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Abstract

We present a contribution to the current debate on whether it is more appropriate to fit a Gumbel dis-
tribution to the time series of the extreme dynamic pressures (i.e. of the squares of the extreme wind speeds)
than to fit an extreme value distribution to the time series of the extreme wind speeds themselves. It has
been shown that the use of time series of the extreme dynamic pressures would be justified if the time series
of the wind speed data taken at small intervals (e.g. 1 h) were, at least approximately, Rayleigh-distributed.
We show that, according to sets of data we believe are typical, this is not the case. In addition, we show
results of probability plot correlation coefficient (PPCC) analyses of 100 records of sample size 23 to 54,
according to which the fit of reverse Weibull distributions to largest yearly wind speeds is considerably
better than the fit of Gumbel distributions to the corresponding largest yearly dynamic pressures. We
interpret the data and results presented in the paper as indicating that there is no convincing support to
date for the hypothesis that the Gumbel distribution should be used as a model of extreme dynamic pres-
sures. @ 2001 Elsevier Science Ltd. All rights reserved.
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Introduction

Unless they are associated with resonant amplification or aeroelastic effects, wind loads may in
general be assumed to be proportional to the squares of the wind speeds. Given a time series of
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the extreme wind speeds, two methods have been proposed in the literature for estimating wind
loads corresponding to various mean recurrence intervals. A first method uses time series of
extreme wind speeds to fit an Extreme Value distribution to the data and estimate percentage
points of the wind speeds. The estimated percentage points of the wind forces are then propor-
tional to the squares of the estimated percentage points of the extreme wind speeds. A second
method is based on the time series of the squares of the extreme wind speeds. (By definition, these
are proportional to the dynamic pressures.) From these time series an Extreme Value Type I
distribution is fitted to the squares of the wind speeds, and estimates are made of the percentage
points of the squares of the extreme wind speeds. It has been suggested in the literature and in
standards committees that estimates of windforces based on the second method may be closer to
the "true" percentage points than estimates ba&edon the first method-see Refs. [1,2].

Differences between load estimates based on the two methdds are significant. Monte Carlo
simulations were reported by Simiu et al. [3] for 1000 sets of size 50 taken from an extreme wind
speed population with Gumbel distribution and the reasonably typical expectation 30 mls and
standard deviation 4.5 m/s. The simulations showed that, under Cook's assumption [1] that both
the extr~me 4ynamic pressures and the corresponding extreme wind speeds have Gumbel dis-
tributions, the ratios of wind loads calculated by the second method to those calculated by the
first method are 0.93, 0.85, and 0.78 for loads with 100-, 1000-, and 10,000-y mean recurrence
intervals, crespectively. These results are consistent with estimates by Cook [1].

In this paper we offer a contribution to the debate concerning the relative merits of the two
methods just described. In Section 2 we review and assess the fundamental assumptions on the
basis of which it has been stated that the second method is superior to the first: that it is possible
td identify a parent population of the extreme wind speeds, and that this population is best fitted
by a distribution that is, at least approximately, of the Rayleigh type [1,2]. In Section 3 we present
results Qf PPCC analyses concerning the relative goodness of fit of the reverse Weibu1l distribu-
tion to sets of maximum yearly speeds on the one hand, ~nd of the Gumbel distribution to the
corresponding sets of dynamic pressures on the other. Section 4 co~tains our conclusions.

2. Hourly tiroe series of wiud speeds and the assumption of Rayleigh-distributed parent

populations

The argument used by Cook [1] for using the dynamic pressure rather than the wind speeds
when fitting the Gumbel distribution to extreme value time series rests on the assumption that the
parent population from which the extreme speeds are extracted is fitted by a distribution that is,
approximately, of the' Rayleigh type. Cook based this assumption on analyses of sets of wind
speeds measured at 1-h intervals, that is, on sets of 8760xn wind speed data, where n denotes
number of years [1, p. 297]. If the Rayleigh distribution were correct, then the rate of convergence
to the asymptotic Gumbel distribution of epochal maxima would be faster if the maxima con-
sisted of dynamic pressures than if they consisted of wind speeds. Hence, an analysis in whith a
Gumbel distribution were fitted to a time series of extreme dynamic pressures would yieJd more
realistic results than one in which a Gumbel distribution were fitted to a time series of extreme
wind speeds. The assumption that the Rayleigh distribution models reasonably well the parent
population of the extreme wind speeds is also used by Naess [2, pp. 254 and 256], who notes that
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since an annual record yields a total of 8760 h of data per year, there would be a reasonably high
level of confidence attached to the Weibull-or Rayleigh-distribution of the parent population
fitted to such a record, in spite of the existence of correlations among such data.

To assess Cook's and Naess's assumption we created histograms of wind speeds measured at
one-hour intervals provided by the National Climatic Center (NCC) for the years 1996---1997 for
the following stations: Bismarck, N. Dakota, Valentine, Nebraska, Harrisburg, Pennsylvania,
Reno, Nevada, Boise, Idaho, Tucson, Arizona, and Dayton, Ohio. The histograms of the first four
of these stations are shown in Figs. 1-4. (The data provided by NCC represent 2-min speeds in
knots. To transform them into m/s the data should be multiplied by the factor O,447m/s/mphx 1.15
knots/mph=0.5l4 m/s/knot.) Note in Figs. 1-4 that at Bismarck and Valentine the mode of the
wind speeds is about 7 knotsxO.5l4 mis/knot ~ 3.6 m/s; at Reno, the mode is considerably lower;
and at Harrisburg the histogram is multimodal.

We now comment on the use of data such as those of Figs. 1-4 for inferences on the distribu-
tion of the extremes. In our opinion, the preponderance of very weak speeds casts doubt on the
validity of such inferences. Weak speeds are mostly distinct meteorologically from the extreme
wind speeds associated with powerful storms. To resort to a well-known comparison, inferences
on powerful winds based on predominantly weak winds-morning breezes and so forth-are as
unwarranted as inferences on the height of adults based on the heights of children in a kinder-
garten class. Inferences are a fortiori unwarranted if the distribution is multimodal, pointing even
more strikingly to the existence of distinct types of winds, that is, of winds belonging to different
classes of meteorological phenomena. Given the meteorological inhomogeneity of the data we
believe that inferences on the probability distribution of a putative parent population from which
the extremes are taken cannot be made with confidence from time series of 8760 hourly data per
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Valentine (1996-1997)
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Fig. 2. Histogram of wind speeds measured at l-h intervals, Valentine, NE.
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Fig. 3. Histogram of wind speeds measured at l-h intervals, Harrisburg, PA.
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Reno (1996-1997)
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Fig. 4. Histogram of wind speeds measured at l-h intervals, Reno, NY.

year, in spite of the small sampling errors that, ideally (i.e. in the absence of correlations among
the data), would be inherent in such a large sample. We believe our conclusion would be war-
ranted even if it were true that the best fitting distribution of the hourly data were Rayleigh.
However, probability plot correlation coefficients (PPCC) goodness of fit tests indicated that this
does not appear to be the case. The analyses consisted of PPCC calculations under the assump-
tion that the data are fitted by a Weibull, a power lognormal, a lognormal, a reverse Weibull, a
Gumbel, a Frechet, a power normal, a normal, a Pareto, and a Rayleigh distribution. For none of
the seven stations being analyzed was the PPCC largest for the Rayleigh distribution, that is, in
all cases it was found that the Rayleigh distribution was not the best fitting distribution-by far-
among the set of distributions just listed.

Rather than analyzing the entire set of hourly data, one may analyze the hourly data that
exceed a sufficiently high threshold. This type of analysis, referred to in an Extreme Value context
as a "peaks over threshold" approach, would be reliable if the data exceeding the threshold were,
for practical purposes, statistically independent. Rather than applying a "peaks over threshold"
approach to hourly data, it is more appropriate to use such an approach for sets of uncorrelated
data extracted from relatively long sets of maximum daily data. Such use is consistent with the
theory underlying the "peaks over threshold" approach. "Peaks over threshold" analyses of
uncorrelated wind speed data have been performed by, among others, Simiu and Heckert [4].
According to their results the reverse Weibull distribution is an appropriate model of the extreme
wind speeds. Since the reverse Weibull distribution is a tail-limited distribution, the distribution
of the square of the wind speeds would also be tail-limited, and therefore it would not be a
Gumbel distribution. Thus, whether the entire sample of 8760 wind speed data per year, or just
those data exceeding a sufficiently high threshold, were used in the analysis, there appears to be
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Table 1
Probability plot correlation coefficients (PPCCs) for 100 records of 23-y to 54-y length. For each station, following the
years of record (in parentheses), the first and second number are the PPCC for reverse Weibull distribution of extreme
wind speeds and Gumbel distribution of squares of extreme wind speeds, respectively. The closer the PPCC is to unity,
the better is the fit of the distribution to the data.

Birmingham, AL (1944-1977): 0.98981, 0.98920
Montgomery, AL (1950-1983): 0.96001,0.92078
Tucson, AZ (1948-1987): 0.97203,0.96020
Yuma, AZ (1949-1987): 0.99129, 0.98962
Fort Smith, AZ (1952-1982): 0.97079,0.96857
Little Rock, AK (1943-1981): 0.99056,0.97900
Fresno, CA (1939-1975): 0.99377,0.99346
Red Bluff, CA (1945-1986): 0.98424, 0.97722
Sacramento, CA (1949-1987): 0.98148,0.97218
San Diego, CA (1940-1987): 0.95433,0.91381
Denver, CO (1951-1983): 0.99027,0.98949
Grand Junction, CO (1947-1979): 0.98009,0.97517
Pueblo, CO (1941-1983): 0.99085,0.98958
Washington, DC (1945-1984): 0.98629,0.98935
Atlanta, GA (1935-1976): 0.99530,0.98584
Macon, GA (1950-1982): 0.99499,0.99425
Boise, ill (1940-1987): 0.99100,0.98997
Pocatello, ill (1939-1987): 0.97735,0.97108
Chicago Midway, IL (1943-1979): 0.99578,0.99438
Moline, IL (1944-1987): 0.98855, 0.98246
Peoria, IL (1943-1984): 0.99266, 0.98744
Springfield, IL (1948-1979): 0.98090,0.97633
Evansville, IN (1941-1984): 0.98777,0.97947
Fort Wayne, IN (1942-1987): 0.99034,0.98960
Indianapolis, IN (1944-1979): 0.96430, 0.93478
Burlington, IA (1942-1964): 0.97539,0.96788
Des Moines, IA (1951-1987): 0.98460,0.98665
Sioux City, IA (1942-1987): 0.98525,0.97108
Dodge City, KS (1943-1983): 0.99437,0.98348
Topeka, KS (1950-1983): 0.98295,0.97328
Wichita, KS (1941-1981): 0.98329,0.96684
Louisville, KY (1946-1984): 0.99119,0.99156
Portland, ME (1941-1983): 0.97946,0.96357
Detrqit, MI (1934-1979): 0.99185,0.99068
Grand Rapids, MI (1951-1979): 0.97941, 0.97690
Lansing, MI (1949-1986): 0.98407,0.98267
Sault SteMarie, MI'(1941-1987): 0.99333,0.99188
Duluth, MN (1950-1985): 0.99352,0.99218
Minneapolis, MN(1938":'1979): 0.96500,0.93869
Jacksen, MS (1948-1976): 0.98611,0.98309
Columbia,MD.(1950-1985): 0.99128,0.97394
Kansas City, MO (1934-1984): 0.99321,0.99136
Springfield, MO (1941-1984): 0.98520,0.97639~

(continued on next page)
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Table 1 (continued)

Billings, MT (1939-1987):
Great Falls, MT(1944-1987):
Havre, MT (1961-1987):
Helena, MT:(1940-1987):
Missoula, MT (1945-1987):
North Platte, NE (1949-1979):
Omaha, NE (1936-1986):
Valentine, NE (1956-1982):
Ely, NY (1939-1987):
Reno, NY (1942-1987):
Winnemucca, NY (1950-1987):
Concord, NH (1941-1986):
Albuquerque, NM (1933-1984):
Roswell, NM (1947-1982):
Albany, NY (1938-1983):
Binghamton, NY (1951-1985):
Buffalo, NY (1944-1987):
Rochester, NY (1941-1985):
Syracuse, NY: (1941-1985):
Charlotte, NC (1951-1979):
Greensboro, NC (1930-1.979):
Bismarck,ND (1940-1979):
Fargo, ND (1942-1986):
Cleyeland, OH (1942-1976):
Columbus, OH (1952-1981):
Dayton, OH (1943-1983):
Toledo, OH (1943-1987):
Oklahoma City, OK (1952-1981):
Tulsa, OK (1943-1977):
Portland, OR (1950-1987):
Harrisburg, PA (1939-1976):
Scranton, PA (1955-1987):
Greenville, SC (1942-1984):
Huron, SD (1939-1987):
Rapid City, SD (1942-1984):
Chattanooga, TN (194)-1975):
Knoxville, TN (1942-1974):
Nashville, TN (1942-1975):"
Abilene, TX "(1944-1979):
Amarillo, TX (1941-1974):
Austin, TX (1943-1979):
Dallas, TX (1941c1972):
El Paso, TX(1943-1974):
San Antonio, TX: (1941-1976):
Salt Lake City UT (1942-1987):
Burlington, VT (1944-1983):
Lynchburg, VA (1944-1987):
Richmond, VA (1951-1983):

0.99525,
0.99121,
0.98001,
0.98162,
0.96309,
0.99143,
0.93909,
0.99337,
0.99607,
0.99276,
0.98080,
0.99146,
0.98747,
0.99039,
0.96499,
0.99433,
0.96468,
0.98825,
0.98296,
0.97860,
0.98062,
0.98662,
0.93881,
0.99067,
0.98787,
0.99363,
0.98329,
0.99354,
0.97734,
0.97037,
0.98926,
0.99217,
0.98864,
0.99462,
0.98579,
0.98643,
0.98795,
0.98480,
0.92649,
0.98574,
0.98258,
0.99048,
0.97992,
0.96119,
0.'99374,
0.98785,
0.98249,
0.98013,

(continued on next page)

0.99134
0.98798
0.97429
0.97896
0.94657
0.98038
0.97864
0.97324
0.99465
0.99133
0.97425
0.97834
0.97347
0.98373
0.94537
0.99337
0.94320
0.98369
0.98122
0.97610
0.95779
0.97678
0.97282
0.98845
0.97750
0.99112
0.95904
0.98980
0.97182
0.93645
0.98887
0.99259
0.98652
0.99130
0.92885
0.97540
0.98777
0:96923
0.94375
0.98263
0.98696
0.98633
0.98013
0.92443
0..99246
0.97866
0.97653
0.97405
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no support for the belief that the time series of the extreme dynamic pressures has a Gumbel
distribution.

yearly wind speeds3. Results based on sets of

We show in Table 1 the PPCCs calculated for 100 full sets of maximum yearly speeds under the
assumption that the sets are best fitted by reverse Weibull distributions, and the PPCCs calcu-
lated for the corresponding sets of dynamic pressures under the assumption that those sets are
best fitted by the Gumbel distribution. A comparison between the respective PPCCs shows that
for 88% of the stations the fit of the reverse Weibull distribution to the wind speeds is better than
the fit of the Gumbel distribution to the dynamic pressures. In our opinion this suggests there is
no support for the belief that fitting a Gumbel distribution to extreme dynamic pressures yields
better estimates of extreme wind loads than fitting a reverse Weibull distribution to the corre-
sponding extreme wind speeds.

4. Conclusions

.For physical reasons-the unrepresentativeness of low wind speeds from the point of view of
extreme wind speed estimation-probability distributions fitted to time series of wind speeds
recorded at small intervals (e,g. 1 h) are in our opinion unlikely to provide a useful basis for
inferences on extreme wind speeds.

.Seven sets of data recorded at one-hour intervals over two years at stations chosen randomly
from stations not subjected to hurricane winds were subjected to probability plot correlation
coefficient analyses. The distributions that were tested were: Weibull, power lognormal,
lognormal, reverse Weibull, Gumbel, Frechet, power normal, normal, Pareto, and Rayleigh.
In all cases the Rayleigh distribution was-by far-not the best fitting distribution.

.Probability plot correlation coefficient (PPCC) analyses of sets of maximum yearly speeds
and of the corresponding sets of squares of the wind speeds showed that, for 88 of the 100
stations for which analyses were performed, the fit of the reverse Weibull distribution to the
sets of maximum yearly wind speeds is better than the fit of the Gumbel distribution to the
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corresponding sets of squares of the wind speeds. Note, however, that in many instances the
difference between the respective values of the PPCC was very small, and that additional
analyses of this type would therefore be desirable.

.The results of the analyses presented in this paper are consistent with results published by
Walshaw [5], Simiu and Heckert [4], and Holmes and Moriarty [6], according to which the
reverse Weibull distribution is an appropriate probabilistic model of the extreme wind
speeds. Calculations reported by Minciarelli et al. (2001) [7] show that the use of the reverse
Weibull distribution in structural reliability estimates for structures subjected to wind loads
result in nominal safety levels comparable to those of structures subjected to gravity loads,
whereas the use of the Gumbel distribution results in far lower nominal safety levels
(Ellingwood et al., 1980) [8]. This is another possible indication that the reverse Weibull
distribution is a reasonable model of extreme wind speeds. Nevertheless, we do not advocate
the use of the reverse Weibull distribution for codification purposes at this time. Rather, we
believe that further investigations are desirable with a view to establishing definitively, if
possible, the probabilistic model most appropriate for practical use.

.In our opinion, the results presented in this paper do not support the use for engineering
calculations of estimates based on the Gumbel distribution of extreme dynamic pressures, as
was advocated by Cook [1] and Naess [2].
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