Range: |
\( \displaystyle
\left\{
\begin{array}{lll}
(-\infty, \, \infty) & \mbox{for} & \beta_2^2-(\beta_1-\beta_0\beta_3)\beta_2\beta_3 \leq 0 \\
& & \\
(-\infty, \, f_{max}] \, \cup \, [f_{min}, \, \infty) & \mbox{for} & \beta_2^2-(\beta_1-\beta_0\beta_3)\beta_2\beta_3 > 0
\end{array}
\right.
\)
with
\( \displaystyle f_{min} = \max \left[
f \left( \frac{-\beta_2-\sqrt{\beta_2^2-\beta_0\beta_3}}{\beta_2\beta_3} \right), \
f \left( \frac{-\beta_2+\sqrt{\beta_2^2-\beta_0\beta_3}}{\beta_2\beta_3} \right)
\right] \)
and
\( \displaystyle f_{max} = \min \left[
f \left( \frac{-\beta_2-\sqrt{\beta_2^2-\beta_0\beta_3}}{\beta_2\beta_3} \right), \
f \left( \frac{-\beta_2+\sqrt{\beta_2^2-\beta_0\beta_3}}{\beta_2\beta_3} \right)
\right] \)
|