5.
Process Improvement
5.3.
Choosing an experimental design
5.3.3.
How do you select an experimental design?
5.3.3.5.
|
Plackett-Burman designs
|
|
Plackett-
Burman designs
|
In 1946, R.L. Plackett and J.P. Burman published their now famous paper
"The Design of Optimal Multifactorial Experiments" in
Biometrika (vol. 33). This paper described the construction
of very economical designs with the run number a multiple of four
(rather than a power of 2). Plackett-Burman designs are very efficient
screening designs when only main effects are of interest.
|
These designs have run numbers that are a multiple of 4
|
Plackett-Burman (PB) designs are used for screening experiments because,
in a PB design, main effects are, in general, heavily confounded with
two-factor interactions. The PB design in 12 runs, for example, may be
used for an experiment containing up to 11 factors.
|
12-Run Plackett-
Burnam design
|
TABLE 3.18: Plackett-Burman Design in 12 Runs for up to 11
Factors
|
Pattern
|
X1
|
X2
|
X3
|
X4
|
X5
|
X6
|
X7
|
X8
|
X9
|
X10
|
X11
|
1
|
+++++++++++
|
+1
|
+1
|
+1
|
+1
|
+1
|
+1
|
+1
|
+1
|
+1
|
+1
|
+1
|
2
|
-+-+++---+-
|
-1
|
+1
|
-1
|
+1
|
+1
|
+1
|
-1
|
-1
|
-1
|
+1
|
-1
|
3
|
--+-+++---+
|
-1
|
-1
|
+1
|
-1
|
+1
|
+1
|
+1
|
-1
|
-1
|
-1
|
+1
|
4
|
+--+-+++---
|
+1
|
-1
|
-1
|
+1
|
-1
|
+1
|
+1
|
+1
|
-1
|
-1
|
-1
|
5
|
-+--+-+++--
|
-1
|
+1
|
-1
|
-1
|
+1
|
-1
|
+1
|
+1
|
+1
|
-1
|
-1
|
6
|
--+--+-+++-
|
-1
|
-1
|
+1
|
-1
|
-1
|
+1
|
-1
|
+1
|
+1
|
+1
|
-1
|
7
|
---+--+-+++
|
-1
|
-1
|
-1
|
+1
|
-1
|
-1
|
+1
|
-1
|
+1
|
+1
|
+1
|
8
|
+---+--+-++
|
+1
|
-1
|
-1
|
-1
|
+1
|
-1
|
-1
|
+1
|
-1
|
+1
|
+1
|
9
|
++---+--+-+
|
+1
|
+1
|
-1
|
-1
|
-1
|
+1
|
-1
|
-1
|
+1
|
-1
|
+1
|
10
|
+++---+--+-
|
+1
|
+1
|
+1
|
-1
|
-1
|
-1
|
+1
|
-1
|
-1
|
+1
|
-1
|
11
|
-+++---+--+
|
-1
|
+1
|
+1
|
+1
|
-1
|
-1
|
-1
|
+1
|
-1
|
-1
|
+1
|
12
|
+-+++---+--
|
+1
|
-1
|
+1
|
+1
|
+1
|
-1
|
-1
|
-1
|
+1
|
-1
|
-1
|
|
Saturated Main Effect designs
|
PB designs also exist for 20-run, 24-run, and 28-run (and higher)
designs. With a 20-run design you can run a screening experiment
for up to 19 factors, up to 23 factors in a 24-run design, and up to 27
factors in a 28-run design. These Resolution III designs are known as
Saturated Main Effect designs because all degrees of freedom are
utilized to estimate main effects. The designs for 20 and 24 runs are
shown below.
|
20-Run Plackett-
Burnam design
|
TABLE 3.19: A 20-Run Plackett-Burman Design
|
X1
|
X2
|
X3
|
X4
|
X5
|
X6
|
X7
|
X8
|
X9
|
X10
|
X11
|
X12
|
X13
|
X14
|
X15
|
X16
|
X17
|
X18
|
X19
|
1
|
+1
|
+1
|
+1
|
+1
|
+1
|
+1
|
+1
|
+1
|
+1
|
+1
|
+1
|
+1
|
+1
|
+1
|
+1
|
+1
|
+1
|
+1
|
+1
|
2
|
-1
|
+1
|
-1
|
-1
|
+1
|
+1
|
+1
|
+1
|
-1
|
+1
|
-1
|
+1
|
-1
|
-1
|
-1
|
-1
|
+1
|
+1
|
-1
|
3
|
-1
|
-1
|
+1
|
-1
|
-1
|
+1
|
+1
|
+1
|
+1
|
-1
|
+1
|
-1
|
+1
|
-1
|
-1
|
-1
|
-1
|
+1
|
+1
|
4
|
+1
|
-1
|
-1
|
+1
|
-1
|
-1
|
+1
|
+1
|
+1
|
+1
|
-1
|
+1
|
-1
|
+1
|
-1
|
-1
|
-1
|
-1
|
+1
|
5
|
+1
|
+1
|
-1
|
-1
|
+1
|
-1
|
-1
|
+1
|
+1
|
+1
|
+1
|
-1
|
+1
|
-1
|
+1
|
-1
|
-1
|
-1
|
-1
|
6
|
-1
|
+1
|
+1
|
-1
|
-1
|
+1
|
-1
|
-1
|
+1
|
+1
|
+1
|
+1
|
-1
|
+1
|
-1
|
+1
|
-1
|
-1
|
-1
|
7
|
-1
|
-1
|
+1
|
+1
|
-1
|
-1
|
+1
|
-1
|
-1
|
+1
|
+1
|
+1
|
+1
|
-1
|
+1
|
-1
|
+1
|
-1
|
-1
|
8
|
-1
|
-1
|
-1
|
+1
|
+1
|
-1
|
-1
|
+1
|
-1
|
-1
|
+1
|
+1
|
+1
|
+1
|
-1
|
+1
|
-1
|
+1
|
-1
|
9
|
-1
|
-1
|
-1
|
-1
|
+1
|
+1
|
-1
|
-1
|
+1
|
-1
|
-1
|
+1
|
+1
|
+1
|
+1
|
-1
|
+1
|
-1
|
+1
|
10
|
+1
|
-1
|
-1
|
-1
|
-1
|
+1
|
+1
|
-1
|
-1
|
+1
|
-1
|
-1
|
+1
|
+1
|
+1
|
+1
|
-1
|
+1
|
-1
|
11
|
-1
|
+1
|
-1
|
-1
|
-1
|
-1
|
+1
|
+1
|
-1
|
-1
|
+1
|
-1
|
-1
|
+1
|
+1
|
+1
|
+1
|
-1
|
+1
|
12
|
+1
|
-1
|
+1
|
-1
|
-1
|
-1
|
-1
|
+1
|
+1
|
-1
|
-1
|
+1
|
-1
|
-1
|
+1
|
+1
|
+1
|
+1
|
-1
|
13
|
-1
|
+1
|
-1
|
+1
|
-1
|
-1
|
-1
|
-1
|
+1
|
+1
|
-1
|
-1
|
+1
|
-1
|
-1
|
+1
|
+1
|
+1
|
+1
|
14
|
+1
|
-1
|
+1
|
-1
|
+1
|
-1
|
-1
|
-1
|
-1
|
+1
|
+1
|
-1
|
-1
|
+1
|
-1
|
-1
|
+1
|
+1
|
+1
|
15
|
+1
|
+1
|
-1
|
+1
|
-1
|
+1
|
-1
|
-1
|
-1
|
-1
|
+1
|
+1
|
-1
|
-1
|
+1
|
-1
|
-1
|
+1
|
+1
|
16
|
+1
|
+1
|
+1
|
-1
|
+1
|
-1
|
+1
|
-1
|
-1
|
-1
|
-1
|
+1
|
+1
|
-1
|
-1
|
+1
|
-1
|
-1
|
+1
|
17
|
+1
|
+1
|
+1
|
+1
|
-1
|
+1
|
-1
|
+1
|
-1
|
-1
|
-1
|
-1
|
+1
|
+1
|
-1
|
-1
|
+1
|
-1
|
-1
|
18
|
-1
|
+1
|
+1
|
+1
|
+1
|
-1
|
+1
|
-1
|
+1
|
-1
|
-1
|
-1
|
-1
|
+1
|
+1
|
-1
|
-1
|
+1
|
-1
|
19
|
-1
|
-1
|
+1
|
+1
|
+1
|
+1
|
-1
|
+1
|
-1
|
+1
|
-1
|
-1
|
-1
|
-1
|
+1
|
+1
|
-1
|
-1
|
+1
|
20
|
+1
|
-1
|
-1
|
+1
|
+1
|
+1
|
+1
|
-1
|
+1
|
-1
|
+1
|
-1
|
-1
|
-1
|
-1
|
+1
|
+1
|
-1
|
-1
|
|
24-Run Plackett-
Burnam design
|
TABLE 3.20: A 24-Run Plackett-Burman Design
|
X1 |
X2 |
X3 |
X4 |
X5 |
X6 |
X7 |
X8 |
X9 |
X10 |
X11 |
X12 |
X13 |
X14 |
X15 |
X16 |
X17 |
X18 |
X19 |
X20 |
X21 |
X22 |
X23
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
2
|
-1
|
1
|
1
|
1
|
1
|
-1
|
1
|
-1
|
1
|
1
|
-1
|
-1
|
1
|
1
|
-1
|
-1
|
1
|
-1
|
1
|
-1
|
-1
|
-1
|
-1
|
3
|
-1
|
-1
|
1
|
1
|
1
|
1
|
-1
|
1
|
-1
|
1
|
1
|
-1
|
-1
|
1
|
1
|
-1
|
-1
|
1
|
-1
|
1
|
-1
|
-1
|
-1
|
4
|
-1
|
-1
|
-1
|
1
|
1
|
1
|
1
|
-1
|
1
|
-1
|
1
|
1
|
-1
|
-1
|
1
|
1
|
-1
|
-1
|
1
|
-1
|
1
|
-1
|
-1
|
5
|
-1
|
-1
|
-1
|
-1
|
1
|
1
|
1
|
1
|
-1
|
1
|
-1
|
1
|
1
|
-1
|
-1
|
1
|
1
|
-1
|
-1
|
1
|
-1
|
1
|
-1
|
6
|
-1
|
-1
|
-1
|
-1
|
-1
|
1
|
1
|
1
|
1
|
-1
|
1
|
-1
|
1
|
1
|
-1
|
-1
|
1
|
1
|
-1
|
-1
|
1
|
-1
|
1
|
7
|
1
|
-1
|
-1
|
-1
|
-1
|
-1
|
1
|
1
|
1
|
1
|
-1
|
1
|
-1
|
1
|
1
|
-1
|
-1
|
1
|
1
|
-1
|
-1
|
1
|
-1
|
8
|
-1
|
1
|
-1
|
-1
|
-1
|
-1
|
-1
|
1
|
1
|
1
|
1
|
-1
|
1
|
-1
|
1
|
1
|
-1
|
-1
|
1
|
1
|
-1
|
-1
|
1
|
9
|
1
|
-1
|
1
|
-1
|
-1
|
-1
|
-1
|
-1
|
1
|
1
|
1
|
1
|
-1
|
1
|
-1
|
1
|
1
|
-1
|
-1
|
1
|
1
|
-1
|
-1
|
10
|
-1
|
1
|
-1
|
1
|
-1
|
-1
|
-1
|
-1
|
-1
|
1
|
1
|
1
|
1
|
-1
|
1
|
-1
|
1
|
1
|
-1
|
-1
|
1
|
1
|
-1
|
11
|
-1
|
-1
|
1
|
-1
|
1
|
-1
|
-1
|
-1
|
-1
|
-1
|
1
|
1
|
1
|
1
|
-1
|
1
|
-1
|
1
|
1
|
-1
|
-1
|
1
|
1
|
12
|
1
|
-1
|
-1
|
1
|
-1
|
1
|
-1
|
-1
|
-1
|
-1
|
-1
|
1
|
1
|
1
|
1
|
-1
|
1
|
-1
|
1
|
1
|
-1
|
-1
|
1
|
13
|
1
|
1
|
-1
|
-1
|
1
|
-1
|
1
|
-1
|
-1
|
-1
|
-1
|
-1
|
1
|
1
|
1
|
1
|
-1
|
1
|
-1
|
1
|
1
|
-1
|
-1
|
14
|
-1
|
1
|
1
|
-1
|
-1
|
1
|
-1
|
1
|
-1
|
-1
|
-1
|
-1
|
-1
|
1
|
1
|
1
|
1
|
-1
|
1
|
-1
|
1
|
1
|
-1
|
15
|
-1
|
-1
|
1
|
1
|
-1
|
-1
|
1
|
-1
|
1
|
-1
|
-1
|
-1
|
-1
|
-1
|
1
|
1
|
1
|
1
|
-1
|
1
|
-1
|
1
|
1
|
16
|
1
|
-1
|
-1
|
1
|
1
|
-1
|
-1
|
1
|
-1
|
1
|
-1
|
-1
|
-1
|
-1
|
-1
|
1
|
1
|
1
|
1
|
-1
|
1
|
-1
|
1
|
17
|
1
|
1
|
-1
|
-1
|
1
|
1
|
-1
|
-1
|
1
|
-1
|
1
|
-1
|
-1
|
-1
|
-1
|
-1
|
1
|
1
|
1
|
1
|
-1
|
1
|
-1
|
18
|
-1
|
1
|
1
|
-1
|
-1
|
1
|
1
|
-1
|
-1
|
1
|
-1
|
1
|
-1
|
-1
|
-1
|
-1
|
-1
|
1
|
1
|
1
|
1
|
-1
|
1
|
19
|
1
|
-1
|
1
|
1
|
-1
|
-1
|
1
|
1
|
-1
|
-1
|
1
|
-1
|
1
|
-1
|
-1
|
-1
|
-1
|
-1
|
1
|
1
|
1
|
1
|
-1
|
20
|
-1
|
1
|
-1
|
1
|
1
|
-1
|
-1
|
1
|
1
|
-1
|
-1
|
1
|
-1
|
1
|
-1
|
-1
|
-1
|
-1
|
-1
|
1
|
1
|
1
|
1
|
21
|
1
|
-1
|
1
|
-1
|
1
|
1
|
-1
|
-1
|
1
|
1
|
-1
|
-1
|
1
|
-1
|
1
|
-1
|
-1
|
-1
|
-1
|
-1
|
1
|
1
|
1
|
22
|
1
|
1
|
-1
|
1
|
-1
|
1
|
1
|
-1
|
-1
|
1
|
1
|
-1
|
-1
|
1
|
-1
|
1
|
-1
|
-1
|
-1
|
-1
|
-1
|
1
|
1
|
23
|
1
|
1
|
1
|
-1
|
1
|
-1
|
1
|
1
|
-1
|
-1
|
1
|
1
|
-1
|
-1
|
1
|
-1
|
1
|
-1
|
-1
|
-1
|
-1
|
-1
|
1
|
24
|
1
|
1
|
1
|
1
|
-1
|
1
|
-1
|
1
|
1
|
-1
|
-1
|
1
|
1
|
-1
|
-1
|
1
|
-1
|
1
|
-1
|
-1
|
-1
|
-1
|
-1
|
|
No defining relation
|
These designs do not have a defining relation since interactions are
not identically equal to main effects. With the
\( 2_{III}^{k=p} \)
designs, a main effect column Xi is either orthogonal
to XiXj or identical to plus or minus
XiXj. For Plackett-Burman designs, the
two-factor interaction column XiXj is
correlated with every Xk (for k not
equal to i or j).
|
Economical for detecting large main effects
|
However, these designs are very useful for economically detecting
large main effects, assuming all interactions are negligible when
compared with the few important main effects.
|