TextMap: An Advanced Question-Answering Assistant

Eduard Hovy, Kevin Knight, and Daniel Marcu

USC Information Sciences Institute

4676 Admiralty Way

Marina del Rey, CA 90292-6695

{hovy,knight,marcu}@isi.edu

November 2001

Executive Summary

1. Example of capabilities

It is April 15, 2003. John Donovan, an expert in analyzing political events in Central Asia, is asked to assess how the death of Mullah Mohammad Rabbani, the head of the governing council of ministers in Afghanistan, may affect the political stability in the region. John turns to TextMap, the advanced question-answering system developed by the ISI natural language group. He types in: “What do you know about Mullah Mohammad Rabbani?” TextMap reformulates this general question as a set of simpler, more targeted wh-type questions, such as “When was Mullah Mohammad Rabbani born?”, “What were the jobs Mullah Mohammad Rabbani had?”, etc. TextMap then searches through millions of documents and returns a list of potential answers, each associated with a time stamp. John Donovan selects the correct answers and pastes them in a Biography box, in chronological order.

One of the text fragments returned by TextMap is obviously inappropriate for being included in the Biography box. It reads:

The Chairman of the Council of Ministers of Afghanistan, Mullah Mohammad Rabbani, at a news conference reiterated that his country's stand on the issue of Osama bin Laden, who is staying as a guest in Afghanistan, remained unchanged in spite of the fact that Pakistan too had come under pressure on the issue.
John Donovan reasons that although this is not biographical information, it nevertheless says something important about Rabbani. He is first disappointed that TextMap did not give him a “political views'” box to save this information. But then he notices that he can define such a box by himself and save the relevant information in it. John is now curious to find out more about the political views and opinions held by Rabbani. He asks TextMap again for help, collects more information, and defines a new answer type, called Political-Views, in which he saves the information. From now on, TextMap will learn how to index information and answer questions regarding people’s political views.

One of the text fragments returned by TextMap catches John's attention:

It is believed that Mullah Mohammad Rabbani ordered the execution of Afghanistan communist president Najibullah.
John does not remember why Najibullah was executed. He highlights the text box that contains the above quote and then clicks on the “Find-Reason” button. In a few seconds, capitalizing on the rhetorical indices built for the document collection, TextMap returns the answer.

In a stepwise fashion, by interaction with TextMap, John Donovan constructs a complex hypergraph of information relevant to the task at hand. (Figure 1 shows a possible rendering of the TextMap interface and a hypertext example.) TextMap enables John to navigate through this hypergraph, zoom in and out of specific nodes, define nodes of interest, and respond to simple and complex questions with variable length answers. It also notices when he assembles and groups information in new ways, and learns to search for and assemble this kind of information in the same way, gradually building up a repository of knowledge about the kinds of questions John asks and the kinds of answer information he expects. In addition to assisting John in performing all these tasks, TextMap automatically maintains a history list with the questions John asked, the answers he labeled as correct/relevant or incorrect, and the documents in which the answers occurred. Once John has managed to put together all the information he judged to be useful, he produces the requested report for his boss.

[image: image1.jpg]

Figure 1: The TextMap Interface.

Over the subsequent weeks, John continues to monitor the events in Afghanistan and the struggle for power that ensues following Rabbani’s death. TextMap enables John to continuously update the relevant textual graphs with new facts and to establish causal, evidential, and temporal relations between the events. With a single mouse click, John can now switch between a timeline view of the events he is monitoring, a causal view that display the causal links between the main events, and views of related objects, participants, and events, such as biographies and summaries of related events.

It is April 15, 2007. Mary Foster, a young analyst specializing in monitoring events in Eastern Europe, is asked to assess the impact that the death of Vladko Vujovici, the Montenegrin prime minister, may have on the situation in the Balkan area. She goes to TextMap and retrieves from its memory four question-answer graphs that were built by other analysts in the context of other deaths of political leaders.

Mary doesn’t know very well where to start her search. But TextMap does. Given the information stored during years of use, TextMap has automatically learned how to expand complex scenario-type questions into sequences of simple questions. It has also learned what categories and question types are important for various types of events and it has learned how to filter the good answers from the bad ones. Before Mary knows it, TextMap has built a partial graph of relevant information with little or no help. Mary selects with her mouse a couple of nodes in the graph whose content she believes must be reflected in the report that she is supposed to write for her boss. When she clicks the “Generate Report” button, TextMap produces a draft report that she can edit and return to her boss in just a few minutes.

2. Some Details of TextMap

Nobody can predict what complex questions analysts like John and Mary are likely to ask, nor what they will consider adequate answers. We must therefore assemble technology whose results can easily be configured in all kinds of new ways. We will use and extend several systems already developed and/or used at ISI. If the desired answer is a single fact, such as a date or a name, we will use an advanced version of ISI’s Webclopedia question answering system, which includes the IR system MG and ISI’s syntactic-semantic parser CONTEX. If the desired answer involves a relationship among concepts, such as the cause of an event or the parts of some object, we will use ISI’s rhetorical (discourse-level) parser to recognize rhetorical relations among parts of text. If the desired answer is even more complex, but structurall well-behaved (such as the biography of a person or organization, the story of an event, or the description of an object or a location), we will use so-called Answer Schemas that specify how to construct such an answer from a series of answers to smaller questions. Finally, if the desired answer does not conform to a known structure, we will use ISI’s multi-document summarizer NeATS to extract the pertinent information from relevant documents.

Among this work, the following research issues are the first to be addressed:

· Rhetorical-based indexing and querying. To answer questions such as “what arguments support x?”; “what was the purpose of y?”; “do you know of anything that contradicts z?”; “what was the consequence of t?”; and “what are the main parts/steps/members of u?”, we propose to develop a rhetorical/discourse-based indexing scheme; a rhetorical-based query language; and algorithms for mapping natural language queries into the rhetorical-based query language.

· Decomposing complex questions into sets of simple questions. We propose to expand the question-answer typology we have built in the context of the Webclopedia project, developing a complete inventory of the essential QA types, with their requisite knowledge structures and processing methods. To this we propose to add a set of the major stereotypical composite complex QA types, such as PersonalBiography and TimelinedEventStory, represented as Answer Schemas.

· Use of material in foreign languages. Indexing and retrieving foreign text using names is problematic because of variations of spelling and transliteration. We will implement a module that translates names into their potential variations.

Beyond and in addition to our plan to build a system that supports typical information tracking and analysis tasks is our desire to understand what kinds of questions and information-seeking structures/patterns exist. Although it is unlikely that these answer structures will be as straightforward as the QA typologies developed for many factoid QA systems, we expect to find some regularities, and eventually to exploit these regularities in learning algorithms. By allowing the user to dynamically assemble ‘ideal’ answers and having the system learn from them the characteristics of ‘good’ information and ‘good’ structure, we will eventually both enable the user to build up a network of tailored and detailed answer types and enable ourselves to discover types of answer and answer structure.

1
3

