HFCPPF

PURPOSE

Compute the standard half-Cauchy percent point function.

DESCRIPTION

The standard half-Cauchy distribution has the following probability density function:

$$
\begin{equation*}
f(x)=\frac{2}{\pi\left(1+x^{2}\right)} \quad \mathrm{x} \geq 0 \tag{EQ8-195}
\end{equation*}
$$

The percent point function is calculated from the Cauchy distribution by: $\mathrm{G}(\mathrm{p})=\operatorname{CAUPPF}((1+\mathrm{p}) / 2)$ where CAUPPF is the percent point function of the standard Cauchy distribution.

SYNTAX

LET < $\mathrm{y}>=\operatorname{HFCPPF}(<\mathrm{p}>)$
<SUBSET/EXCEPT/FOR qualification>
where $\langle\mathrm{p}>$ is a variable, a number, or a parameter in the range 0 to 1 ;
< $\mathrm{y}>$ is a variable or a parameter (depending on what < $\mathrm{p}>$ is) where the computed half-Cauchy ppf value is stored; and where the <SUBSET/EXCEPT/FOR qualification> is optional.

EXAMPLES

LET A $=\operatorname{HFCPPF}(0.9)$
LET X2 $=\operatorname{HFCPPF}(\mathrm{X} 1)$

NOTE

The general form of the half-Cauchy probability density function is:

$$
f(x)=\left(\frac{1}{s}\right) \frac{2}{\pi\left(1+\left(\frac{x-t}{s}\right)^{2}\right)} \quad \mathrm{x} \geq \mu
$$

(EQ 8-196)
where μ is a location parameter and σ is a scale parameter.

DEFAULT

None

SYNONYMS

None

RELATED COMMANDS

HFCCDF $=$ Compute the Cauchy cumulative distribution function.
HFCPDF $\quad=\quad$ Compute the Cauchy probability density function.
CAUCDF $\quad=\quad$ Compute the Cauchy cumulative distribution function.
CAUPDF $=\quad$ Compute the Cauchy probability density function.
CAUPPF
$=\quad$ Compute the Cauchy percent point function.
NORCDF $=\quad$ Compute the normal cumulative distribution function.
NORPDF
$=\quad$ Compute the normal probability density function.
NORPPF
$=\quad$ Compute the normal percent point function.
HFNCDF $\quad=\quad$ Compute the half-normal cumulative distribution function.
HFNPDF $=\quad$ Compute the half-normal probability density function.
HFNPPF $=\quad$ Compute the half-normal percent point function.

REFERENCE

"Continuous Univariate Distributions - Vol. I," 2nd. ed., Johnson, Kotz, and Balakrishnan, Wiley and Sons, 1994 (page 328).

APPLICATIONS

Data Analysis

IMPLEMENTATION DATE
95/10

PROGRAM

TITLE AUTOMATIC
PLOT HFCPPF(P) FOR P $=00.010 .99$

