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Abstract
Fast and accurate prediction of hurricane evolution from genesis onwards is needed to reduce loss of life and enhance

community resilience. In this work, a novel model development methodology for predicting storm trajectory is proposed

based on two classes of Recurrent Neural Networks (RNNs). The RNN models are trained on input features available in or

derived from the HURDAT2 North Atlantic hurricane database maintained by the National Hurricane Center (NHC). The

models use probabilities of storms passing through any location, computed from historical data. A detailed analysis of

model forecasting error shows that Many-To-One prediction models are less accurate than Many-To-Many models owing

to compounded error accumulation, with the exception of 6-hr predictions, for which the two types of model perform

comparably. Application to 75 or more test storms in the North Atlantic basin showed that, for short-term forecasting up to

12 h, the Many-to-Many RNN storm trajectory prediction models presented herein are significantly faster than ensemble

models used by the NHC, while leading to errors of comparable magnitude.

Keywords Deep learning � Long short-term memory (LSTM) � Hurricane forecasting � HURDAT2 � North Atlantic

hurricanes � Recurrent neural networks (RNN) � Time series forecasting

1 Introduction

Hurricanes and tropical storms are rotating storms origi-

nating in the Atlantic basin. Tropical storms whose maxi-

mum sustained wind speeds exceed 74 mph (33 ms�1) are

called hurricanes. The purpose of this paper is to present a

simple Deep Learning (DL) based methodology for fore-

casting North Atlantic basin hurricane trajectories over one

or more 6-hr intervals from genesis.

The National Hurricane Center (NHC) uses several

models for forecasting storm tracks and intensity. These

models may be characterized as statistical, dynamical and

statistical-dynamical. Examples are: the statistical

Climatology and Persistence (CLIPER) model [23]; the

National Oceanic and Atmospheric Administration’s

(NOAA) Geophysical Fluid Dynamics Laboratory (GFDL)

hurricane prediction dynamical model [18]; the statistical-

dynamical model of the European Centre for Medium-

Range Weather Forecasts (ECMWF) ensemble prediction

systems (EPSs) [4, 25].

DL methods have recently taken giant strides in using

large amounts of data to make accurate predictions in fields

such as computer vision [26] that have traditionally been

very challenging for conventional statistical models. We

propose a DL approach for efficient prediction of hurricane

trajectories over several 6-hr time intervals. The target

variables in the DL hurricane track prediction problem are

the coordinates of a storm’s center. The DL models include

as inputs storm features available in or derived from the

hurricane database maintained by the NHC.

Hurricane forecasting using data-based approaches have

mainly been formulated as image processing problems.

Giffard-Roisin et al. [9] used atmospheric flow velocity and

pressure information at several heights above the Earth’s

surface to train a model consisting of several convolutional
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and feed-forward neural network layers; a mean error of

115 km for 24-hr forecasts was obtained for test data over

the North Atlantic. A Convolutional Long Short-term

memory (ConvLSTM) model, was used by [15] to extract

spatio-temporal information from a large database of

instantaneous atmospheric conditions recorded as a pixel-

level history of storm tracks. The ConvLSTM consists of

Convolutional Neural Network (CNN) layers and layers of

Long short-term memory (LSTM) [11]. A tensor-based

Convolutional Neural Network (TCNN) was used by [6].

Rüttgers et al. [27] utilized the Generative Adversarial

Network (GAN) to forecast storm trajectories using satel-

lite images. They used image time-series of typhoons in the

Korean peninsula for model training. The GAN model was

tested on 10 storms unseen by the model during training.

The average prediction error for 6-hr forecasts for the test

storms was 95.6 km. More recently, motivated by the work

of [3, 9] developed storm forecasting models utilizing

reanalysis of data extracted during tropical storms. Several

DL models, such as CNNs, GRUs, Transformers [29], as

well as ML models, e.g., XGBoost [5], were utilized. They

have reported a minimum mean 24-hr forecast error of

� 110 km for 2016–2019 Atlantic test storms. However,

the aforementioned models are data-hungry and in most

instances require current satellite images, or in some

instances atmospheric post-storm reanalysis data that are

not instantaneously available, and may be affected by non-

negligible errors themselves. For these reasons, the use of

such data is not advantageous in a forecasting context. This

was noted by some of the aforementioned researchers

themselves. Boussioux et al. [3] in their paper note that ‘...

although our models can compute forecasts in seconds, the

dependence on reanalysis maps can be a bottleneck in real-

time forecasting.’

In [17], a flexible sparse RNN architecture was used to

model the evolution of North Atlantic hurricane tracks.

Available time records of the target storm were initially

compared with those of other storms, and a Dynamic Time

Warping technique was used to assign similarity scores to

each storm available in a historical storm database. Only

storms with high similarity scores were chosen for model

training. Storm evolution prediction was thus improved by

incorporating historical trends. However, to obtain appro-

priate storms for the model to train on, significant numbers

of time records from the target storm are required. In the

present work, we account for translation trends of historical

storms by using storm displacement probabilities as input

features. The storm displacement probabilities take into

consideration each 6-hr displacements of all storms from a

given computational cell to adjacent cells in a coordinate-

transformed domain.

In another attempt to use RNN models, [1] used a grid-

based Neural Network approach for hurricane trajectory

forecasting. A Long Short-term Memory (LSTM) RNN

model predicted storm-wise scaled grid numbers in the 2-D

latitude–longitude domain. The grid-based prediction

scheme was based on the fact that, for a historical storm,

the distance being traveled is proportional to the number of

time records available for it. The model forecasts a storm’s

location 3 h in advance, and is claimed to improve upon the

forecasting performance of the models developed in [17].

They used storm-wise data scaling, which renders predic-

tions for new storms impossible. Moreover, no results were

provided for long-term forecasts. The compounded error

accumulation, a most pressing issue related to the appli-

cation of NNs for storm track prediction, was not consid-

ered in their work. In the present effort, we use LSTM-

RNNs to provide long-term forecasts for storm evolution

up to 30 h in advance. We demonstrate the compounded

error accumulation problem and a remedy for it using

Many-To-Many prediction-type RNNs.

In a more recent work, CNNs coupled with Gated

Recurrent Unit (GRU) RNNs were employed by [22]. The

use of a feature selection layer before the NN layers aug-

mented the model’s learning capability from the underlying

spatial and temporal structures inherent in trajectories of

tropical cyclones. Their model utilized both CNNs and

GRUs. They did not segregate the training, validation and

test storms; 6108 data sequences were used for testing the

model. The model’s performance was compared with the

performance of other numerical and statistical weather

forecasting models. The NN model used in [22] was more

accurate than the statistical model used in [13] and a

numerical model used in [7] for long-term forecasts. In

particular, the 72-hr track forecast error was was less than

half the errors reported for traditional track forecasting

models. However, they reported a 12-hr forecast error of

� 100 km (62 mi) between the predicted and true cyclone-

eye locations, which is comparable or marginally less than

the errors incurred by the aforementioned statistical and

dynamical models. The RNN models presented herein were

tested for hundreds of validation and test storms, and the

prediction errors were extensively analyzed. Computed

over different splits of the HURDAT2 database, mean 6-

and 12-hr forecast errors for the prediction models were

� 33 km and 72 km, respectively. To our knowledge, the

models outperform all data-based models for short-term

trajectory forecasting up to 12 h.

In spite of the substantial existing work on the topic,

there exist opportunities for improvement, specifically in

the context of formulating a model usable in real-time that

uses readily available information. In this regard, the use of

historical storm trajectory information is the most suit-

able as these are easily avilable. We find herein that the use

of 6-hr displacement probabilities to have predictive

power. The storm displacement probabilities embed
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historical storm translation trends by considering the 6-hr

displacements of all storms from a given location. Results

from the RNN-DL models presented herein demonstrate

that the use of this simple input variable is able to provide

results that are competitive in accuracy with state-of-the-art

models using large volumes of atmospheric flow field/

satellite image data. The flexible model forecasting

scheme can predict trajectories even when only one record

is available, i.e., from genesis, unlike most ML/ DL based

models developed so far. Furthermore, the current work

emphasizes that traditional ML/ DL accuracy measures are

not applicable to storm trajectory forecasting, especially

for long-term forecasts that are prone to compounded error

accumulation. The error analysis of the presented models

highlight this pressing issue and suggests the use of Many-

To-Many type prediction architectures in RNNs that can

defer the compounded error accumulation.

The paper is structured as follows. In Sect. 2, the data-

base used for model development, is discussed from the

statistical, the feature engineering, and the model formu-

lation points of view, and the methodology used for the

calculation of 6-hr storm displacement probabilities is

described. Section 3 discusses the model type, its archi-

tecture and implementation, training strategies, and

hyperparameter tuning. Section 4 contains the prediction

results of the trained models and an extensive analysis of

forecasting error, compares the predicted trajectories with

trajectories of historical test storms, and discusses limita-

tions of the models developed herein and the scope for

future improvements. Conclusions are drawn in Sect. 5.

2 Database and feature engineering

See Fig. 1.

2.1 Feature space

The NHC conducts post-storm analyses and maintains the

HURDAT2 database [12, 20] that lists features of Atlantic-

basin storms at 6-hr intervals (e.g., date and time, landfall/

intensity status, latitude and longitude, maximum 1-min

wind speed at 10 m elevation, central pressure). However,

only part of the database is useable for DL purposes. The

present models use a maximum of five time records as

input. Of the 1893 listed storms, 1736 storms have at least

seven time records with maximum wind speeds listed for

all records. Only 560 of these have both the central pres-

sure and maximum wind speed included for all records.

The central pressure is highly correlated with the maximum

wind speed; in fact, the observed maximum wind speed

varies approximately linearly with the central pressure with

a negative slope for all time records of the aforementioned

560 storms in HURDAT2. Therefore, the central pressure

was excluded from the input feature space which allowed

us to use a much larger volume of data without losing much

useful predictive information. We used the latitude (/),
longitude (k) and maximum wind speed (wm) to construct

the input feature space.

To reduce the effect of areal distortion associated with

the spherical coordinate system at higher latitudes, a

transformed pair of x- and y-coordinates obtained by

Lambert’s conic conformal (LCC) projection [19] was used

instead of / and k. LCC projection has superior properties

at mid-latitudes. Two standard parallels associated with the

conic projection (/’s where the cone passes through the

sphere) used in the current transformation are 33�N and

45�N. Most of the U.S. mainland is contained within these

standard parallels. No distortion occurs along the standard

parallels but the distortion increases away from them. In

addition, we use the storm translation direction and speed

as inputs, as these are important for storm intensity

Fig. 1 Schematic depicting the calculation of displacement probabilities associated with each cell in the grid domain
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modeling [8, 28]. Six-hour-averaged translation speed (V)

and direction (h) are calculated going backward in time.

The Haversine formula gives the distance (d) between

storm locations at two consecutive time instants.

Vl ¼
dð/l�1;/l; kl�1; klÞ

Dt � 6hrs
ð1Þ

hl ¼ tan�1

�
/l � /l�1

kl � kl�1

�
ð2Þ

In HURDAT2, wm is approximated to the nearest 10 kt

(5.14 ms�1) between 1851 and 1885 and to the nearest 5 kt

(2.57 ms�1) thereafter. Binned wm is used from the HUR-

DAT2 database. Both wm and V were expressed in ms�1

units.

It is necessary for the input features to contain infor-

mation associated with trends of past storm motion

[17, 24]. Those trends are encapsulated in 6-hr storm dis-

placement probabilities (d.p.) computed from the historical

storms, and are included as input features at each time

instant. A schematic depicting the calculation of d.p. is

shown in Fig. 1. At first, the 2-D domain bounded by the

extents of the x- and y- coordinates (the extents are the

maximum and minimum of each coordinate corresponding

to any storm record in the considered database) was

decomposed into rectangular computational cells. Consider

all storms for which a record is contained in any one of

those computational cells. For those storms, the maximum

number of cells traversed by any storm in any 6-hr interval

in the x- and y- directions are mx and my, respectively.

Therefore, associated with any given cell (i, j) (colored

yellow in Fig. 1) is a set of m ¼ ð2mx þ 1Þð2my þ 1Þ cells
within which all 6-hr displacements of any historical storm

are contained. Such a set is colored red in Fig. 1. Assume,

that there are p records of hurricanes that arrived at the

(i, j)th cell and then transitioned to the kth associated cell

in the next 6 .

If this leads to nk records being sampled at the kth

associated cell,
Pm

1 nk ¼ p. Therefore, the displacement

probability of a storm arriving at the (i, j)th cell and tran-

sitioning to the kth associated cell in the next 6 h is,

pði;jÞðkÞ ¼

nk
p
; if p 6¼ 0

1

m
; if p ¼ 0

8><
>: ð3Þ

For a fine grid the number of cells with p ’ 0 would be

larger than for a coarse grid. For a finer grid (and/ or for a

very thin upper tail of the distribution of V), m would

increase, and nk would decrease. In addition to an increased

number of features at each instant, d.p. from a cell to

adjacent cells could be more biased on a specific historical

storm’s displacement, which is not desirable for the

prediction of new storms. On the other hand, if the grid is

too coarse, storm motion trends reflected by the d.p. could

be obscured.

2.2 Statistics

The computational domain containing the 1736 storms

with at least seven records, including wm, covers / 2
½7:4�N; 81�N� and k 2 ½109:5�W; 63�E�. The storm trans-

lation speed, which does not exceed V ¼ 40:5 ms�1 for any

storm in the database, determines the number m of subcells

associated with a given computational cell as shown in

Fig. 1. Histograms of /, k and V are shown in Fig. 2. Only

for 33 of the 47,880 time records was /[ 70�N, and only

for 26 records was k[ 10�E. Only 93 records of storm

motion satisfied the condition, V [ 25 ms�1. Therefore, the

71 storms violating these limits were excluded; 1665

storms remained in the final database used for model

development. The coordinate limit / ¼ 70�N is chosen

because it is even north of the Arctic circle. The limit for

longitude, k ¼ 10�E ensures that storm records from all of

the Atlantic ocean in the Northern hemisphere upto the

western shores of the continent of Africa are retained in the

database. We chose V 	 25 ms�1 to limit the magnitude of

m.

Storm d.p. were calculated based on the evolution of

these 1665 storms. 61 grid points were used in both x and y

directions, resulting in 3600 computational cells decom-

posing the whole 2-D LCC projected domain. Despite

application of the three above-mentioned criteria, for 1687

out of the 3600 computational cells, p ¼ 0. The maximum

6-hr displacement for any storm in the 1665 storm-database

could be captured with mx ¼ my ¼ 4. So, the d.p.s were

calculated for m ¼ 9
 9 ¼ 81 surrounding cells for each

computational cell. Consequently, the number of input

features for each time record was 86 (LCC transformed x

and y coordinates, V and h, wm, and historical 6-hr d.p.

calculated at 81 subcells associated to the cell containing

x and y).

3 Model development

Once a database was obtained, we proceeded to the model

development. Both classification and regression problems

may be formulated. In the current work, only the regression

problem is considered for which we used the LSTM RNN

[11].

In the supervised regression problem being considered,

inputs to the models are the features at the chosen number

of input time instants, n (86
 n for each prediction). The

model outputs are the storm position(s) x and y at 6-hr
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intervals for the chosen number of output timesteps. The

model performance is measured by the loss function

defined as the mean squared error (m.s.e.) between pre-

dicted and true position(s) of N samples (N is the number of

data sequences used from the storms in the database),

m:s:e: ¼
PN

i¼1ðxpredicted;i � xtrue;iÞ2 þ ðypredicted;i � ytrue;iÞ2

N
:

Based on the gradients of the m.s.e., model weights are

updated so that the m.s.e. is minimized.

3.1 Model architecture and implementation

RNNs extract pattern and context from sequences. HUR-

DAT2 contains sequences of storm time records, and

therefore, RNNs are applicable. An LSTM-RNN unit is

used as the base architecture for the models developed

herein (see Appendix 1 for a brief description of the LSTM

architecture). Early use of LSTMs in weather forecasting is

reported in [10].

Models trained on varying numbers of input time

records (n) can predict one or several time steps at once

based on their architecture. Both Many-To-One (M2O) and

Many-To-Many (M2M) type prediction algorithms have

been used. Upon processing a sequence with n time

records, the M2O models forecast the storm locations at

one time instant, while the M2M models used here output n

time records. From here onwards, models are named as

M2On or M2Mn to reflect their architecture. As each

timestep in the training database � 6-hr, the M2On and

M2Mn models forecast 6 and 6n h at once, respectively.

The features inputted to the models and the outputs at each

time step for both M2On and M2Mn models are tabulated

in Table 1.

Schematic diagrams of M2On and M2Mn prediction

algorithms are shown in Figs. 3 and 4 , respectively. For

both sets of models, the output layer is a dense layer. In

addition to the input and output layers, the M2On models

presented here have three layers of LSTM units. The

numbers of neurons in the three LSTM layers were 128, 32

and 8, respectively. In preliminary tests, the performance of

converged models did not improve with additional LSTM

layers. Two bi-directional LSTM layers were used at either

side of a repeat-vector layer for the M2Mn models (Fig. 4).

Each LSTM unit in a bi-directional layer had an output

dimension of 64; so 128 neurons were used in each layer.

The numbers of trainable parameters for all the tested

models were between 3 to 6 times the number of data

sequences used for training.

To increase model robustness, dropout is used to reduce

a model’s bias towards the training data. A dropout value

of 0.1 was used for each hidden layer. The Adam algorithm

[16] was used for model optimization. Finally, the models

Fig. 2 Histograms of latitude (/) and longitude (k) in degrees and storm translation speed (V) in ms�1. Positive values of / and k represent the

northern and eastern hemispheres, repectively. 1736 storms from the HURDAT2 database are used (see text)
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were implemented in the Keras API with TensorFlow as

the backend library. Further details on the model archi-

tectures used herein, their implementation and additional

considerations for their training are provided in [2].

3.2 Number of input time records (n)

An important consideration is the number of input time

instants, n that could minimize the model prediction error.

Intuitively, increasing n should make the model predictions

more accurate. However, high values of n imply less

available time for preparation of a possible landfall. Also,

the value of n implicitly determines the number of data

sequences available from the storm database for model

training/ validation/ testing. Preprocessing, such as zero

padding may be used at early stages of a storm’s life span

(available time instants \n). However, training of a model

with zero-padded data is inefficient, because the mode of

the number of records for all storms in the HURDAT2

database is 13, while storms with a very long lifespan, e.g.,

as long as � 80 time records, are relatively rare. If one

chose to use zero padding so that each storm has, for

example, 50 records, a significant number of time records

fed to the network for training would be zeros. On the other

hand, requiring 12 time records in each input sequence, for

example, renders the zero padding unnecessary as only a

few storms have a lifespan shorter than 13 time records in

the database (12 input records ? 1 output). BothM2On and

M2Mn LSTM models were developed for a range of n,

between 1 and up to 5 time instants (nmax ¼ 5).

3.3 Data scaling

NNs perform better when the input data are scaled to the

interval 2 ½0; 1�. Normalization of the whole database was

preferred over a storm-wise feature scaling approach [1].

Table 1 Storm features inputted to the models at the lth time step for a storm located in the (i, j)th cell of the 2-D LCC-transformed

computational domain

Model Input Time Features Output Output

features (I~l) records per step features (O~j) records

M2On xl (LCC), yl (LCC), Vl, l ¼ 1; 2; :::; n 86 xj (LCC), yj (LCC) j ¼ nþ 1

hl, wm;l, pði;jÞ;l

M2Mn xl (LCC), yl (LCC), Vl, l ¼ 1; 2; :::; n 86 xj (LCC), yj (LCC) j ¼ nþ 1; nþ 2; :::; nþ n

hl, wm;l, pði;jÞ;l

Fig. 3 Schematic of the M2On
prediction algorithm. The input

and output at the lth time step

are I~l and O~l, respectively
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The storm-wise data scaling renders prediction of a new

storm impossible, because the relevant scaling parameters

for a feature from an entirely new storm are unknown a

priori. Each feature f is scaled using the Min-Max scaler as,

fs ¼ f�fmin

fmax�fmin
, so that the scaled feature fs 2 ½0; 1�. This

scaling is preferred over standardization, because, the d.p.

also belong in this interval. In contrast to a storm-wise

scaling approach, feature scaling for an entirely new storm

is well defined.

3.4 Sequence generation

To generate a sequence for the M2M5 model, the life span

of a storm must be at least 10 time-record long. 1514 out of

the 1665 storm database with at least 10 time records were

used to facilitate comparison between the M2On and

M2Mn models, which must be trained, validated and tested

on the same set of storms.

To avoid training and testing on the same storm, the

1665 storms were partitioned into training, validation, and

testing sets. Test storms (5% of the total) always contained

a set of five important historical storms chosen a priori

because of their destructiveness upon landfall and of the

complexity of their trajectories. The rest of the storms were

chosen randomly from the database without replacement.

Of the 1665 storms considered, � 80% were used for

training the model while 15% storms were used for vali-

dation. Data sequences for training, validation and testing

were generated separately from the segregated lists of

storms. The training data always contained � 24;000

sequences or more.

3.5 Learning rate and batch size

In Keras, the default learning rate for the Adam optimizer

is 0.001. At this value, the validation loss was prone to

sudden jumps in and around the optimal valley’s minimum.

We reduced the learning rate by an order of magnitude

every 250 epochs from an initial learning rate of 0.0001

until the models stopped improving.

We used a batch size of 32 which significantly lowered

training time in the Graphic Processing Unit (GPU) clus-

ters. A model checkpoint was used after completion of

each epoch to compute the validation error and store the

weights in case the error obtained is the minimum at that

point. At the end of model training, model weights that

yield the lowest loss function value for the validation

sequences.

Fig. 4 Schematic of the M2Mn
prediction algorithm. The input

and output at the lth time step

are I~l and O~l, respectively
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4 Results

4.1 Forecast error: compounded error
accumulation

The models were tested on 228 validation and 75 test

storms to compute the average error in distance between

the predicted and the true positions of a storm’s eye at each

prediction step. To facilitate comparison, for the results

presented herein, both M2On and M2Mn models were

trained, validated and tested on the same set of storms.

Average 6-hr and 6n-hr forecast errors for the test

sequences are shown in Fig. 5 for all models. The errors for

the validation sequences are very similar and are not

reported herein. Figure 5a shows the mean 6-hr forecast

error plotted for different input time records (n). Overall,

the M2M models are more accurate. The M2M2 model

performs best of all models for 6-hr forecasting; mean error

computed for the validation and test storms are 34.2 km

and 30 km, respectively. This is in agreement with [8], who

noted a near linear statistical relationship between time-rate

changes in translation variables at current and previous

timesteps implying that the use of two time records may be

optimal for 6-hr forecasting. Although the number of

trainable parameters for all models is similar, the M2On

models only slightly improve with increase in n. It must be

noted that the mean errors shown are for only a single split

of the storm database. The M2Mn model predictions wor-

sen slightly with increase in n[ 2. However, a maximum

difference of 5 km in mean 6-hr forecast error between the

M2On and M2Mn models is obtained for n ¼ 2.

For a given number of available time records for a storm,

which model predicts a storm’s future trajectory more

accurately over longer time intervals? Figure 5b reports the

mean forecasting errors for up to 30 h computed for the

same test storms as in Fig. 5a. While theM2Mn models can

forecast n time records (i.e., 6n h) at once, theM2Onmodels

predict only one time record. To obtain long-term forecasts

with theM2Onmodels, the predicted record must be used as

an input for the next time instant and so on. The forecasting

errors for up to 5 time steps in advance obtained in this

manner are also reported for all M2O models. While the

LCC projected x- and y- coordinates, V and h and the 6-hr

storm d.p. are updated at each time step, the true value of wm

is used from the database. This provides a fair comparison

between M2O and M2M model accuracies in predicting

several future time steps. This prediction scenario is similar

to a real-time storm trajectory forecast.

Due to the aforementioned time record updating pro-

cedure for the M2O models, the 12, 18, 24 and 30-hr

forecasts are prone to compounded error growth. Error

incurred at each prediction step worsens the forecasting

accuracy at future steps as the predicted coordinates which

deviate from the truth are used as input for predicting the

future storm locations. Due to the error accumulation, the

M2O model forecasts beyond the 1st prediction step wor-

sen for increasing n, as for a higher n more erroneous input

time records are fed to the model for forecasting. All

M2M models have similar accuracy over each 6-hr interval.

(a)

(b)

Fig. 5 In the following discussion, models have been named M2On
and M2Mn, where, n ¼ 1; 2; 3; 4 and 5 represents the number of

records a model takes in as input. The M2On and M2Mn models

forecast 6 and 6n h at once, respectively. Mean (a) 6-hr forecast error
and (b) 6, 12, 18, 24 and 30 –hr forecast errors in distance computed

on test storms for M2O and M2M models trained on different number

of input time records. In (b), errors from the M2O models are

represented by circular symbols and the M2M models are represented

by other types of symbols; models trained on a given number of time

records are represented by symbols of same color. All models were

trained, validated and tested on the same set of storms
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Therefore, given an initial time sequence to predict a

storm’s evolution, especially to predict it several hours in

advance, M2M models are more reliable. The average

12-hr (24-hr) forecasting error for test sequences for the

M2M4 andM2M5 models are 65.9 km and 66.85 km (165.2

km and 163.9 km), respectively.

4.2 Displacement probabilities

The advantage of using the 6-hr d.p. as input features is

demonstrated by reporting mean errors in distance for the

M2M2 model trained on input features including, and

excluding, the 6-hr d.p. Three different splits of the data-

base for train, validation and test storms are used which

have been also used later herein for benchmarking. The

NHC produces forecasting error estimates for specified

time periods, e.g., for the periods 2005–2009, 2011–2015,

and 2016–2019. The three different test databases were

created by including all storms from one of the time peri-

ods with at least 10 time records and then selecting the rest

of the 75 storms at random. The same sets of training,

validation, and test storms are used for training models

with/ out d.p. as inputs for comparison. The results are

shown in Fig. 6. Use of the d.p. is clearly advantageous and

significantly improves model performance. The maximum

gain in accuracy is obtained for the period 2011-2015;

using d.p., mean 6-hr and 12-hr forecasting errors are

reduced by � 16 km and 23 km, respectively. The accu-

racy gain for the chosen test datasets is at least � 11 km for

6-hr forecasts and 17 km for 12-hr forecasts.

4.3 Storm trajectory forecasting

Figure 5 shows forecasting errors of the LSTM-RNN

models computed over hundreds of validation and test

storms. How do these models perform for individual test

storms? This section reports trajectory predictions by these

models for four extraordinarily powerful test storms:

Andrew (1992), Ivan (2004), Sandy (2012) and Harvey

(2017). Andrew, Ivan and Harvey were generated in the

tropical Atlantic sub-basin; their trajectories exhibit the

trend of trajectories of most storms generated in that sub-

basin. Hurricane Ivan was chosen because it circled back

across its original track near the end of its lifespan. The

trajectory of hurricane Harvey has a sharp change toward

south-east, opposite to the general trend. Hurricane Sandy

was generated in the Caribbean sea. Its overall motion is

consistent with the general trajectory trend of storms gen-

erated in the Caribbean. However, at the very beginning of

its lifespan, it moves southward before turning sharply to

travel northward. The aforementioned trajectory trends are

complex compared to the general trends of storm motion.

Therefore, these storms were chosen for demonstrating the

performance of the models.

Figure 7 shows the 6-hr forecasts by the M2On models

for the four hurricanes. Forecasting error was computed at

all prediction instants and the mean forecasting error (per

prediction step) was computed over the entire trajectories

which are reported for all M2O models. Exact features

were used as inputs to the model. The M2O1 performs the

worst with average errors of � 47 km, � 52 km, � 50 km,

and � 34 km, for hurricanes Andrew, Ivan, Sandy, and

Harvey, respectively. Model performance significantly

improves for n[ 2. Among these three models, despite

their complex trajectories, the maximum of the mean 6-hr

forecasting errors computed for each of these storms were

� 28 km, 41 km, 39 km and 29 km for the hurricanes

Andrew, Ivan, Sandy, and Harvey, respectively.

Trajectories of the four aforementioned storms predicted

by the M2Mn models are shown in Fig. 8. To obtain pre-

dictions by the M2Mn model for a given storm, exact input

features at n instants have been fed to the model to predict

the storm locations at next n time instants. So, the input

time sequences are as l ¼ ð0 ! n� 1Þ;
ðn ! 2n� 1Þ; ð2n ! 3n� 1Þ:::. Corresponding output

sequences are l ¼ ðn ! 2n� 1Þ; ð2n ! 3n� 1Þ; ð3n !
4n� 1Þ:::. Therefore, each model predicts a target time

record only once. Mean error incurred at each prediction

step computed over the whole trajectory is reported for

each model. For models with n[ 1, the reported error for

each model is the mean forecasting error per prediction,

which is different from the mean 6n-hr forecast errors in

Fig. 5b. Therefore, although the forecasting error for the

M2Mn model is highest at prediction step n, the reported

error in Fig. 8 takes into account the model’s more accu-

rate predictions at the earlier prediction steps. The com-

puted mean error per prediction step is smallest for Harvey

and largest for Sandy. Mean errors computed over 12 and

24 h forecasts for the M2O2 and M2O4 models for hurri-

cane Harvey are 38.76 and 76.2 km. For hurricane Sandy

these are 63.8 and 128.2 km, respectively.

A hybrid approach is proposed for real-time storm

evolution forecasting with the current models. When one

record is available for a storm, M2O1/M2M1 is used for

prediction. When records of two time instants are available,

Fig. 6 Mean 6-hr (top) and 12-hr forecast errors for theM2M2 models

trained on input features including 6-hr displacement probabilities

(h) and excluding those (D). The test storms are in different time

intervals: 2005–2009 (red), 2011–2015 (green), and 2016–2019 (blue)
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a model trained on n ¼ 2 may be used. Similarly, models

trained on increasing n can be used, up to the point where 5

time records are available, beyond which the remaining

span of the storm’s evolution is predicted by the model

with n ¼ 5.

4.4 Benchmarking

The literature on DL/ ML models applied to this problem

does not use a fixed set of storms for comparison/ bench-

marking. Rather, the NHC’s forecasting error estimates

given by the 2/3-probability circle radii for the periods

2005–2009, 2011–2015, and 2016–2019 are used. Models

were trained keeping all storm events from these time

frames in the test dataset as in Fig. 6. The trained models

were evaluated on test sequences generated from storms in

those time periods only, and the respective 2/3-probability

circle radii were computed (after sorting the errors in

ascending order, errors for 2/3 of all sequences are less than

the 2/3-probability circle radius). The radii are listed in

Table 2. M2M model forecasts are more consistent over

different 5-y periods than the NHC forecast errors. In

addition, the 2/3-probability circle radii are competitive

with the NHC’s 12-hr forecast errors. In view of the small

number of features it uses, the performance of the dis-

placement probability approach is rather remarkable.

Although the radius for the 24-hr forecasts is significantly

larger for the M2M models, interestingly, for the period

2016–2019, the mean and standard deviation of the 24-hr

forecast errors for the M2M5 model are 198 km and 153

km, respectively. These are similar to the forecasting errors

for the CLIPER statistical model used by the NHC (mean

201 km, std 149 km; see Table 4 of [3]).

4.4.1 Limitations

For real-time forecasting of storm trajectories, only the

available time records from the storm’s current and past

status may be used. Previous discussions on the perfor-

mance of the LSTM-RNN models are based on a Machine/

Deep Learning perspective on the best/ ideal performance

of the models for the problem being considered. The

models were only fed the true features and storm locations

were predicted up to 30 h in advance. However, longer

forecasts of storm trajectories are typically necessary for

disaster management purposes. To test these models’

Fig. 7 6-hr forecast of select hurricane trajectories; Black ‘?’ symbols represent the true locations; Colored ‘*’ symbols represent the M2On
model forecasts. Inputs to the model are the true feature data at each timestep. Average error computed over the whole trajectory is also given
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capabilities for this purpose, only the first input sequence of

a storm’s trajectory was fed to the model and the whole

trajectory was predicted by theM2Mn models. Inputs to the

models from the second prediction sequence onwards

include the predicted storm locations and corresponding

derived storm speed, direction and displacement probabil-

ities in previous time instants (only the true value for wm

was used in all sequences). The trajectories for the four

chosen test storms are shown in Figs. 9 and 10. This is

equivalent to a 228-hr forecast by the M2M1 model for

hurricane Sandy, which had the shortest lifespan among the

four test storms. Deviations of the predicted storm trajec-

tories from the true trajectories in these Figures are basi-

cally illustrations of the compounded error growth

previously discussed. Computed error in distance at each

time step averaged over the whole trajectory is also

reported for all the models.

The reported errors for the M2Mn models are in most

instances in thousands of kilometers for each predicted time

step. The predicted trajectories in the initial stages of hur-

ricane evolution are significantly closer to the true trajec-

tories compared to later on in a storm’s lifespan. This is to

Fig. 8 6n-hr forecasts of select hurricane trajectories; Black ‘?’ symbols represent the true locations; Colored ‘*’ symbols represent the M2Mn
model forecasts. Inputs to the model are the true feature data at each timestep. Average error computed over the whole trajectory is also given

Table 2 Comparison of the 2/3-

probability circle radii

corresponding to 12- and 24-hr

forecast errors of the current

M2M models and the NHC in

different time intervals

Time range Forecast 2/3- probability circle radius 2/3- probability circle radius

(h) M2M models (n miles) NHC (n miles)

2005–2009 12 47 36

24 116 62

2011–2015 12 42 8

24 112 23

2016–2019 12 45 27

24 115 40
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be expected, however, as the compounded errors incurred at

each prediction step worsen the forecast at the next pre-

diction step. Consequently, the predictions veer off from the

true trajectories. None of the models is able to predict the

complex loop in Ivan’s trajectory. Similar deviations are

obtained for the trajectory of hurricane Sandy. This storm

initially travels southward and then turns about 180� to

travel northward. Although most models correctly predict

the eventual northward motion of the storm at least quali-

tatively, the models are unable to predict the sudden change

in direction of translation. The models perform better in

predicting the trajectories of hurricanes Andrew and Har-

vey, which follow the general trajectory trends for the North

Atlantic basin hurricanes. However, the forecast errors are

still very large.

The limitation of the LSTM-RNN models’ ability to

predict a whole storm trajectory from an initial condition is

not surprising. Starting from its genesis, a storm’s evolu-

tion is a complex nonlinear phenomenon dependent on

several fluid and thermodynamic effects. This remains one

of the most challenging problems in Geophysical Fluid

Dynamics. For example, in [21], testing several EPSs for

forecasting North Atlantic hurricane trajectories, the min-

imum 24–hr total track error (same as the error in distance

used in the present work) increased by � 75.64–123.92 km

for every 24-hr prediction interval for a 120-hr forecast for

all storms in the period 2008–2015. Mean 24-hr forecast

errors for the test storms are � 160 km for our M2M4 and

M2M5 models (Fig. 5). It should be noted that the EPSs are

physics-based models that are guided by accurate fluid

dynamic simulations, and therefore use a wealth of infor-

mation unavailable to the current data-based models. Fur-

thermore, following the current methodology, M2Mn

models with n[ 5 may be developed to further reduce

long-term forecast errors due to compounded error accu-

mulation associated with long-term trajectory forecasting.

5 Conclusions

A family of LSTM-RNN models was developed to predict

storm trajectories in the North Atlantic basin. Both Many-

To-One and Many-To-Many type prediction architectures

were used. The 6-hr storm d.p. feed the models with histor-

ical storm trajectory trends at a given location, which results

in a significant gain in short-term forecasting accuracy

(Fig. 6). The proposed models are able to forecast up to 30 h

in advance. Mean forecasting errors computed over more

Fig. 9 Forecast of whole trajectories of select hurricanes in advance

given only the initial/ first sequence; actual trajectory is shown by the

gray ‘?’ symbols; the ‘*’ symbols represent the predicted coordinates

by the M2On models. Inputs to the models are updated based on

predictions at previous prediction steps. Average error in miles

calculated over the whole trajectory is reported
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than three hundred validation and test storms demonstrate

the efficacy of these models. Overall, the M2M models are

more accurate. The minimummean 6-hr forecasting error of

all models was � 30 km. Considering that the storm-eye

radii may extend up to 80 km and storm radii may be as large

as hundreds of kilometres [30], the model forecasts are rea-

sonably accurate. M2O models are more error-prone due to

compounded error accumulation beyond 6-hr predictions;

this limit for the M2Mn model is 6n h. Therefore, for long-

term forecasting, the M2M prediction models are more

appropriate; these are more accurate at earlier prediction

steps and the error increases linearly between prediction

steps. Theminimumandmaximummean 6-hr forecast errors

for the M2M models in predicting four chosen complex-

trajectory test hurricanes were 27 km and 37 km (Fig. 8). The

most significant advantage of the proposed models is their

fast forecasting capability using modest computational

resources. The model development methodology described

herein uses readily available data and produces the requisite

results in seconds. NHC uses an ensemble of models,

including dynamical models that solve the fluid dynamics

equations, that require hours of computation on supercom-

puters. Amaximumof 30-hr storm evolution data is required.

The models developed in this work are capable of providing

predictions with as little as only one time record. Themodels

presented herein are reliable and accurate, incurring errors

comparable to those of state-of-the-art ensemble models

used by the NHC for forecasting at least up to 12 h (Table 2).

Base RNN model: LSTM

RecurrentNeuralNetworks (RNN)were innovated to extract

pattern and context from sequences. RNNs are applied in a

wide range of sequence related problems, including model-

ing and prediction of languages and sentiment, video tag-

ging, a sequence prediction in time. The Long Short-Term

Memory (LSTM), an RNN algorithm, was prescribed in [11]

to tackle the vanishing gradient problem. Over long

sequences, relevant past information may get lost or,

equivalently, gradients may vanish while training a model

using backpropagation. In an LSTM unit, past information

may be retained via a cell state that passes through all LSTM

layers. LSTM is the base RNN architecture of the models

developed in the present work (Fig. 11).

An LSTM unit/ cell is shown in Fig. 11. The superscript

in the vector variables indicates the layer number (this unit

belongs to layer q of the model); the subscript denotes the

Fig. 10 Forecast of whole trajectories of pre-selected hurricanes

given only the initial/ first sequence; Black ‘?’ symbols represent the

true locations; Colored ‘*’ symbols represent the M2Mn model

forecasts. 2nd prediction sequence onwards, inputs to the models are

based on predictions at previous prediction steps. Average error

calculated over the whole trajectory is reported
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corresponding input step l. A cell comprises four main

components, the cell state (passing through the units, col-

ored red), the forget gate (colored orange), the input gate

(colored green) and the output gate (colored blue). The

three gates basically apply the three activation functions (in

the schematic, r and tanh represent sigmoid and hyperbolic

tangent activation functions, respectively), each of which

has a specific role in information propagation through the

model. The cell state (C
ðqÞ
l

��!
) is the unique component of an

LSTM RNN. The cell state passes through all timesteps

l ¼ 1; 2; ::: of a given layer, and is therefore able to pre-

serve information from the past and also accumulate new

information with increasing l [14]. The cell shown in the

diagram receives an input from the previous layer

belonging to the same time step h
ðq�1Þ
l

���!
, and also from the

previous time step in the same layer, h
ðqÞ
l�1

��!
. Based on these

inputs to the cell, the forget gate dictates the part of the cell

state to be discarded at the current unit. On the basis of

these same inputs, input gate dictates the information from

the present inputs to be added (marked by þ) to the cell

state. Consequently, after these operations, the cell state

gets modified in the current LSTM unit (C
ðqÞ
l�1

��!
! C

ðqÞ
l

��!
),

which is the cell state received by the LSTM cell to the

right, i.e., the next timestep in the same layer. The updated

cell state also participates in obtaining the output from the

current cell (h
ðqÞ
l

�!
) after the sigmoid activation is applied at

the output gate.
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