4.
Process Modeling
4.6. Case Studies in Process Modeling 4.6.4. Thermal Expansion of Copper Case Study
|
|||
Description of the Data |
The response variable for this data set is the coefficient
of thermal expansion for copper. The predictor variable is
temperature in degrees kelvin. There were 236 data points
collected.
These data were provided by the NIST scientist Thomas Hahn. |
||
Software | The analyses used in this case study can be generated using both Dataplot code and R code. The reader can download the data as a text file. | ||
Resulting Data |
Coefficient of Thermal Temperature Expansion (Degrees of Copper Kelvin) --------------------------- 0.591 24.41 1.547 34.82 2.902 44.09 2.894 45.07 4.703 54.98 6.307 65.51 7.030 70.53 7.898 75.70 9.470 89.57 9.484 91.14 10.072 96.40 10.163 97.19 11.615 114.26 12.005 120.25 12.478 127.08 12.982 133.55 12.970 133.61 13.926 158.67 14.452 172.74 14.404 171.31 15.190 202.14 15.550 220.55 15.528 221.05 15.499 221.39 16.131 250.99 16.438 268.99 16.387 271.80 16.549 271.97 16.872 321.31 16.830 321.69 16.926 330.14 16.907 333.03 16.966 333.47 17.060 340.77 17.122 345.65 17.311 373.11 17.355 373.79 17.668 411.82 17.767 419.51 17.803 421.59 17.765 422.02 17.768 422.47 17.736 422.61 17.858 441.75 17.877 447.41 17.912 448.70 18.046 472.89 18.085 476.69 18.291 522.47 18.357 522.62 18.426 524.43 18.584 546.75 18.610 549.53 18.870 575.29 18.795 576.00 19.111 625.55 0.367 20.15 0.796 28.78 0.892 29.57 1.903 37.41 2.150 39.12 3.697 50.24 5.870 61.38 6.421 66.25 7.422 73.42 9.944 95.52 11.023 107.32 11.870 122.04 12.786 134.03 14.067 163.19 13.974 163.48 14.462 175.70 14.464 179.86 15.381 211.27 15.483 217.78 15.590 219.14 16.075 262.52 16.347 268.01 16.181 268.62 16.915 336.25 17.003 337.23 16.978 339.33 17.756 427.38 17.808 428.58 17.868 432.68 18.481 528.99 18.486 531.08 19.090 628.34 16.062 253.24 16.337 273.13 16.345 273.66 16.388 282.10 17.159 346.62 17.116 347.19 17.164 348.78 17.123 351.18 17.979 450.10 17.974 450.35 18.007 451.92 17.993 455.56 18.523 552.22 18.669 553.56 18.617 555.74 19.371 652.59 19.330 656.20 0.080 14.13 0.248 20.41 1.089 31.30 1.418 33.84 2.278 39.70 3.624 48.83 4.574 54.50 5.556 60.41 7.267 72.77 7.695 75.25 9.136 86.84 9.959 94.88 9.957 96.40 11.600 117.37 13.138 139.08 13.564 147.73 13.871 158.63 13.994 161.84 14.947 192.11 15.473 206.76 15.379 209.07 15.455 213.32 15.908 226.44 16.114 237.12 17.071 330.90 17.135 358.72 17.282 370.77 17.368 372.72 17.483 396.24 17.764 416.59 18.185 484.02 18.271 495.47 18.236 514.78 18.237 515.65 18.523 519.47 18.627 544.47 18.665 560.11 19.086 620.77 0.214 18.97 0.943 28.93 1.429 33.91 2.241 40.03 2.951 44.66 3.782 49.87 4.757 55.16 5.602 60.90 7.169 72.08 8.920 85.15 10.055 97.06 12.035 119.63 12.861 133.27 13.436 143.84 14.167 161.91 14.755 180.67 15.168 198.44 15.651 226.86 15.746 229.65 16.216 258.27 16.445 273.77 16.965 339.15 17.121 350.13 17.206 362.75 17.250 371.03 17.339 393.32 17.793 448.53 18.123 473.78 18.49 511.12 18.566 524.70 18.645 548.75 18.706 551.64 18.924 574.02 19.100 623.86 0.375 21.46 0.471 24.33 1.504 33.43 2.204 39.22 2.813 44.18 4.765 55.02 9.835 94.33 10.040 96.44 11.946 118.82 12.596 128.48 13.303 141.94 13.922 156.92 14.440 171.65 14.951 190.00 15.627 223.26 15.639 223.88 15.814 231.50 16.315 265.05 16.334 269.44 16.430 271.78 16.423 273.46 17.024 334.61 17.009 339.79 17.165 349.52 17.134 358.18 17.349 377.98 17.576 394.77 17.848 429.66 18.090 468.22 18.276 487.27 18.404 519.54 18.519 523.03 19.133 612.99 19.074 638.59 19.239 641.36 19.280 622.05 19.101 631.50 19.398 663.97 19.252 646.90 19.890 748.29 20.007 749.21 19.929 750.14 19.268 647.04 19.324 646.89 20.049 746.90 20.107 748.43 20.062 747.35 20.065 749.27 19.286 647.61 19.972 747.78 20.088 750.51 20.743 851.37 20.830 845.97 20.935 847.54 21.035 849.93 20.930 851.61 21.074 849.75 21.085 850.98 20.935 848.23 |