PLEM

PURPOSE

Compute the real component of the Weierstrass P elliptic function of a complex number (lemniscatic case with unit period parallelogram).

DESCRIPTION

The Weierstrass elliptic function is described in detail in the Handbook of Mathematical Functions (see REFERENCE section below).

SYNTAX 1

 $LET \langle ar \rangle = PLEM(\langle xr \rangle, \langle xc \rangle)$

<SUBSET/EXCEPT/FOR qualification>

where <xr> is a number, parameter, or variable that specifies the the real component of the input;

<xc> is a number, parameter, or variable that specifies the the complex component of the input;

<ar> is a variable or a parameter (depending on what <xr> and <xc> are) where the computed values are stored;

and where the \langle SUBSET/EXCEPT/FOR qualification \rangle is optional.

This syntax computes the real component.

SYNTAX 2

LET <ac> = PLEMI(<xr>,<xc>)

<SUBSET/EXCEPT/FOR qualification>

where <xr> is a number, parameter, or variable that specifies the the real component of the input;

<xc> is a number, parameter, or variable that specifies the the complex component of the input;

<ac> is a variable or a parameter (depending on what <xr> and <xc> are) where the computed values are stored; and where the <SUBSET/EXCEPT/FOR qualification> is optional.

This syntax computes the complex component.

EXAMPLES

LET AR = PLEM(2,1) LET AC = PLEMI(2,1) LET AR = PLEM(XR,4) LET AC = PLEMI(XC,4)

NOTE 1

The Weierstrass elliptic functions are computed using algorithm 549 from the ACM Transactions on Mathematical Software (see the REFERENCE section below).

NOTE 2

If the input value corresponds to a lattice point, an error message is printed and the output value is set to the largest real number on the machine.

DEFAULT

None

SYNONYMS

None

RELATED COMMANDS

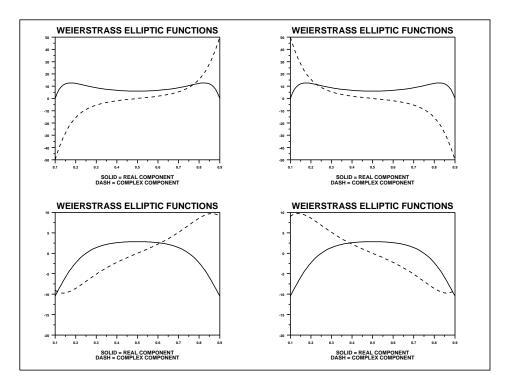
PEQ	=	Compute the real component of the Weierstrass elliptic function (equianharmonic case).
PEQ1	=	Compute the real component of the first derivative of the Weierstrass elliptic function (equianharmonic case).
PLEM1	=	Compute the real component of the first derivative of the Weierstrass elliptic function (lemniscatic case).
SN	=	Compute the Jacobi elliptic function sn.
RF	=	Compute the Carlson elliptic integral of the first kind.
RD	=	Compute the Carlson elliptic integral of the second kind.
ELLIP1	=	Compute the Legendre elliptic integral of the first kind.

REFERENCE

"Algorithm 549: Weierstrass' Elliptic Functions," Eckhardt, ACM Transactions on Mathematical Software, vol. 6 (pp. 112-120).

"Handbook of Mathematical Functions, Applied Mathematics Series, Vol. 55," Abramowitz and Stegun, National Bureau of Standards, 1964 (chapter 18).

APPLICATIONS


Special Functions

IMPLEMENTATION DATE

94/11

PROGRAM

X2LABEL DASH = COMPLEX COMPONENT TITLE WEIERSTRASS ELLIPTIC FUNCTIONS LINE SOLID DASH MULTIPLOT 2 2; MULTIPLOT CORNER COORDINATES 0 0 100 100 LET C = 0.1PLOT PLEM(X,C) FOR X = 0.1 0.01 0.9 AND PLOT PLEMI(X,C) FOR X = 0.1 0.01 0.9 LET C = -0.1PLOT PLEM(X,C) FOR X = 0.1 0.01 0.9 AND PLOT PLEMI(X,C) FOR X = 0.1 0.01 0.9 LET C = 0.25PLOT PLEM(X,C) FOR X = 0.1 0.01 0.9 AND PLOT PLEMI(X,C) FOR X = 0.1 0.01 0.9 LET C = -0.25 PLOT PLEM(X,C) FOR X = 0.1 0.01 0.9 AND PLOT PLEMI(X,C) FOR X = 0.1 0.01 0.9 END OF MULTIPLOT

