AQUAINT Program: QUIRK System
5
11/13/02

The QUIRK system: December 2002 Executive Summary

Cycorp, IBM

AQUAINT Year 1 meeting, December 3-5, 2002

Principal Investigators

Cycorp:
Stefano Bertolo, bertolo@cyc.com
Tel.:(512) 342 4045 – Fax: (512) 342 4040

IBM:
Dave Ferrucci, ferrucci@us.ibm.com

Tel.: (914) 784 7847 – Fax: (914) 784 6307
Introduction

Cycorp and IBM have teamed up to produce QUIRK, a question answering system with three important characteristics that are explicit goals of the AQUAINT program:

1. the ability to answer a question with an actual answer (as opposed to a textual fragment that is expected to contain the answer) together with a justification for the answer itself;

2. the ability to answer a question by combining results from a collection of sources none of which, individually, contains the answer;

3. the ability to combine heterogeneous sources of data, such as free-form documents written in English, databases and knowledge bases;

The QUIRK team, has devoted most of its efforts to the implementation of a simple fundamental idea: that formalized knowledge about common sense reality can and should be used as an aid to question answering. Crucially, formalized knowledge can be used as a ‘conceptual glue’, making the integration of disparate data/knowledge sources possible and helping analysts refocus or expand their queries, much as a detailed map of the land can help a hiker chart her course.

In so doing the QUIRK team has integrated state of the art Information Retrieval and Natural Language Processing components made available by IBM together with the entire Cyc system, Cycorp's formalized repository of knowledge about common sense reality, coupled with its sophisticated inference engine.

Predictive annotation and beyond

In the TREC8 question answering context, IBM pioneered the method of Predictive Annotation. Predictive Annotation can be described as the practice of indexing a corpus of free-form textual documents with a ‘normalized’ representation of expressions of those syntactic types (noun phrases, prepositional phrases, adverbial phrases) that are typically offered as answers to questions. Such types can be easily detected by fast finite state machines and then sorted by broad semantic categories such as PERSON$, PLACE$, MONEY$. Index tokens so obtained can then be matched against similar tokens obtained from understanding queries submitted in a natural language such as English.

The QUIRK team is pushing this approach to its next logical step and pursuing a deep semantic understanding of queries and sources alike using a far more sophisticated knowledge representation environment: the entire Cyc system.

Cyc is an extremely large knowledge base, coupled with a sophisticated inference engine. CycL, the formal language in which Cyc is written, contains more than 143K primitive terms, representing either individual entities such as CityOfAustinTX, BillClinton, IBMInc, concepts such as Dog, MortgageAgreement, HavingAMeal or relations such as objectFoundInLocation, employer. These primitives are then combined to form entire assertions such as “Every dog is a mammal” or “One of the consequences of X’s detonating an explosive device D is that D is no longer available for X to use”. As of December 2001, Cyc contains more than 1.5M such assertions. Finally, such assertions are used by Cyc’s inference engine to answer queries or to compute new assertions that follow from the existing ones. For example, Cyc can use one of the assertions mentioned above to conclude that if someone only controls exactly one explosive device, they would not be able to launch two separate attacks on objectives that are thousands of miles away from each other.

The QUIRK team has been using functionality already developed by Cycorp under a separate government contract in order to interpret queries submitted in English into this sophisticated knowledge representation format. This interface is able to engage human analysts in a dialog to clarify ambiguities and help them refine their questions in ways that might not have occurred to them.

CycL interface with IR engines

QUIRK treats CycL-interpreted questions as queries and submits them to Cyc’s inference engine. While it is theoretically possible for the Cyc Knowledge Base to contain all the information necessary to answer the question, it is more typically the case that there will be parts of the query for which Cyc does not have sufficient knowledge. For example, when asked what is the explosive most frequently used by white supremacist groups, Cyc will certainly be able to come up with a list of explosives, possibly with a list of white supremacist groups but is unlikely to know which groups have been known to use which explosives. The QUIRK team has implemented and integrated a module that allows the inference engine to:

· translate a CycL sub-query into an Information Retrieval query optimized for IBM’s GuruQA IR engine. For example, a CycL query such as

(and (isa ?E AttackOnObject)

 (performedBy ?E WCOTC)

 (explosiveDeviceUsed ?E ?B)

 (isa ?B Bomb-Incendiary))

would be translated into the GuruQA query

@WIN(1 @PHR(0 incendiary bomb) @SYN(*WCOTC @PHR(0 World Church of the Creator)))

· submit the query to IBM’s GuruQA engine

· retrieve all textual passages that match the query

· analyze each passage for the occurrence of events that support the claim that the WCOTC has used incendiary bombs

· answer the sub-query in the positive, together with a link to all the textual passages that support that conclusion

In the past six months we have improved the module that translates from CycL queries into GuruQA queries. In particular we have been able to

· identify the conditions under which it is appropriate to dispatch to the GuruQA IR engine more than one CycL query literal at the time (e.g. when two or more CycL literals jointly describe a single event that is likely to be discussed within a single sentence in a textual source);

· use operators in the syntax of the GuruQA query language to exploit the linear order of query terms as an approximation of the argument structure information available from the CycL literal(s). For example in the past we would have generated the same GuruQA query

@WIN(1 hate *Abraham_Lincoln PERSON$)

for both of the two queries.

1. (hates AbrahamLincoln ?WHO) = Who does Abraham Lincoln hate?

2. (hates ?WHO AbrahamLincoln) = Who hates Abraham Lincoln?

Now we take into account the SVO word order typical of English declarative sentences to generate

1. @PHR(2 *Abraham_Lincoln hate PERSON$)

2. @PHR(2 PERSON$ hate *Abraham_Lincoln)

respectively, where @PHR is a GuruQA operator that only retrieves passages in which the query terms appear in the order in which they are specified in its scope.

We are currently expanding this functionality to other IR engines, most notably the Glimpse system.

Additionally, in the past six months we have implemented several alternative methods for extracting appropriate CycL bindings from textual passages. A common theme of these methods has been the use of third party NLP components (UPenn’s Dependency Parser, the Charniak parser, Dekang Lin’s MiniPar) in order to understand as much as possible the syntactic structure of the textual passages as a guide for selecting the appropriate entities.

CycL as conceptual glue for non-textual data repositories

The use of CycL as the normalization language has also allowed us to integrate into QUIRK information stored in structured data sources such as the NIMA and USGS geographical databases (locally installed on Cycorp’s premises in Austin) and the Internet Movie Data Base (accessed remotely as a web service). This has been done by instructing Cyc's inference engine to regard these databases as containing ‘virtual assertions’ stored in tables whose semantics corresponds to certain CycL predicates.

For example, at the time of writing Cyc contains only a handful of assertions of the form

 (movieDirector MOVIE DIRECTOR)

in other words, Cyc knows the director of only a handful of movies. However, Cyc now knows

· that a Web site exists which contains information pertinent to the movieDirector CycL predicate (the Internet Movie Data Base – IMDB);

· the URL of the IMDB site;

· how to post queries and read results from the IMDB site.

As a result of this knowledge, Cyc’s inference engine knows that when it is trying to satisfy a literal, such as

 (movieDirector ?MOVIE (PersonNamedFn "Eric Rohmer"))

(i.e. when it is trying to answer the question "Which movies did Eric Rohmer direct?") it can simply contact the IMDB site and obtain a set of bindings for the free variable ?MOVIE. The same can be done for arbitrarily many other CycL predicates, so that, to an external observer, Cyc would appear to contain hundreds of millions of assertions and the QUIRK system correspondingly endowed with encyclopedic knowledge over vastly different domains.

In the past six months the IMDB has been added to list of DBs accessible to the QUIRK system.

Progress tracking

In the past six months the QUIRK team has implemented a database to track the progress of the QUIRK system as measured by the number of questions from previous TREC exercises that can be parsed into CycL, the number of such queries for which one or more answers are found. As the system becomes more stable an evaluation of the quality of those answers will follow.

Evaluation pilots

 The QUIRK team has participated in two of the evaluation pilots organized by the AQUAINT program

· Dialog Evaluation Pilot

· Definitional Questions Evaluation Pilot

Additionally, Stefano Bertolo has collaborated with Richard Fikes and produced a detailed proposal for an evaluation protocol for justifications and explanations in question answering systems. The draft has been timely circulated to the appropriate mailing list and is presently being examined by the executive committee of the AQUAINT program.

QUIRK system at MITRE

The QUIRK team has initiated technical discussions with MITRE’s Scott Mardis for deploying the QUIRK system in the AQUAINT-wide test bed there maintained. We intend to deploy as soon as all proprietary issues have been taken care of.

Cooperation between teams

Cooperation between Cycorp and IBM has been constant and fruitful leading up to several technical ideas that had not been anticipated at the beginning of the project.

