = large: about 70) 
X3 (effect = large: about 65) 
X6 (effect = small: about -10) 
X5 (effect = small: between 5 and 10) 
X4 (effect = small: less than 5) 

2. Best Settings: Here we step through each factor, one by one, and choose the
setting that yields the highest average for the sonoluminescent light intensity:

(X1,X2,X3,X4,X5,X6,X7) = (+,-,+,+,+,-,-)

Comparison
of Plots

All of the above three plots are used primarily to determine the most important
factors. Because it plots a summary statistic rather than the raw data, the DOE mean
plot shows the ordering of the main effects most clearly. However, it is still
recommended to generate either the ordered data plot or the DOE scatter plot (or
both). Since these plot the raw data, they can sometimes reveal features of the data
that might be masked by the DOE mean plot.

In this case, the ordered data plot and the DOE scatter plot clearly show two
dominant points. This feature would not be obvious if we had generated only the
DOE mean plot.

Interpretation-wise, the most important factor X2 (solute) will, on the average,

http://www.itl.nist.gov/div898/handbook/pri/section6/inn/gifs/dexmea_f.gif
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change the light intensity by about 80 units regardless of the settings of the other
factors. The other factors are interpreted similarly.

In terms of the best settings, note that the ordered data plot, based on the maximum
response value, yielded

+, -, +, -, +, -, -

Note that a consensus best value, with "." indicating a setting for which the three
plots disagree, would be

+, -, +, ., +, -, -

Note that the factor for which the settings disagree, X4, invariably defines itself as
an "unimportant" factor.
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5.6.2.3. Interaction Effects

Check for
Interaction
Effects:
DOE
Interaction
Plot

In addition to the main effects, it is also important to check for interaction effects,
especially 2-factor interaction effects. The DOE interaction effects plot is an
effective tool for this.

Conclusions
from the
DOE
Interaction
Effects Plot

We make the following conclusions from the DOE interaction effects plot.

1. Important Factors: Looking for the plots that have the steepest lines (that is,
the largest effects), and noting that the legends on each subplot give the
estimated effect, we have that

The diagonal plots are the main effects. The important factors are: X2,
X7, X1, and X3. These four factors have |effect| > 60. The remaining
three factors have |effect| < 10.

The off-diagonal plots are the 2-factor interaction effects. Of the 21 2-
factor interactions, 9 are nominally important, but they fall into three
groups of three:
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X1*X3, X4*X6, X2*X7 (effect = 70)
X2*X3, X4*X5, X1*X7 (effect approximately 63.5)
X1*X2, X5*X6, X3*X7 (effect = -59.6)

All remaining 2-factor interactions are small having an |effect| < 20. A
virtue of the interaction effects matrix plot is that the confounding
structure of this Resolution IV design can be read off the plot. In this
case, the fact that X1*X3, X4*X6, and X2*X7 all have effect estimates
identical to 70 is not a mathematical coincidence. It is a reflection of the
fact that for this design, the three 2-factor interactions are confounded.
This is also true for the other two sets of three (X2*X3, X4*X5, X1*X7,
and X1*X2, X5*X6, X3*X7).

2. Best Settings: Reading down the diagonal plots, we select, as before, the best
settings "on the average":

(X1,X2,X3,X4,X5,X6,X7) = (+,-,+,+,+,-,-)

For the more important factors (X1, X2, X3, X7), we note that the best settings
(+, -, +, -) are consistent with the best settings for the 2-factor interactions
(cross-products):

X1: +, X2: - with X1*X2: - 
X1: +, X3: + with X1*X3: + 
X1: +, X7: - with X1*X7: - 
X2: -, X3: + with X2*X3: - 
X2: -, X7: - with X2*X7: + 
X3: +, X7: - with X3*X7: - 
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5.6.2.4. Main and Interaction Effects: Block Plots

Block Plots Block plots are a useful adjunct to the DOE mean plot and the DOE interaction
effects plot to confirm the importance of factors, to establish the robustness of main
effect conclusions, and to determine the existence of interactions.

For block plots, it is the height of the bars that is important, not the relative
positioning of each bar. Hence we focus on the size and internal signs of the blocks,
not "where" the blocks are relative to each other.

We note in passing that for a fractional factorial design, we cannot display all
combinations of the six remaining factors. We have arbitrarily chosen two
robustness factors, which yields four blocks for comparison.

Conclusions
from the
Block Plots

We can make the following conclusions from the block plots.

1. Relative Importance of Factors: Because of the expanded vertical axis, due to
the two "outliers", the block plot is not particularly revealing. Block plots
based on alternatively scaled data (e.g., LOG(Y)) would be more informative.
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5.6.2.5. Important Factors: Youden Plot

Purpose The DOE Youden plot is used to distinguish between important and unimportant
factors.

Sample
Youden Plot

Conclusions
from the
Youden plot

We can make the following conclusions from the Youden plot.

1. In the upper left corner are the interaction term X1*X3 and the main effects X1
and X3.

2. In the lower right corner are the main effects X2 and X7 and the interaction
terms X2*X3 and X1*X2.

3. The remaining terms are clustered in the center, which indicates that such
effects have averages that are similar (and hence the effects are near zero), and
so such effects are relatively unimportant.

4. On the far right of the plot, the confounding structure is given (e.g., 13:
13+27+46), which suggests that the information on X1*X3 (on the plot) must
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be tempered with the fact that X1*X3 is confounded with X2*X7 and X4*X6.

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/


5.6.2.6. Important Factors: |Effects| Plot

http://www.itl.nist.gov/div898/handbook/pri/section6/pri626.htm[6/27/2012 2:26:12 PM]

 

5. Process Improvement 
5.6. Case Studies 
5.6.2. Sonoluminescent Light Intensity Case Study 

5.6.2.6. Important Factors: |Effects| Plot

Purpose The |effects| plot displays the results of a Yates analysis in both a tabular and a
graphical format. It is used to distinguish between important and unimportant
effects.

Sample
|Effects|
Plot

Conclusions
from the
|effects| plot

We can make the following conclusions from the |effects| plot.

1. A ranked list of main effects and interaction terms is:
X2 
X7 
X1*X3 (confounded with X2*X7 and X4*X6)
X1 
X3 
X2*X3 (confounded with X4*X5 and X1*X7)
X1*X2 (confounded with X3*X7 and X5*X6)
X3*X4 (confounded with X1*X6 and X2*X5)
X1*X4 (confounded with X3*X6 and X5*X7)
X6 
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X5 
X1*X2*X4 (confounded with other 3-factor interactions)
X4 
X2*X4 (confounded with X3*X5 and X6*X7)
X1*X5 (confounded with X2*X6 and X4*X7)

2. From the graph, there is a clear dividing line between the first seven effects
(all |effect| > 50) and the last eight effects (all |effect| < 20). This suggests we
retain the first seven terms as "important" and discard the remaining as
"unimportant".

3. Again, the confounding structure on the right reminds us that, for example, the
nominal effect size of 70.0125 for X1*X3 (molarity*pH) can come from an
X1*X3 interaction, an X2*X7 (solute*clamping) interaction, an X4*X6
(gas*horn depth) interaction, or any mixture of the three interactions.
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5.6.2.7. Important Factors: Half-Normal Probability Plot

Purpose The half-normal probability plot is used to distinguish between important and
unimportant effects.

Sample
Half-
Normal
Probability
Plot

Conclusions
from the
Half-
Normal
Probability
Plot

We can make the following conclusions from the half-normal probability plot.

1. The points in the plot divide into two clear clusters:

An upper cluster (|effect| > 60).
A lower cluster (|effect| < 20).

2. The upper cluster contains the effects:

X2, X7, X1*X3 (and confounding), X1, X3, X2*X3 (and confounding),
X1*X2 (and confounding)

These effects should definitely be considered important.

3. The remaining effects lie on a line and form a lower cluster. These effects are
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declared relatively unimportant.

4. The effect id's and the confounding structure are given on the far right (e.g.,
13:13+27+46).
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5.6. Case Studies 
5.6.2. Sonoluminescent Light Intensity Case Study 

5.6.2.8. Cumulative Residual Standard Deviation Plot

Purpose The cumulative residual standard deviation plot is used to identify the best
(parsimonious) model.

Sample
Cumulative
Residual
Standard
Deviation
Plot

Conclusions
from the
Cumulative
Residual SD
Plot

We can make the following conclusions from the cumulative residual standard
deviation plot.

1. The baseline model consisting only of the average (  = 110.6063) has a high
residual standard deviation (95).

2. The cumulative residual standard deviation shows a significant and steady
decrease as the following terms are added to the average: X2, X7, X1*X3, X1,
X3, X2*X3, and X1*X2. Including these terms reduces the cumulative residual
standard deviation from approximately 95 to approximately 17.

3. Exclude from the model any term after X1*X2 as the decrease in the residual
standard deviation becomes relatively small.

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/pri/pri.htm
http://www.itl.nist.gov/div898/handbook/pri/section6/inn/gifs/cumres_f.gif


5.6.2.8. Cumulative Residual Standard Deviation Plot

http://www.itl.nist.gov/div898/handbook/pri/section6/pri628.htm[6/27/2012 2:26:14 PM]

4. From the |effects| plot, we see that the average is 110.6063, the estimated X2
effect is -78.6126, and so on. (The model coefficients are one half of the
effect estimates.) We use this to from the following prediction equation:

Note that X1*X3 is confounded with X2*X7 and X4*X6, X1*X5 is confounded
with X2*X6 and X4*X7, and X1*X2 is confounded with X3*X7 and X5*X6.

From the above graph, we see that the residual standard deviation for this
model is approximately 17.
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5.6.2. Sonoluminescent Light Intensity Case Study 

5.6.2.9. Next Step: DOE Contour Plot

Purpose The DOE contour plot is used to determine the best factor settings for the two most
important factors in the next iteration of the experiment.

From the previous plots, we identified X2 (solute) and X7 (horn depth) as the two
most important factors.

Sample
DOE
Contour
Plot

Conclusions
from the
DOE
Contour
Plot

We can make the following conclusions from the DOE contour plot.

1. The best (high light intensity) setting for X2 is "-" and the best setting for X7
is "-". This combination yields an average response of approximately 224. The
next highest average response from any other combination of these factors is
only 76.

2. The non-linear nature of the contour lines implies that the X2*X7 interaction is
important.

3. On the left side of the plot from top to bottom, the contour lines start at 0,
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increment by 50 and stop at 400. On the bottom of the plot from right to left,
the contour lines start at 0, increment by 50 and stop at 400.

To achieve a light intensity of, say 400, this suggests an extrapolated best
setting of (X2, X7) = (-2,-2).

4. Such extrapolation only makes sense if X2 and X7 are continuous factors.
Such is not the case here. In this example, X2 is solute (-1 = sugar and +1 =
glycerol) and X7 is flask clamping (-1 is unclamped and +1 is clamped). Both
factors are discrete, and so extrapolated settings are not possible.
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5.6.2. Sonoluminescent Light Intensity Case Study 

5.6.2.10. Summary of Conclusions

Most
Important
Factors

The primary goal of this experiment was to identify the most
important factors in maximizing the sonoluminescent light
intensity.

Based on the preceding graphical analysis, we make the
following conclusions.

Four factors and three groups of 2-factor interactions are
important. A rank-order listing of factors is:

1. X2: Solute (effect = -78.6)

2. X7: Clamping (effect = -78.1)

3. X1*X3 (Molarity*pH) or 
X2*X7 (Solute*Clamping) 
(effect = 70.0)

4. X1: Molarity (effect = 66.2)

5. X3: pH (effect = 63.5)

6. X2*X3 (Solute*pH) or 
X4*X5 (Gas*Water Depth) 
X1*X7 (Molarity*Clamping) 
(effect = -63.5)

7. X1*X2 (Molarity*Solute) or 
X3*X7 (Ph*Clamping) 
(effect = -59.6)

Thus, of the seven factors and 21 2-factor interactions, it
was found that four factors and at most seven 2-factor
interactions seem important, with the remaining three
factors and 14 interactions apparently being
unimportant.

Best
Settings

The best settings to maximize sonoluminescent light intensity
are

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/pri/pri.htm


5.6.2.10. Summary of Conclusions

http://www.itl.nist.gov/div898/handbook/pri/section6/pri62a.htm[6/27/2012 2:26:15 PM]

X1 (Molarity) + (0.33 mol)
X2 (Solute) - (sugar)
X3 (pH) + (11)
X4 (Gas) . (either)
X5 (Water Depth) + (full)
X6 (Horn Depth) - (5 mm)
X7 (Clamping) - (unclamped)

with the X1, X2, X3, and X7 settings especially important.
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5.6.2.11. Work This Example Yourself

View
Dataplot
Macro for
this Case
Study

This page allows you to repeat the analysis outlined in the
case study description on the previous page using Dataplot . It
is required that you have already downloaded and installed
Dataplot and configured your browser to run Dataplot. Output
from each analysis step below will be displayed in one or
more of the Dataplot windows. The four main windows are the
Output window, the Graphics window, the Command History
window, and the Data Sheet window. Across the top of the
main windows there are menus for executing Dataplot
commands. Across the bottom is a command entry window
where commands can be typed in.

Data Analysis Steps Results and
Conclusions

Click on the links below to start Dataplot and
run this case study yourself. Each step may use
results from previous steps, so please be patient.
Wait until the software verifies that the current
step is complete before clicking on the next step. 

The links in this column
will connect you with
more detailed
information about each
analysis step from the
case study description. 

1. Get set up and started.

   1. Read in the data.

                              


 1. You have read 8 
columns of numbers 
    into Dataplot: 
variables Y, X1, X2,
    X3, X4, X5, X6, 
and X7.

2. Plot the main effects.

   1. Ordered data plot.

   2. DOE scatter plot.

   3. DOE mean plot.

 1. Ordered data plot 
shows 2 points
    that stand out.  
Potential
    important factors 
are X1, X2, X3,
    and X7.

 2. DOE scatter plot 
identifies X1, X2,
    X3, and X7 as 
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important factors.

 3. DOE mean plot 
identifies X1, X2,
    X3, and X7 as 
important factors.

3. Plots for interaction effects

   1. Generate a DOE interaction
      effects plot.

 1. The DOE 
interaction effects
    plot shows 
several important
    interaction 
effects.

4. Block plots for main and interaction 
effects

   1. Generate block plots.
 1. The block plots 
are not
    particularly 
helpful in
    this case.

5. Youden plot to identify important 
factors

   1. Generate a Youden plot.
 1. The Youden plot 
identifies
    X1, X2, X3, and 
X7 as important
    factors.  It also 
identifies a
    number of 
important 
interactions
    (X1*X3, X1*X2, 
X2*X3).

6. |Effects| plot to identify important 
factors

   1. Generate |effects| plot.
 1. The |effects| 
plot identifies
    X2, X7, X1*X3, 
X1, X3, X2*X3,
    and X1*X2 as 
important factors
    and interactions.

7. Half-normal probability plot to
   identify important factors

   1. Generate half-normal probability
      plot.

 1. The half-normal 
probability plot
    identifies X2, 
X7, X1*X3, X1, X3,
    X2*X3, and X1*X2 
as important
    factors and 
interactions.

8. Cumulative residual standard
   deviation plot

   1. Generate a cumulative residual
      standard deviation plot.

 1. The cumulative 
residual standard
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    deviation plot 
results in a model
    with 4 main 
effects and 3 2-
factor
    interactions.

9. DOE contour plot

   1. Generate a DOE contour plot using
      factors 2 and 7.

 1. The DOE contour 
plot shows
    X2 = -1 and X7 = 
-1 to be the
    best settings.
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5.7. A Glossary of DOE Terminology

Definitions
for key
DOE
terms

This page gives definitions and information for many of the
basic terms used in DOE. 

Alias: When the estimate of an effect also
includes the influence of one or more other effects
(usually high order interactions) the effects are
said to be aliased (see confounding). For example,
if the estimate of effect D in a four factor
experiment actually estimates (D + ABC), then
the main effect D is aliased with the 3-way
interaction ABC. Note: This causes no difficulty
when the higher order interaction is either non-
existent or insignificant.

Analysis of Variance (ANOVA): A
mathematical process for separating the variability
of a group of observations into assignable causes
and setting up various significance tests.

Balanced Design: An experimental design
where all cells (i.e. treatment combinations) have
the same number of observations.

Blocking: A schedule for conducting treatment
combinations in an experimental study such that
any effects on the experimental results due to a
known change in raw materials, operators,
machines, etc., become concentrated in the levels
of the blocking variable. Note: the reason for
blocking is to isolate a systematic effect and
prevent it from obscuring the main effects.
Blocking is achieved by restricting randomization.

Center Points: Points at the center value of all
factor ranges.

Coding Factor Levels: Transforming the scale of
measurement for a factor so that the high value
becomes +1 and the low value becomes -1 (see
scaling). After coding all factors in a 2-level full
factorial experiment, the design matrix has all
orthogonal columns. 

Coding  is a simple linear transformation of the
original measurement scale. If the "high" value is
Xh and the "low" value is XL (in the original
scale), then the scaling transformation takes any
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original X value and converts it to (X - a)/b,
where 
a = (Xh + XL)/2 and b = ( Xh -X L)/2. 
To go back to the original measurement scale, just
take the coded value and multiply it by "b" and
add "a" or, X = b(coded value) + a.

As an example, if the factor is temperature and
the high setting is 65oC and the low setting is
55oC, then a = (65 + 55)/2 = 60 and b = (65 -
55)/2 = 5. The center point (where the coded
value is 0) has a temperature of 5(0) + 60 = 
60oC.     

Comparative Designs: A design aimed at
making conclusions about one a priori important
factor, possibly in the presence of one or more
other "nuisance" factors.

Confounding:  A confounding design is one
where some treatment effects (main or
interactions) are estimated by the same linear
combination of the experimental observations as
some blocking effects. In this case, the treatment
effect and the blocking effect are said to be
confounded. Confounding is also used as a
general term to indicate that the value of a main
effect estimate comes from both the main effect
itself and also contamination or bias from higher
order interactions. Note: Confounding designs
naturally arise when full factorial designs have to
be run in blocks and the block size is smaller than
the number of different treatment combinations.
They also occur whenever a fractional factorial
design is chosen instead of a full factorial design. 

Crossed Factors: See factors below.
Design: A set of experimental runs which

allows you to fit a particular model and estimate
your desired effects.

Design Matrix: A matrix description of an
experiment that is useful for constructing and
analyzing experiments.

Effect: How changing the settings of a factor
changes the response. The effect of a single factor
is also called a main effect. Note: For a factor A
with two levels, scaled so that low = -1 and high
= +1, the effect of A is estimated by subtracting
the average response when A is -1 from the
average response when A = +1 and dividing the
result by 2 (division by 2 is needed because the -1
level is 2 scaled units away from the +1 level).

Error: Unexplained variation in a collection of
observations. Note: DOE's typically require
understanding of both random error and lack of fit
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error. 
Experimental Unit: The entity to which a

specific treatment combination is applied. Note:
an experimental unit can be a

PC board
silicon wafer
tray of components simultaneously treated
individual agricultural plants
plot of land
automotive transmissions
etc.

Factors: Process inputs an investigator
manipulates to cause a change in the output. Some
factors cannot be controlled by the experimenter
but may effect the responses. If their effect is
significant, these uncontrolled factors should be
measured and used in the data analysis. Note: The
inputs can be discrete or continuous.

Crossed Factors: Two factors are crossed if
every level of one occurs with every level
of the other in the experiment. 
Nested Factors: A factor "A" is nested
within another factor "B" if the levels or
values of "A" are different for every level
or value of "B". Note: Nested factors or
effects have a hierarchical relationship.

Fixed Effect: An effect associated with an input
variable that has a limited number of levels or in
which only a limited number of levels are of
interest to the experimenter.

Interactions: Occurs when the effect of one
factor on a response depends on the level of
another factor(s). 

Lack of Fit Error: Error that occurs when the
analysis omits one or more important terms or
factors from the process model. Note: Including
replication in a DOE allows separation of
experimental error into its components: lack of fit
and random (pure) error.

Model: Mathematical relationship which relates
changes in a given response to changes in one or
more factors. 

Nested Factors: See factors above.
Orthogonality: Two vectors of the same length

are orthogonal if the sum of the products of their
corresponding elements is 0. Note: An
experimental design is orthogonal if the effects of
any factor balance out (sum to zero) across the
effects of the other factors.

Random Effect: An effect associated with input
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variables chosen at random from a population
having a large or infinite number of possible
values. 

Random error: Error that occurs due to natural
variation in the process. Note: Random error is
typically assumed to be normally distributed with
zero mean and a constant variance. Note: Random
error is also called experimental error.

Randomization: A schedule for allocating
treatment material and for conducting treatment
combinations in a DOE such that the conditions in
one run neither depend on the conditions of the
previous run nor predict the conditions in the
subsequent runs. Note: The importance of
randomization cannot be over stressed.
Randomization is necessary for conclusions drawn
from the experiment to be correct, unambiguous
and defensible. 

Replication: Performing the same treatment
combination more than once. Note: Including
replication allows an estimate of the random error
independent of any lack of fit error. 

Resolution: A term which describes the degree
to which estimated main effects are aliased (or
confounded) with estimated 2-level interactions,
3-level interactions, etc. In general, the resolution
of a design is one more than the smallest order
interaction that some main effect is confounded
(aliased) with. If some main effects are
confounded with some 2-level interactions, the
resolution is 3. Note: Full factorial designs have
no confounding and are said to have resolution
"infinity". For most practical purposes, a
resolution 5 design is excellent and a resolution 4
design may be adequate. Resolution 3 designs are
useful as economical screening designs. 

Responses: The output(s) of a process.
Sometimes called dependent variable(s).

Response Surface Designs: A DOE that fully
explores the process window and models the
responses. Note: These designs are most effective
when there are less than 5 factors. Quadratic
models are used for response surface designs and
at least three levels of every factor are needed in
the design.

Rotatability: A design is rotatable if the
variance of the predicted response at any point x
depends only on the distance of x from the design
center point. A design with this property can be
rotated around its center point without changing
the prediction variance at x. Note: Rotatability is a
desirable property for response surface designs
(i.e. quadratic model designs).

Scaling Factor Levels: Transforming factor
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levels so that the high value becomes +1 and the
low value becomes -1. 

Screening Designs: A DOE that identifies
which of many factors have a significant effect on
the response. Note: Typically screening designs
have more than 5 factors.

Treatment: A treatment is a specific
combination of factor levels whose effect is to be
compared with other treatments.

Treatment Combination: The combination of
the settings of several factors in a given
experimental trial. Also known as a run.

Variance Components: Partitioning of the
overall variation into assignable components.
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