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Abstract

This note presents a conceptual framework for the definition of basic damage
states and of the corresponding fragility curves and conditional probabilities, and
its use for the estimation of damage matrices. The framework is designed with
two considerations in mind. First, losses due to multiple types of damage are
calculated so that no type of damage is counted more th~n once, no type of
possible damage is omitted from the calculations, and all interactions between
various types of damage are accounted for. Damage is included that may vary
continuously as a function of wind speed but is discretized for computational
purposes. Second, the losses are calculated by correctly accounting for the
dependence between various damage states (e.g., window breakage and roof
uplift). The note also discusses the use of damage matrices for the estimation of
expected losses due to a windstorm event, of expected annual losses, and of
measures of uncertainty pertaining to expected lo'sses, both at a specified
location and over a larger geographical area. The framework developed in the
paper is illustrated for the conceptually simple case of two basic damage states.
Work is in progress on the application of the framework to various types of
structures involving larger numbers of basic damage states with various mutual
dependence and damage sequence scenarios. Work is also in progress for the
estimation of uncertainties in loss calculations, based on uncertainties in the
estimation of fragility curves, associated conditional probabilities, and hurricane
wind speeds. One of the applications of our work is the developn1ent of
vulnerability curves and associated uncertainty measures for cases
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wherecomprehensive loss data from which such curves may be developed are not
available.

1 Introduction

We consider a group of n buildings belonging to a specified building class (e.g.,
manufactured homes). The buildings are subjected to wind loading and located
within a relatively small area (e.g., within a sub~zone with uniform terrain
roughness belonging to a zip code zone), so that all the structures in the group
may be assumed to experience approximately the same maximum wind speed
during a stOmL For any given wind speed veach of the buildings will either not
experience damage or experience damage of one or several types (e.g., loss of
part of the girt, loss of the entire roof, breakage of windows, building collapse).
Some of the types of damage are independent of each other (e.g., loss of part of
the girt and loss of shingles), while others are dependent on others (e.g., given
that the building has experienced window breakage, the probability of its losing
the roof increases).

Unless vulnerability curves can be developed from comprehensive sets of loss
:lata, the estimation of building losses induced by a windstorm requires the
:levelopment of damage matrices, that is, matrices whose entries are probabilities
:hat, at wind speed v, a building will experience damages of various types.
These probabilities are calculated from probabilities of basic damage states,
;ommonly referred to as fragility curves. Associated with each damage type is a
:epair/ replacement cost. If a damage matrix and the corresponding set of
°epair/replacement costs are available it is possible to estimate the expected
"epair/replacement costs (i.e., the total expected loss) per building due to the
:ffects of a windstorm with wind speed v. For the entire group of n buildings
)elonging to the specified building class at the location of concern the total loss
lue to the windstorm is n times the expected loss per building. The
:orresponding expected annual loss is obtained by integrating over all wind
:peeds v the losses corresponding to v weighted by the respective ordinates of the
>robability density function of v. Losses for groups of buildings belonging to
'arious building classes are additive, as are losses at various geographical
ocations. Using elementary methods it is similarly possible to estimate
neasures of uncertainty in the estimation of the losses, both at a specified
ocation and over wider geographical areas.

In this note we focus on the calculation of damage matrices from information
:mbodied in fragility curves and measures of dependence between basic damage
tates. Our main obj~ctive is to defme a conceptual framework suitable for ~nd
:ngineering applications. For the sake of simplicity we illustrate our approach
'or the case where the structure can experience two basic damage states: loss of
oof, and building collapse. However, the development of damage matrices can
Ie generalized for larger numbers of types of damage. We fiTst discuss the
lefinition of fragility curves. We then examine the issue of the sets of damage
,tates that need to be included in the damage matrix. For these sets we discuss
he construction of the corresponding damage matrices. Finally, we briefly
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outline the use of damage matrices for the estimation of repair/replacement costs
corresponding to a storm event and of expected annual repair/replacement costs.

2 Fragility curves

For a class of structures with two basic damage states we consider the following
matrix for the basic damage state R (partial loss of roof) and the basic damage
state C (building collapse).

Table 1: Complements of fragility curves basic state probability

Numbers in row R are probabilities P(Rlv) that the basic state R occurs given
that the wind speed is v. Numbers in row C are probabilities P(Clv) that state C
occurs given that the wind speed is v. P(Rlv) and P(Clv) are cumulative
distribution functions of the wind speed v. This means, for example, that the
wind speeds that will cause a building to experience with probability P(Rlv) the
basic state R (loss of its roof) are less than or equal to v.

For example, Table 1 states that, given that v = 120 mph, P(Rlv)=0.8 is the
probability that a building will experience partial loss of its roof, and
P(Clv)=0.O5 is the probability that the building will collapse. Note that the basic
state "partial loss of roof' for which probabilities P(R) may be obtained in
laboratory tests, does not necessarily exclude total building collapse, which may,
for example, eccur owing to overturning.

To simplify the notation we will omit the notation "Iv" in all subsequent
developments, that is, we will use the shorthand notation P(x) in lieu ofP(xlv). It
should be recalled, however, that unless otherwise indicated, in this note all
probabilities represent probabilities of damage states given that the wind speed
is v.

Fragility curves have historically been defined as the complements of
cumulative distribution functions such as those listed in Table 1. The fragility
curves corresponding to Table 1 are therefore defined by the expressions 1 -
P(R) and 1 -P(C). Probabilities P(R) and P(C) can in principle be obtained
directly from laboratory tests, analytical studies entailing simulations, and post-
disaster observations of damage. In some instances it may be convenient to
define fragility curves for basic damage states other than Rand C. For example,
the damage state (R and not C), rather than for the state R, may in some
instances be chosen to be a basic state. The choice of basic damage states is
determined by practical considerations such as the format in which the requisite
probabilistic information is available. For example, information on partial roof
loss could in principle be available from laboratory tests in which the su-ucture is
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strong and will not collapse before partial loss of the roof. In this case fragility
curves would be available for the damage state (R and no C), which could be
considered a basic state, as noted earlier. Alternatively, the information could be
available from the observation of states R where partial loss of the roof may
occur either without the structure collapsing or with the structure collapsing (this
is the case for Table 1). The estimate of the total damage induced by the wind
speed v is independent of the basic states for which the fragility curves are
defined, provided that the construction of the damage matrix from the fragility
curves is consistent from a set theoretical and probabilistic viewpoint.

3 Damage matrix

A damage matrix is a matrix of those probabilities for damage states that need to
be accounted for in the estimation of wind-induced losses. In this section we
discuss states that are appropriate for inclusion in the damage matrix. These
states must satisfy two requirements:

The states must be functions of basic states.
The states must be chosen with a view to enabling loss estimates to be made

correctly, in the sense that no possible damage state is omitted, and no double or
multiple counting of damage states occurs.

Associated with the basic damage states Rand C are the following
theoretically possible intersection events (states):

Combinations of 4 taken by 0:
(This set is empty)

Combination of 4 taken by 1.
R; C; not R; not C

Combination of 4 taken by 2:
Rand C,' R and not R (this set is empty); R and not C; C and not R; C and not C
(this set is empty),' not R and not C

Combination of 4 taken by 3:
Rand C and notR (this set is equivalent to C); Rand C and not C (this set is
equivalent to R); R and not R and not C (this set is equivalent to not C); C and
not C and not R (this set is equivalent to not R)

Combination of 4 taken by 4:
Rand CandnotR and not C(thisset is empty).

The total number of states listed above is 24 = 16. Similar sets of 24 = 16 "or"
states also exist. In general not all possible states are of interest from a loss
estimation point of view. In this note we focus on the following damage states:

Case 1. R and not C (partial roof loss but no collapse). The probability of
this state (i.e., of the intersection of R and C) will help to estimate the cost of
repair of roofs for the structures that have not collapsed and need roof repair.
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Figure 1: Venn diagram for R and not C

Case 2. C and not R (structure collapsed but roof intact). Assuming that a
structure collapses with the roof being intact (as might be the case if the collapse
is due to overturning), it could in principle be rebuilt at a lower cost than a
structure that collapsed and whose roof was damaged. While this scenario is
likely not realistic for our example, it is included here for illustrative purposes,
since the approach we use may be applicable for similar, but realistic, situations
involving other sets of basic damage states and types of failure mechanism or
sequence.

R

Figure 2: Venn diagram for C and not R

Case 3. Rand C (roof damaged and structure collapsed). The probability of
this state will help to estimate the cost of replacement of the entire structure,
including the roof.

Figure 3: Venn diagram for Rand C

Case 4. not R and not C. This state designates "no damage."
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Figure 4: Venn diagram for not R and not C

These four cases correspond in Venn diagrams to the hatched areas of Fig. 1
to 4.

4 Calculation of damage matrix probabilities

The probabilities are calculated from (a) the fragi\ity curves and (b) probabilistic
information on dependence between elementary damage states.

Case 1 (R and not C). To calculate the probabilities for the state (R and not
C) we make use of the fact that the probabilities of R in the complements to the
fragility curves (Table 1) are marginal probabilities, that is,

(1)P(R) = P(R and C) + P(R and not C)

so

(2)P(R and not C) = P(R) -P(R and C).

Case 2 (C and not R). Similarly,

(3)P(C) = P(R and C) + P (C and not R),

(4)P(C and not R) = P(C) ~ P(R and C).

Case 3 (R and C). From conditional probability theory, the joint probability
)(R and C) is given by

(5)P(R and C) = P(RIC) P(C)

(6)P(R and C) = P(CIR) P(R)

where P(RIC) is the probability of state R, given that state C has occurred (a
irnilar definition holds for P(CIR)).

The conditional probabilities are functions of the engineering dependence
etween the states Rand C. The specification of this dependence is an
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engineering input to the problem. It is a function of the damage mechanisms as
determined by the engineering analyst.

Case 4 (not R and not C). The probability of no damage is

P(not R and not C) = J -P(R or C) = J -(P(R) + P(C) -P(R, C)]
(7)

We consider the following sub-cases:
A. .J 00% dependence. The probability of R given that C has occurred is

unity (i.e., P(RIC)=l). Physically, for our problem, this means that if the
structure has collapsed then the roof has necessarily been damaged. For this case
it follows from Eq. 5

P(R and C) = P(C)
(8)

B. Independence (0% Dependence). Physically, for our problem
independence means that collapse does not necessarily entail damage to the roof
(collapse may be due to overturning while the roof remains intact). In this case
P(RIC) = P(R), that is, from Eq. 5,

P(R and C) = P(R) P(C),
(9)

For example, for v = 120 mph, P{R and C) = 0.8 x 0.05 = 0.04, P{R and not C)
= 0.8 -0.04 = 0.76, P{C and not R) = 0;05 -0.8 x 0.05 = 0.01. The damage

matrices for case 1 and case 2 are given in Tables 2 and 3.

C. Partial Dependence. For this sub-case 'it is required to specify the
conditional probability on the basis of structural engineering considerations.
(This would apply, for example, to roof loss given window breakage.)

D. Mutually Exclusive States. For mutually exclusive states P{RIC)=O, so
P{R,C) = O.

For v = 120 mph, Table 2 shows for the two fragility curves of Table I and

various values of the conditional distribution P{RIC) the corresponding values of
the joint distribution P(R,C) and the probability of no damage P{not R and not C).

Table 2. Probabilities P(R,C) and P(not R, not C) corresponding to P(R)=O.80
and P(C)=O.O5 and various values ofP(RIC).

.Rand C are mutually exclusive states
bRand C are independent st~tes
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t 100% dependence of R on C

.Tables' 3 and 4 show calculated damage matrices corresponding to sub-cases
A and B.

Table 3: Damage matrix, Case A (100% Dependence)

Table 4: Damage matrix, Case B (Independence)

5 Estimates of repair/replacement costs

Assume, for example, that the repair/replacement costs per building are the
following:

R and not C $30,000
Rand C $ I 00,000

..not Rand C $90,000.
For case B (independence between R and C), the expected cost of

repair/replacement per building for damage induced by a windstorm with wind
speed 120 mph is 0.76 x 30,000 + 0.04 x 100,000 + 0.01 x 90,000 = 22,800 +
4,000 + 900 = $27,200.

Estimates of the type illustrated in this example are building blocks for
~stimating costs for building inventories over a geographical area comprising a
arge number of communities, of which each may comprise several building
:ypes in terrains with different terrain rouglmess. A procedure for estimating
mch costs is described below.

We recall that the choice of two damage states was made for purposes of
Ilustration of our conceptual framework. The authors are currently applying that
ramework for actual situations entailing more complex, realistic damage
:cenarios.




