QUIRK Project Summary
2
05/28/02
Cycorp, Inc

Stefano Bertolo

QUIRK Project Summary – Cycorp, Inc.

Stefano Bertolo – bertolo@cyc.com

AQUAINT Program Meeting – Monterey, June 11-13, 2002

Project objectives

The QUIRK system is a Question Answering system designed to meet several of the stated goals of the AQUAINT program. Among them:

1. the ability to answer questions by recruiting knowledge and data from heterogeneous sources: knowledge bases, data bases, large collections of free-form textual documents;

2. the ability to answer questions with actual answers (as opposed to pointers to sources where the answer might be contained);

3. the ability to justify the answer retrieved in a format that can be inspected and critiqued by a user (as opposed to a set of weights representing IR scores of various nature).

Project strategy

The QUIRK system is based on two main ideas:

1. Query decomposition can be driven by formally represented knowledge, either specific to a domain of interest (e.g. finance or terrorism) or part of what is referred to as “common sense”. For example, while there may not be any one place where Charles Bonaparte, the founder of the FBI, is stated to be a relative of Emperor Napoleon Bonaparte, one could find out about this impressive lineage by first finding out who his immediate relatives were (among them his paternal grandfather Jerome Bonaparte) and then use common sense knowledge to reason that relatives of those relatives (including Jerome’s older brother, Napoleon, Emperor of the French) are also his relatives. Since QUIRK relies on the Cyc knowledge base (which can be edited at run-time) this effectively means that users of the QUIRK system will be able to declaratively modify the system’s query decomposition strategy at run-time.

2. The sub-goals of a query so decomposed can be dispatched to modules that may use arbitrary computations on heterogeneous sources in order to fulfill them (for example: Information Retrieval, data base queries, possibly instant messaging to a human expert). As long as these modules are able to report their findings in a semantically rich format, they can either be produced as the actual answer to the original question or figure as part of the deductive justification to the eventual answer.
Project tactic

The main domain of expertise of Cycorp, the lead contractor for the QUIRK system, is knowledge representation and inference. Since our system needs to be able to extract information from free-form textual documents, we have teamed up with IBM, who has made available to us Talent, its mature text analysis system and GuruQA its specialized Information Retrieval engine, as two of the modules that process query sub-goals.

Because we are convinced that the list of modules that may prove useful in open-ended question answering tasks can be correspondingly open-ended, we have engineered the QUIRK system as a blackboard system where arbitrarily many different modules (some local, some remote and accessing the blackboard over a network connection) wait for the appearance of messages on which they can act and where they post their findings. In this architecture, it becomes very easy to switch on and off at will such modules to test which impact any configuration of them has on the entire system’s accuracy and recall.

Integration goals accomplished in the first six months of the project

In the first six months of the QUIRK project we obtained from IBM a copy of their Talent (text analysis) and GuruQA (Information Retrieval) systems together with an index of the entire TREC corpus indexed with the typed named entities (e.g. the named entity Limpopo, in the passage “on the banks of the muddy Limpopo” would be typed as an instance of RIVER$) and other entities (dates, measures, currencies, …)

Our copies of Talent and GuruQA have been installed on a Windows machine and registered, by means of Python scripts we wrote, as back-end components of a Zope server. This setup allows us to hit the Zope server in a uniform way when the services of Talent or GuruQA are required. It also means that we have a general solution for adding to QUIRK, in a networked environment, components (such as Talent and GuruQA) that are not originally designed for network access.

Finally, we have loaded into a PostgreSQL server the content of two geographical data flat files obtained directly from NIMA and USGS.
Development goals accomplished in the first six months of the project

We have concentrated most of our efforts on the development of four components:

1. QUIRK blackboard

2. CycL-to-GuruQA translator

3. Answer selector

4. SKSI layer

QUIRK blackboard: this is the central control structure of the entire QUIRK system. Setting up a blackboard in the CyBlack environment (CyBlack is Cyc’s general infrastructure for building blackboard applications) requires defining a set of panels on/from which postings can be made/read and registering the interest of each knowledge source in the appropriate panel. To exemplify, in the QUIRK blackboard there is a panel where CycL queries are posted to signify a request for an Information Retrieval solution for the query. Our GuruQA module, which is trained on this panel, reacts every time a message is posted on it. If other IR modules were to become available over the lifetime of the QUIRK project, integrating them into our architecture would be a simple matter of registering them on the same panel where the GuruQA module is currently registered. Nothing else in the system will need to be changed. As of April 2002, all our existing modules have been integrated into the QUIRK blackboard.

CycL-to-GuruQA translator: we have completed the first implementation of a module that takes a CycL query such as

(A)
(businessContacts BillClinton ?WHO)

(in English: “Who are Bill Clinton’s business contacts?”) and translates it into a string such as

(B)
@EXCWIN(1

@SYN(

@PHR(0 business partner)

@PHR(0 business contact))

*Bill_Clinton

PERSON$)

i.e. a well query expression that is well-formed with respect to GuruQA’s query syntax and is designed to retrieve textual passages that are likely to contain references to individuals that are or have been business contacts of Bill Clinton. The generation of such expressions from CycL depends on two things: Cyc’s (English, for now) Lexicon, the argument restrictions that are imposed by Cyc’s Knowledge Base on the free variables in the CycL query. In the example above, for instance, the GuruQA reserved query expression PERSON$ can be added to the query because the variable ?WHO occupies the second argument position for the predicate businessContacts, and that argument position is only valid for arguments that are known to be instances of the Cyc concept Person.

Answer selector: we have completed the first implementation of a module that scans textual passages of interest returned by GuruQA and identifies in them entities that are appropriate bindings for the free variables in the CycL query that the passages are meant to help resolve. In the example above, in response to query (B), GuruQA might return a passage such as

(C) “…Bill Clinton and its former business partner Dr. John Jones had lunch together at their favorite steakhouse…”

The answer selector, which knows it is trying to find a binding for the variable ?WHO in (A) and knows that only an instance of Person would do, scans paragraph (C) for the occurrence of such an entity. Crucially, QUIRK need not have advance knowledge of all possible people in order to identify such an entity. On the contrary, the answer selector relies on Talent’s text analysis services to have named entities identified and types. When Talent spots “Dr. John Jones” and tags it as an instance of PERSON$, the answer selector creates a virtual Cyc term, (PersonNamedFn “Dr. John Jones”) which, in virtue of the semantics of the function PersonNamedFn , is automatically understood to be an instance or Person.

SKSI layer: Semantic Knowledge Source Integration (SKSI) is a Cyc infrastructure initiative whose goal is to allow for knowledge/data source outside of the Cyc Knowledge Base proper to be declaratively registered with Cyc. Using SKSI functionality one can assert in Cyc’s Knowledge Base that such and such an entity is a database, that it has such and such an access path and that the semantics of column A and B in one of its table corresponds, say, to the predicate (businessContacts ?PERSON1 ?PERSON2). Once these mappings are declaratively registered with Cyc, the database is treated as a virtual extension of the Cyc knowledge base, with the result that, in a way that is completely transparent to the Cyc end user, the Knowledge Base appears to have increased in size by several orders of magnitude without any increase in memory space. We have completed the SKSI integration into Cyc of several relationships encoded in the NIMA database and as a result we are able to answer queries such as “what are the name, longitude and latitude of Antonin Artaud’s death place?”

Query:

(and
 (placeOfDeath AntoninArtaud ?PLACE)

 (locatedAtPoint-SurfaceGeographical ?PLACE (LatLongFn ?LAT ?LONG)))

Answer:

(?PLACE . CityOfIvry-sur-SeineFrance)

(?LAT . 48.81669998168945d0)

(?LONG . 2.3833301067352295d0)))
Objectives for the next six months

1. Complete SKSI integration of the NIMA and USGS data base. Add databases recommended by AQUAINT project leadership.

2. Improve generation of GuruQA query terms from CycL queries. As of May 2002 this is done on a Cyc-term by Cyc-term basis, but we have come to the conclusion that the quality of the passages returned could be greatly improved if we tried to approximate CycL’s argument dependencies by means of syntactic dependencies in English. For example, if we want to learn about Bill Clinton’s business contacts (as opposed to business contacts of somebody who might be mentioned in the same paragraph as Bill Clinton) the expression @PHR(1 business contacts *Bill_Clinton) (which requires the search terms to appear in a paragraph in exactly this order and separated by no more than 1 word) might work better than the two separate expressions @PHR(0 business contacts) and *Bill_Clinton.

3. Correspondingly improve the precision of the Answer Selector by making it sensitive to the same kind of grammatical dependencies. The Answer Selector has already been integrated (via a network connection) with UPenn’s open source dependency analyzer and in the next few months we plan to improve it to take advantage of such analyses.

4. Annotate a large portion of the TREC corpus by means of CycL assertions automatically extracted by means of shallow Natural Language Processing. Make such annotations available for question answering.

5. Improve coverage and precision of the tools (parsers, GUIs) that QUIRK presently borrows from other Cycorp projects in order to interpret English questions into CycL queries.

6. Improve ability to display justifications for the answers retrieved in a way that, while preserving all the appropriate inferential links, is not cognitively strident. For example, if the question is “which vector borne pathogens could be used to attack New Orleans” and the answer is “Kyasanur virus” because it can infect the kind of mosquitos that can thrive in New Orleans’ climate, we should avoid displaying the link that explains that mosquitos are a kind of pathogen vector (which is logically required but probably already implicitly understood by an analyst asking the query).

7. Addition of web-services clients to the QUIRK blackboard. An example of such an addition is a simple client that can gauge the relative importance of two possible bindings for a variable by obtaining from the search engine Google a count of the documents on the web that happen to mention that term (possible under several distinct descriptions). Other examples could be already existing web services that are able to: retrieve the name to which a telephone line is registered, get current weather information for a location of choice, detail the presence of resources of a certain kind (e.g. ATM machines) at or around a certain location, etc…

