POWCDF

PURPOSE

Compute the standard form of the power function cumulative distribution function.

DESCRIPTION

The standard form of the probability density function is:

$$f(x, c) = cx^{c-1}$$
 $0 \le x \le 1$ (EQ Aux-284)

where c is a shape parameter. The cumulative distribution is the area under the curve from 0 to x (i.e., the integral of the above function). It has the formula:

$$F(x, c) = x^{c}$$
 $0 \le x \le 1$ (EQ Aux-285)

The power function distribution is also the distribution of the inverse of a Pareto distribution.

SYNTAX

LET <y2> = POWCDF(<y1>,<c>)

where $\langle y_1 \rangle$ is a number, parameter, or variable in the range 0 to 1;

<c> is a number, parameter, or variable that specifies the shape parameter;

 $\langle y2 \rangle$ is a variable or a parameter (depending on what $\langle y1 \rangle$ is) where the computed power function pdf value is saved; and where the $\langle SUBSET/EXCEPT/FOR$ qualification \rangle is optional.

<SUBSET/EXCEPT/FOR qualification>

EXAMPLES

LET A = POWCDF(3,1.5)LET X2 = POWCDF(X1,C)

NOTE

The general form of the probability density function is:

 $f(x, c, b) = \frac{cx^{c-1}}{b^c}$ $0 \le x \le 1$ (EQ Aux-286)

where b is a positive scale parameter. The formula for the general form of the cumulative distribution function is:

$$\mathbf{F}(x, c, b) = \left(\frac{x}{b}\right)^c \qquad 0 \le x \le 1$$
(EQ Aux-287)

DEFAULT

None

SYNONYMS

None

RELATED COMMANDS

POWPDF	=	Compute the power function probability density function.
POWPPF	=	Compute the power function percent point function.
PARCDF	=	Compute the Pareto cumulative distribution function.
PARPDF	=	Compute the Pareto probability density function.
PARPPF	=	Compute the Pareto percent point function.
GEPCDF	=	Compute the generalized Pareto cumulative distribution function.
GEPPDF	=	Compute the generalized Pareto probability density function.
GEPPPF	=	Compute the generalized Pareto percent point function.
EXPCDF	=	Compute the exponential cumulative distribution function.
EXPPDF	=	Compute the exponential probability density function.
EXPPPF	=	Compute the exponential percent point function.

REFERENCE

"Continuous Univariate Distributions," 2nd ed., Johnson, Kotz, and Balakrishnan, John Wiley and Sons, 1994 (page 607).

"Statistical Distributions," 2nd ed., Evans, Hastings, and Peacock, John Wiley & Sons, 1993.

APPLICATIONS

Data Analysis

IMPLEMENTATION DATE

95/4

PROGRAM

TITLE POWER FUNCTION CDF'S (0.1, 0.5, 1, 3, 10) PLOT POWCDF(X,0.1) FOR $X = 0.01 \ 0.01 \ 1$ AND PLOT POWCDF(X,0.5) FOR $X = 0.01 \ 0.01 \ 1$ AND PLOT POWCDF(X,1) FOR $X = 0.01 \ 0.01 \ 1$ AND PLOT POWCDF(X,3) FOR $X = 0.01 \ 0.01 \ 1$ AND PLOT POWCDF(X,10) FOR $X = 0.01 \ 0.01 \ 1$

