5.
Process Improvement
5.3. Choosing an experimental design 5.3.3. How do you select an experimental design? 5.3.3.8. Improving fractional factorial design resolution
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
A foldover design is obtained from a fractional factorial design by reversing the signs of all the columns |
A mirror-image fold-over (or foldover, without the hyphen) design is
used to augment fractional factorial designs to
increase the resolution of
\( 2_{III}^{3-1} \)
and Plackett-Burman designs. It is obtained by reversing the signs of
all the columns of the original design matrix. The original design
runs are combined with the mirror-image fold-over design runs, and this
combination can then be used to estimate all main effects clear of any
two-factor interaction. This is referred to as: breaking the alias
link between main effects and two-factor interactions.
Before we illustrate this concept with an example, we briefly review the basic concepts involved. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Review of Fractional 2k-p Designs | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
A resolution III design, combined with its mirror-image foldover, becomes resolution IV |
In general, a design type that uses a specified fraction of the runs
from a full factorial and is balanced and orthogonal is called a
fractional factorial.
A 2-level fractional factorial is constructed as follows: Let the number of runs be 2k-p. Start by constructing the full factorial for the k-p variables. Next associate the extra factors with higher-order interaction columns. The Table shown previously details how to do this to achieve a minimal amount of confounding. For example, consider the 25-2 design (a resolution III design). The full factorial for k = 5 requires 25 = 32 runs. The fractional factorial can be achieved in 25-2 = 8 runs, called a quarter (1/4) fractional design, by setting X4 = X1*X2 and X5 = X1*X3. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Design matrix for a 25-2 fractional factorial |
The design matrix for a 25-2 fractional factorial looks like:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Design Generators, Defining Relation and the Mirror-Image Foldover | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Increase to resolution IV design by augmenting design matrix |
In this design the X1X2 column was
used to generate the X4 main effect and the
X1X3 column was used to generate the
X5 main effect. The design generators are:
4 = 12 and 5 = 13 and the defining relation is I = 124 = 135 = 2345.
Every main effect is confounded (aliased) with at least one first-order
interaction (see the confounding structure
for this design).
We can increase the resolution of this design to IV if we augment the 8 original runs, adding on the 8 runs from the mirror-image fold-over design. These runs make up another 1/4 fraction design with design generators 4 = -12 and 5 = -13 and defining relation I = -124 = -135 = 2345. The augmented runs are: |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Augmented runs for the design matrix |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Mirror-image foldover design reverses all signs in original design matrix | A mirror-image foldover design is the original design with all signs reversed. It breaks the alias chains between every main factor and two-factor interactionof a resolution III design. That is, we can estimate all the main effects clear of any two-factor interaction. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
A 1/16 Design Generator Example | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
27-3 example |
Now we consider a more complex example.
We would like to study the effects of 7 variables. A full 2-level factorial, 27, would require 128 runs. Assume economic reasons restrict us to 8 runs. We will build a 27-4 = 23 full factorial and assign certain products of columns to the X4, X5, X6 and X7 variables. This will generate a resolution III design in which all of the main effects are aliased with first-order and higher interaction terms. The design matrix (see the previous Table for a complete description of this fractional factorial design) is: |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Design matrix for 27-3 fractional factorial |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Design generators and defining relation for this example |
The design generators for this 1/16 fractional factorial design are:
2345 = 1346 = 1256 = 1457 = 2467 = 3567 = 1234567. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Computing alias structure for complete design |
Using this defining relation, we can easily compute the alias structure
for the complete design, as shown previously in the
link to the fractional design Table given
earlier. For example, to figure out which
effects are aliased (confounded) with factor X1 we
multiply the defining relation by 1 to obtain:
The same procedure can be used to obtain all the other aliases for each of the main effects, generating the following list:
2 = 14 = 36 = 57 3 = 15 = 26 = 47 4 = 12 = 37 = 56 5 = 13 = 27 = 46 6 = 17 = 23 = 45 7 = 16 = 25 = 34 |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Signs in every column of original design matrix reversed for mirror-image foldover design |
The chosen design used a set of generators with all positive signs.
The mirror-image foldover design uses generators with negative signs for
terms with an even number of factors or, 4 = -12, 5 = -13, 6 = -23 and
7 = 123. This generates a design matrix that is equal to the original
design matrix with every sign in every column reversed.
If we augment the initial 8 runs with the 8 mirror-image foldover design runs (with all column signs reversed), we can de-alias all the main effect estimates from the 2-way interactions. The additional runs are: |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Design matrix for mirror-image foldover runs |
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Alias structure for augmented runs |
Following the same steps as before and making the same assumptions about
the omission of higher-order interactions in the alias structure, we
arrive at:
1 = -24 = -35 = -67
With both sets of runs, we can now estimate all the main effects free from two factor interactions. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Build a resolution IV design from a resolution III design | Note: In general, a mirror-image foldover design is a method to build a resolution IV design from a resolution III design. It is never used to follow-up a resolution IV design. |