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A model for directional hurricane wind speeds

Mircea Grigoriu
Cornell University, Ithaca, NY 14853

1 Introduction

Let X be an R%valued random variable whose coordinates {X;}, i = 1,...,d, denote
hurricane wind speeds in d-directions at a site. Independent samples of X can be viewed as
synthetic hurricane wind speeds occurring in different storms. The random vector X cannot
be Gaussian since the sequence of wind speeds recorded in an arbitrary directionz =1,...,d
during different storm has 0’s so that the marginal distribution of X; has a finite mass at 0.

Our objectives are to develop (1) a probabilistic model for X describing hurricane wind
speeds in 16 directions at angles §; = 22.5°4, i = 1,...,16, (2) a method for calibrating the
model for X to records available at a site, and (3) a Monte Carlo algorithm for generating
synthetic hurricane speeds over an arbitrary number of years a selected site.

2 Probability law of hurricane wind speed

Consider the special case in which the coordinates of X are Bernoulli random variables,
that is,

[ 0, probability 1 — p;
A= { 1, probability p;, (1)

where p; € (0,1) for i = 1,...,d. The values 0 and 1 of a coordinate X; of X correspond to
0 and non-zero hurricane wind speeds in direction ¢ = 1,...,d. The average number of 0’s
and 1’s of X; in n independent trials are n (1 — p;) and n p;, respectively. We use the model
in Eq. 1 to illustrated difficulties related to the complete probabilistic characterization of the
hurricane wind vector X.

If the coordinates of X are independent, Eq. 1 defines the probability law of X. If the
coordinates of X are dependent, additional information is needed to specify X. Let px, x, =
P(ﬂ?zl {X; = k:z}) with k1, ..., kg € {0, 1} denote the probability that (Xl, . 7Xd) is equal
to a particular string (ki,...,kq) of 0’s and 1’s. We note that (1) the probabilities {px,,. .k, },

ki,...,kq € {0,1}, define uniquely the probability law of X and (2) pk, .k, = Hle P(Xi =
k;l) if X has independent coordinates.

The complete characterization of X involves two types of difficulties. First, the number
of probabilities {p, . ,} defining the probability law of X increases rapidly with d. For
example, suppose that d = 3. The probability law of X is completely defined by 2¢ =
probabilities py, g, = P(X1 = ki, Xo = ko, X3 = ks), ki, ko, k3 € {0,1}, that the vector



(X1, X2, X3) is equal to (0,0,0), (1,0,0), (0,1,0), (0,0,1), (1,1,0), (1,0,1), (0,0,1), and
(1,1,1). The number of probabilities {px, . x,} is 8; 32; 1,024; and 65,536 for d = 3; 5; 10;
and 16, respectively. Numerical calculations involving 65,536 probabilities are not feasible.
Second, the probabilities {p, . x,} need to be estimated from data. Estimates of these
probabilities are likely to be unreliable or even impossible for vectors X with dimension
d = 8 or larger if based on records of typical length. These considerations demonstrate
the need for developing simplified models for X that are numerically tractable and their
parameters can be estimated reliably from data.

3 'Translation model for hurricane wind speeds

We propose a translation non-Gaussian model X 7 for the wind speed vector X, present
a method for estimating the probability law of X, and develop a Monte Carlo algorithm
for generating samples of X 7.

3.1 Model definition

Let p; and F; denote the probability that the coordinate X;, 7 =1,...,d, of X is not 0
and the distribution of the non-zero values of this coordinate, so that

Fy(x)=(1—p)1(z >0) +p; Fi(z), i=1,....d (2)

is the distribution of X;, where 1(A) = 1 and 0 if statement A is valid and invalid, respec-
tively. We can view X; as a generalized Bernoulli variable that is 0 with probability 1 — p;
and is a random variable following the distribution F; with probability p;

Consider an R%valued random variable X with coordinates X7, defined by

XT,Z' :E_I(Gi)7 1= 17"'7da (3)

where G = (G1,...,Gy) is a standard R%valued Gaussian variable, that is, Mean[G;] = 0,
Var[G;] = 1, and Covariance|G;, G;| = p;j, i = 1,...,d. We refer to X as the translation
model for X. The model Xt has the same marginal distributions as X irrespective of
the covariance matrix p = {p;;} of G since Xy, is 0 with probability P(@(Gi) <1- pi) =
P(Gi <P H1- pl)) = 1—p; and has distribution F; with the complement of this probability,
that is, P(Xi #+ 0) = p; forall i = 1,...,d. The dependence between the coordinates of
X1, is defined by the covariance matrix p of G and the marginal distributions {F;} of
X. The relationship between the correlation structures of G and X is discussed in [1]
(Section 3.1.1).

The translation model in Eq. 3 has two notable features. The model (1) has, as already
stated, the same marginal distributions as X and (2) is sufficiently simple to be used in appli-
cations. A limitation of the model is that the complex dependence between the coordinates
of X is represented approximately.

3.1.1 Parameter estimation

Let (a:l, e ,:cn) be n independent samples of X, and let (xm, e ,a:i,n) denote the
corresponding n samples of coordinate X;, ¢ = 1,...,d. Denote by (yi,l, e ,yiymi), m; < n,
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the sequence of non-zero readings extracted from (wiyl, . ,xln) For example, z;; is not
included in (yi,l, o ,yLmZ.) it 0 and ;1 = ;1 if ;1 # 0.
The probabilities p; and the marginal distributions F; can be estimated by
~ my;

i 2P — —, .:1,...,d, 4
pipi= = (4)

and
~ o yey <
Fi(x):Fi(a:):Z”_I (v x), i=1,...,d (5)

my;

Similarly, the mean ju; and variance o? of F; can be estimated from

IR
NiZMiZE jzlyi,j

. 1 & 2
o} ~ 0% = oo Z (yi,j - Mz‘) . (6)
(2 jil
The estimation of the correlation matrix r = {r;}, i,7 = 1,...,d, corresponding to non-

zero values of X poses some difficulties since different coordinates of X may be non-zero in
different storms. Two options have been considered. First, select from the available record

(a:l, e 7zcn) only those storms in which all coordinates are non-zero. This option is not
viable since data shows that the resulting sample can be so short that reliable estimates
of r are not possible. Second, select from the available record (331, e ,:cn) all storms in

which the entries of a particular pair (4, j) of coordinates are not zero and estimate r;; from
this record. The advantage of this approach is that allows more reliable estimates of 7.
A potential problem is that the resulting estimate 7 of » may not be positive definite. We
present in the following section a procedure for handling this situation. Let é’ be the estimate
of the matrix of correlation coefficients of the non-zero values of {X;} obtained from 7 and
Eq. 6. Since the differences between the correlation matrices p of the Gaussian image G of
X and ¢ are not significant for positively correlated random variables ([1], Section 3.1.1),
we approximate p by & .

3.2 Monte Carlo algorithm

Suppose we need to generate n independent samples of X. The proposed algorithm
uses samples of X1 as a substitute for samples of X, and involves the following two steps.

Step 1. Generate n independent samples (gl, e gn) of G with mean 0 and covariance
matrix é’ .

Step 2. Calculate samples (:1:11, - ,a:T,n) of X7 from (gl, e ,gn) and Eq. 3, and
plot the resulting samples. It is assumed that all F; are reverse Weibull distributions.

As previously stated, the generation of samples of G may pose some difficulties since
the estimate r of the correlation matrix r, and consequently the estimate ¢ of ¢, may not



be positive definite. The generation algorithm is based on the approximate representation
16

G~G=> 1;Vig, (7)
k=1

of G, where {V},} are independent Gaussian variables with mean 0 and variance 1, {vy, ¢y}
denote the eigenvalues and the eigenvectors of ¢, and v}, = v, if v, > 0 and v} = 0 otherwise.
We use the approximation in Eq. 7 to generate samples of G.

4 MATLAB functions

Two MATLAB functions have been developed,

hurricane_dir_est.m and
hurricane_dir_mc.m.

The first function estimates the parameters of the probability law of X ;. The second
function generate samples of X 7. The dimension of X is d = 16.

4.1 MATLAB function hurricane_dir_est.m

The input consists of:
(1) A record at a specified milepost (see lines 23 to 27),

(2) A range [cmin, cmax| of Weibull tail parameter ¢ and the number nc of intervals
in [cmin, cmax]. We note that cmax needs to be selected to avoid unrealistic tail
parameters. It is suggested to set cmax = 10, and

(3) A minimum number ncorr of non-zero pairs of non-zero readings needed to estimate
entries of ¢. If ncorr is not reached for a pair (7, j), we set (;; = 0. It is suggested to
set ncorr = 10.

The output consists of:

1) Estimates of the probabilities p(i) = P(X,- = 0), 1=1,....,d,

3

(1)
(2) Estimates of reverse Weibull parameters alphal(i), c(i), and xi(i), i = 1,...,d,
(3) Estimates zetal(i, ) of the correlation coefficients (;;, 4,5 = 1, ...,d, and

(4)

4) Plots with estimates of the probabilities p;; mean, standard deviation, skewness
of non-zero values of X;; estimates of the correlation coefficients of all data and of
non-zero data; estimates of the parameters of the reverse Weibull distributions; and
histograms of non-zero readings in all directions including Weibull densities fitted to
these data.



The above output needs to be saved in a file for use in hurricane_dir_mc.m. The
command save estimates350 p zetal alphal c xi may be used to store parameters
needed for simulation. It is suggested that the file name be related to milepost number, for
example, estimates350 if dealing with milepost350.

4.2 MATLAB function hurricane _dir_emc.m

The input consists of:

(1) A file with estimates of the parameters needed to define the probability law of X7,
for example, the file estimates350 and

(2) The sample size ns and a seed nseed for sample generation.
The output consists of:
(1) Three dimensional plots of the generated samples of G and

(2) Three dimensional plots and contour lines of the generated samples of X 7.

5 Conclusions

A non-Gaussian model has been developed for hurricane wind speeds recorded in 16
equally spaced directions based on the theory of translation variables. A method has been
presented for calibrating the wind model to site records. The calibrated model has been
used to generate synthetic hurricane wind speeds of arbitrary length at a selected site.
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Appendix A. MATLAB function hurricane_dir_est.m

function [p,mu,sig,gam3,zeta_t,zetal,alphal,c,xi] = ...
hurricane_dir_est(cmin,cmax,nc,ncorr)

%

% It estimates:

% (1) The probability p(i)=P(X_i=0) that coordinate
% i=1,...,16 of wind speed is O

% (2) The mean mu(i), standard deviation sig(i), and
% skewness coefficient gam3(i) of the non-zero
% values for each i=1,...,16

% (3) The correlation coefficients {zeta t(i,j)},

% i,j=1,...,16, of the complete record,

% i.e., including zero readings, and

% {zetal(i,j)}, i,j=1,...,16, of

% non-zero readings

e —
% INPUT: (1) A record at a specified milepost

% (see lines 23 to 27)

% (2) Range [cmin,cmax] of Weibull tail

% parameter c and nc = # of intervals

% in [cmin,cmax]

% NOTE: cmax is also used to limit the value
% of the tail parameter, eg, cmax=10

% (3) ncorr = the minimum number of non-zero

% readings for which correlation is calculated
% IT ncorr is not reached, the correlation

% coefficient is set O

% (Suggestion: Set ncorr=10)

m — — — — -
% OUTPUT: (1) Estimates of {p(i)}, i=1,...,16

% (2) Estimates of reverse Weibull parameters

% {alphal(i), c(i1), xi(1)}, 1=1,...,16

% (3) Estimates of the correlation coefficients

% {zetal(i,j)}, i,j=1,...,16, corresponding

% non-zero wind speeds

%

% Load record = a (999,17)-matrix for a Milepost
% NOTE: THE FOLLOWING INSTRUCTION HAS TO BE MODIFIED
% TO SELECT A DIFFERENT MILEPOST #

load milepost350;

g=matrix;

nr=length(q(:,1));

nu=mean_rate; % nu = the average number of hurricane/year
% also in hppt://www.nist.gov/wind

%
% Estimates of probabilities p(i)
% NOTE: All readings are >=0

for i1=1:16,
p(i)=sum(q(:,1)>0)/nr;

end,

figure

plot(1:16,p)



xlabel ("Wind direction®)
ylabel ("Estimates of probabilities of non-zero values™)

%  Construct non-zero wind speed records in each
% direction, estimate {mu(i), sig(i), gam3(i)}, and
% calculte coeffiicents of variation vq(i)=sig(i)/mu(i)

nnz=0;
for kr=1:nr,
if q(kr,i)>0,
nnz=nnz+1;
xnz(nnz)=q(kr,i);
end,

end,

xnzz=xnz(1:nnz);

mu(i)=mean(xnzz);

sig(i)=std(xnzz);

vq(i)=sig(i)/mu(i);

gam3(i)=mean(((xnzz-mu(i))/sig(i)) -"3);
end,
figure
plot(1:16,mu,1:16,sig,":")
xlabel ("Wind direction®)
ylabel ("Estimates of mean/std (solid/dotted lines) for non-zero values*®)
figure
plot(1:16,gam3)
xlabel ("Wind direction®)
ylabel ("Estimates of skewness for non-zero values®)

% Estimates of correlation coefficients
Y% {zeta_t(i,j)}, 1i,j=1,...,16

qg=q(:,1:16);

zeta_t=corrcoef(qq);

figure

mesh(1:16,1:16,zeta_t)

xlabel ("Wind direction #%)

ylabel ("Wind direction #%)

zlabel ("Estimates of correlation coefficients \zeta t")

% Estimates of correlation coefficients
% {zeta(i,j)}, 1,j-1,..., 16

for 1=1:16,
for j=1:16,
ql=q(:,1);
92=q(:,3);
nqq=0;
for kr=1:nr,
if ql(kr)>0 & q2(kr)>0,
nqg=nqg+1;
xqq(nqd, :)=[q1(kr) q2(kr)];
end,
end,
if nqg<=01,
zeta(i,j)=0;



else,

rr=corrcoef(xqq(l:nqq,1).xqq(1:nqq,2));

rrr=rr(1,2);

zeta(i,j)=rrr;

end,
end,

end,
figure
mesh(1:16,1:16,zeta)
xlabel ("Wind direction #%)
ylabel("Wind direction #")
zlabel ("Estimates of correlation coefficients \zeta®)
figure
contour(1:16,1:16,zeta)
xlabel ("Wind direction #%)
ylabel("Wind direction #")
title("Estimates of correlation coefficients \zeta®)
%
% Estimates of the paramters of reverse Weibull distributions
%  Ffitted to non-zero wind speeds (Method of moments)
% USE [- RECORD] in all directions
Y — — — — -
% Relationship between Weibull tail parameter
% and skewness

dc=(cmax-cmin)/nc;
cc=cmin:dc:cmax;
Ic=length(cc);
gl=gamma(l./cc+1);
g2=gamma(2./cc+1);
g3=gamma(3./cc+1);
skew=(g3-3*gl.*g2+2*gl1.73)./(g2-g1.~2) .~(3/2);
% figure

% plot(cc,skew)

% xlabel("coefficient c")
% ylabel ("skewness™)

% Calculation of skewness coefficients
% for values of c>0 in [cmin,cmax]

% and estimated tail parameters

% {c(id}, 1=1,...,16

O — —
for 1=1:16,

muw(1)=-mu(i);

sigw(i)=sig(i);

gamw3(1)=-gam3(i);
c(i)=interpl(skew,cc,gamw3(i), “spline®);

% NOTE: This condition is needed since
% c can take very large values

if c(i)>cmax,

c(i)=cmax;
end,

% NOTE: IFf desired one or more or all c(i)"s



% can be assigned different values

for 1=1:16,
ggwl(i)=gamma(l./c(i)+1);
ggw2(i)=gamma(2./c(i)+1);
gagw3(i)=gamma(3./c(i)+1);
alpha(i)=sigw(1)/sqrt(ggw2(i)-ggwl(i)"2);
xi(1)=muw(i)-alpha(i)*ggwl(i);
end,
figure
plot(1:16,alpha,1:16,c,":",1:16,Xxi," --")
xlabel (*Wind direction #%)
ylabel ("Reverse Weibull parameters for non-zero readings®)
title("Estimates of \alpha, c, and \xi (solid, dotted, and dashed lines)")

% Plots of histograms and fitted reverse Weibull distributions
% to non-zero wind speeds in all directions

nnz=0;
for kr=1:nr,
if q(kr,i1)>0,
nnz=nnz+1;
xnz(nnz)=q(kr,i);
end,
end,
xnzz=xnz(1:nnz);
figure
hist_est(xnzz",1,30)
hold
yxi=xi(i):.1:50;
yw=(yxi-xi(i))/alpha(i);
fw=(c(i)/alpha(i))*(yw.”(c(1)-1)) .*exp(-yw-"c(i));
plot(-yxi,fw)
xlabel ("Wind speed (mph)~®)
ylabel(["Direction " int2str(i)])
% print
end,
zetal=zeta;
alphal=alpha;
%
%  EXAMPLE:
% [p,mu,sig,gam3,zeta_t,zetal,alphal,c,xi]=hurricane_dir_est(.1,10,1000,10);
% NOTE: Save the output needed for Monte Carlo simulation, e.g., use
% save estimates350 p zeta alpha c xi
% (estimates350 = File name, 350 since mileplot350 is used)




Appendix B. MATLAB function hurricane_dir_mc.m

function [thurr,xrw_mc,xrw_mc_ind,xXrws_mc,xrws_mc_ind] = ...
hurricane_dir_mc(nyr,cws,nseed)

%

% INPUT FROM hurricane _dir_est.m ---> estimates1450 cwl0 (for milepostl1450),

% and consists of estimtes of the parameters:

%

% * (alphal, cw, xi) of reverse Weibull distributions
% fitted to non-zero wind speeds in 16 direction.

% * (alphas, xis) of reverse Weibull distributions

% fitted to non-zero wind speeds in 16 direction

% with imposed tail parameter cws = 10 (¢ = - 0.1)
% in all directions.

% * p = 16-dimensional vector with probabilities

% p(i1)=P(X_i>0) of non-zero wind speeds.

% * zetal = (16,16) matrix of correlation coefficients
% for non-zero wind speeds.

0 —
%  OTHER INPUT:
%

% * nyr = # of years required for simulation.

% * nseed = Monte Carlo simulation seed.

Y — = — -

%

%  OUTPUT:

% * thurr = times of thunderstorms in nyr years.

% * xrw_mc = generated wind speeds in 16 directions/nyr years

% using estimates of (alphal, cw, xi), p(i), and zetal.

% * xrw_mc_ind = generated wind speeds in 16 directions/nyr years
% using estimates of (alphal, cw, xi) and p(i) under the

% assumption that wind speeds in different directions

% are mutaully independent.

% * Xrws_mc = generated wind speeds in 16 directions/nyr years

% using estimates of (alphas, xis), p(i), and zetal for

% an imposed tail parameter cws = - 1/c.

% * xrws_mc_ind = generated wind speeds in 16 directions/nyr years
% using estimates of (alphas, xis) and p(i) for an imposed

% tail parameter cws = - 1/c under the assumption that wind

% speeds in different directions are mutaully independent.

%
%

%  REASONS FOR THE INDEPENDENCE ASSUMPTION AND THE RECOMMENDATION OF
% USING xrw_mc_ind; xrws _mc_ind RATHER THAN Xrw_mc; Xrws_mc

%

% (1) Correlation coefficients of all data (including 0"s) are
% relatively small (maximum values are of order 0.7).

% (2) Correlation coefficients between random variables with

% finite probability mass at O provide limited information
% on the relationship between these random variables.

% (3) Estimates of the correlation coefficients of non-zero

% wind speeds can lead to inconsistencies, e.g., consider
% wind speed readings in 3 directions x(i,j), j=1,2,3,

% each of length n = 1000, and suppose the readings

% x(600:1000,1), x(1:400,2), x(800:1000,2), and x(1:600,3)
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% are zero. The estimates of the correlation coefficients

% of these records are rho(1,2) not=0 (records x(:,1) & x(:,2)),
% rho(2,3) not=0 (records x(:,2) & x(:,3)), but rho(1,3)=0
% (records x(:,1) & x(:,3))-

%
%
% Load estimates delivered by hurricane_dir_est.m

%  for a selected milepost (here milepost1450)

Y = = — o
% load estimates350

load milepostl1450

nu=mean_rate;

load estimates1450 cwl0

nd=length(p);

%  Total number of hurricanes in nyr years:

% thurr = a vector with entries times at which
% hurricanes occurr in nyr years
% nhurr = # of hurricanes in nyr years

rand("seed” ,nseed)

time=0;

ktime=0;

while time<=nyr,
ktime=ktime+1;
time=time-log(rand(1,1))/nu;
thr(ktime)=time;

end,

nhurr=ktime-1;

thurr=thr(1:nhurr);

% Set 0 the entries of the matrices in which generated wind
% will be stores

xrw_mc=zeros(nhurr,16);
Xrw_mc_ind=zeros(nhurr,16);
xrws_mc=zeros(nhurr,16);
xrws_mc_ind=zeros(nhurr,16);

%  Generation of nhurr independent samples of a 16-dimensional
%  standard Gaussian vector with covariance matrix zetal
% _________________________________________________________________

% Construct an approximate spectral representation
% for a correlated standard Gaussian vector with
% covariance approximating zetal

[vzeta,dzeta]=eig(zetal);
ndd=0;
for kd=1:nd,
if dzeta(kd,kd)>0,
ndd=ndd+1;
lamz(ndd)=dzeta(kd, kd);
phiz(:,ndd)=vzeta(:,kd);
end,

% Generate required Gaussian samples

11



randn(“seed” ,nseed);
gg=zeros(nhurr,nd);
for ks=1:nhurr,
rg=randn(1,ndd);
for kdd=1:ndd,
agg(ks, :)=gg(ks, :)+lamz(kdd)*rg(kdd)*phiz(: ,kdd) " ;
end,
end,
gg=cdf("normal”,gg,0,1);

% Figure

% mesh(1:16,1:nhurr,gg)

% xlabel(*Wind direction®)

% ylabel("Sample number™)

% zlabel("Gaussian image"®)

% xlim([1 16])

% set(gca, "xticklabel®,"")

% set(gca, "xtick",[1:16])

% set(gca, "xticklabel®,[1:16])

% ylim([1 nhurr])

% set(gca, "yticklabel®,"")

% set(gca, "ytick",[1 10:10:nhurr])

% set(gca, “"yticklabel®,[1 10:10:nhurr])
% % print

%
% Translation from Gaussian to reverse Weibull space

% CASE 1: Estimates of (alphal, cw, xi), p(i), and zetal

Y — = —

% gg=cdf("normal",gg,0,1);
for ks=1:nhurr,
for i1=1:nd,

it gg(ks,1)>=1-p(i),
uu=(gg(ks, 1)-(1-p(i)))/p(i);
xrw_mc(ks, i)=-xi(i)-icdf("wbl",uu,alphal(i),cw(i));

end,
% [ks 1 gg(ks,i1) 1-p(i) xrw_mc(ks,i)]
% pause
end,
end,

0/0 nnnnnnnnnnnnnnnn
%  UNDER INDEPENDENCE ASSUMPTION
%***********************************
for ks=1:nhurr,
for i1=1:nd,
ur=rand(1,1);
if ur>=1-p(i),
uu=(ur-(1-p(iN))/pid; ] ]
xrw_mc_ind(ks, i)=-xi(i)-icdf("wbl",uu,alphal(i),cw(i));

end,
% [ks 1 gg(ks,i) 1-p(i) xrw_mc_ind(ks,i)]
% pause
end,
end,

%  Translation from Gaussian to reverse Weibull space
% CASE 2: Estimates of (alphas, xis), p(i), and zetal

12



% for an imposed tail parameter cws = - 1/c

% gg=cdf("normal",gg,0,1);
for ks=1:nhurr,
for i1=1:nd,
it gg(ks, 1)>=1-p(i),
uu=(gg(ks, 1)-(1-p(i)))/p(i);

xrws_mc(ks, 1)=-xis(i)-icdf("wbl " ,uu,alphas(i),cws);

end,
% [ks 1 gg(ks,i) 1-p(i) xrws_mc(ks,i)]
% pause
end,
end,

%***********************************

% UNDER INDEPENDENCE ASSUMPTION
%***********************************
for ks=1:nhurr,
for i1=1:nd,
ur=rand(1,1);
if ur>=1-p(i),
uu=Cur-(1-p(i)))/p(i);

xrws_mc_ind(ks, 1)=-xis(i)-icdf("wbl " ,uu,alphas(i),cws);

end,
% [ks 1 gg(ks,i) 1-p(i) xrws_mc_ind(ks,i)]
% pause
end,
end,
Y — = —
% figure

% mesh(1:16,1:nhurr,Xxrw_mc)

% xlabel("Wind direction®)

% ylabel ("Sample number*®)

% zlabel("Simulated hurricane wind speeds®)
% xlim([1 16])

% set(gca, "xticklabel®,"")

% set(gca, "xtick",[1:16])

% set(gca, "xticklabel®,[1:16])

% ylim([1 nhurr])

% set(gca, "yticklabel®,"")

% set(gca, "ytick",[1 10:10:nhurrl])

% set(gca, "yticklabel",[1 10:10:nhurr])
% % print

% figure

% contour(1:16,1:ns,Xrws_mc)

% xlabel("Wind direction®)

% ylabel ("Sample number*®)

% title("Simulated hurricane wind speeds®)
% xlim([1 16])

% set(gca, "xticklabel®,"")

% set(gca, "xtick",[1:16])

% set(gca, "xticklabel®,[1:16])

% ylim([1 nhurr])

% set(gca, "yticklabel®,"")

% set(gca, "ytick",[1 10:10:nhurrl])

% set(gca, "yticklabel®,[1 10:10:nhurr])
% % print
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%

T
C
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y
t
X
S
S
S
y
S
S
S
%

igure

ontour(1:16,1:ns,xweib)

label (*Wind direction®)

label ("Sample number®)

itle("Simulated hurricane wind speeds”®)

lim([1 16]1)

et(gca, "xticklabel™,"")

et(gca, "xtick",[1:16])

et(gca, "xticklabel",[1:16])

lim([1 ns])

et(gca, "yticklabel™," ")

et(gca, "ytick",[1 10:10:ns])

et(gca, "yticklabel*,[1 10:10:ns])
print

%

0

<

[thurr,xrw_mc,xrw_mc_ind,xrws_mc,xrws_mc_ind]=hurricane_dir_mc(200000,10,123);
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