TNRPDF

PURPOSE

Compute the truncated normal probability density function.

DESCRIPTION

A truncated normal distribution is a normal distribution that is restricted to lie within a finite range, i.e., $A \le x \le B$. A and B are the lower and upper truncation points respectively. A can be negative infinity or B can be positive infinity, but not both at the same time.

The truncated normal distribution can be expressed in terms of the normal distribution as follows:

$$f(x, a, b, \mu, \sigma) = \frac{\phi\left(\frac{x-\mu}{\sigma}\right)}{\sigma\left[\Phi\left(\frac{b-\mu}{\sigma}\right) - \Phi\left(\frac{a-\mu}{\sigma}\right)\right]} \qquad a \le x \le b$$
 (EQ Aux-315)

where μ and σ are the mean and standard deviation of the parent normal distribution and a and b are the lower and upper truncation points. ϕ and Φ are the probability density and cumulative distribution functions for the normal distribution.

SYNTAX

LET <y> = TNRPDF(<x>,<a>,,<m>,<s>)

<SUBSET/EXCEPT/FOR qualification>

where <x> is a number, parameter, or variable in the range (<a>,);

<a> is a number, parameter, or variable that defines the lower truncation point;

 is a number, parameter, or variable that defines the upper truncation point;

<m> is a number, parameter, or variable that defines the mean of the parent normal distribution (defaults to 0 if omitted);

<s> is a number, parameter, or variable that defines the standard deviation of the parent normal distribution (defaults to 1 if omitted);

 $\langle y \rangle$ is a variable or a parameter (depending on what $\langle x \rangle$ is) where the computed truncated normal pdf value is stored; and where the $\langle SUBSET/EXCEPT/FOR$ qualification \rangle is optional.

EXAMPLES

LET A = TNRPDF(3,2,0.7,0,10) LET X2 = TNRPDF(X1,U,SD,LOWER,UPPER)

DEFAULT

None

N/

Nor

SYNONYMS

None

RELATED COMMANDS

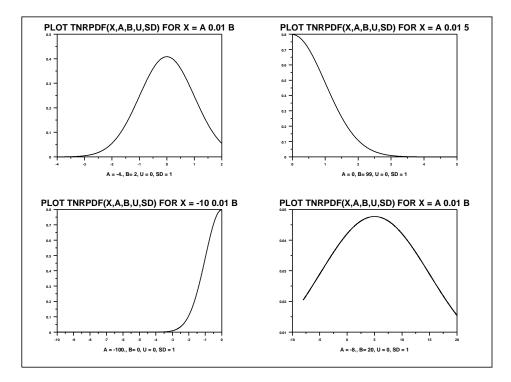
TNRCDF	=	Compute the truncated normal cumulative distribution function.
TNRPPF	=	Compute the truncated normal percent point function.
NORCDF	=	Compute the normal cumulative distribution function.
NORPDF	=	Compute the normal probability density function.
NORPPF	=	Compute the normal percent point function.
FNRCDF	=	Compute the folded normal cumulative distribution function.
FNRPDF	=	Compute the folded normal probability density function.
FNRPPF	=	Compute the folded normal percent point function.

REFERENCE

"Continuous Univariate Distributions - 1," 2nd Ed., Johnson, Kotz, and Balakrishnan, Wiley and Sons, 1994 (pp. 156-162).

APPLICATIONS

Data Analysis


IMPLEMENTATION DATE

95/10

PROGRAM

MULTIPLOT 2 2; MULTIPLOT CORNER COORDINATES 0 0 100 100 TITLE AUTOMATIC LET U = 0LET SD = 1LET A = -4LET B = 2X1LABEL A = A , B= B , U = 0, SD = 1 PLOT TNRPDF(X,A,B,U,SD) FOR X = A 0.01 B LET A = 0LET B = 99X1LABEL A = A , B = B , U = 0, SD = 1 PLOT TNRPDF(X,A,B,U,SD) FOR X = A 0.01 5LET A = -100LET B = 0X1LABEL A = A , B= B , U = 0, SD = 1 PLOT TNRPDF(X,A,B,U,SD) FOR X = -10 0.01 B LET U = 5

LET SD = 10 LET A = -8 LET B = 20 X1LABEL A = A , B= B , U = 0, SD = 1 PLOT TNRPDF(X,A,B,U,SD) FOR X = A 0.01 B END OF MULTIPLOT

