HFCCDF

PURPOSE

Compute the standard half-Cauchy cumulative distribution function.

DESCRIPTION

The standard half-Cauchy distribution has the following probability density function:

$$
\begin{equation*}
f(x)=\frac{2}{\pi\left(1+x^{2}\right)} \quad \mathrm{x} \geq 0 \tag{EQ8-191}
\end{equation*}
$$

The cumulative distribution is calculated from the Cauchy distribution by: $\mathrm{F}(\mathrm{x})=2 * \operatorname{CAUCDF}(\mathrm{x})-1$ where CAUCDF is the cumulative distribution function of the standard Cauchy distribution.

SYNTAX

LET $\langle y>=\operatorname{HFCCDF}(<x>)$
<SUBSET/EXCEPT/FOR qualification>
where $\langle x\rangle$ is a non-negative variable, number, or parameter;
$\langle y\rangle$ is a variable or a parameter (depending on what $\langle x\rangle$ is) where the computed Cauchy cdf value is stored; and where the <SUBSET/EXCEPT/FOR qualification> is optional.

EXAMPLES

LET A $=\operatorname{HFCCDF}(3)$
LET X2 $=\operatorname{HFCCDF}(\mathrm{X} 1)$
NOTE
The general form of the half-Cauchy probability density function is:

$$
f(x)=\left(\frac{1}{s}\right) \frac{2}{\pi\left(1+\left(\frac{x-t}{s}\right)^{2}\right)} \quad \mathrm{x} \geq \mu
$$

(EQ 8-192)
where μ is a location parameter and σ is a scale parameter.

DEFAULT

None

SYNONYMS

None

RELATED COMMANDS

HFCPDF $\quad=\quad$ Compute the Cauchy probability density function.
HFCPPF
$=\quad$ Compute the Cauchy percent point function.
CAUCDF $\quad=\quad$ Compute the Cauchy cumulative distribution function.
CAUPDF $=\quad$ Compute the Cauchy probability density function.
CAUPPF
$=\quad$ Compute the Cauchy percent point function.
NORCDF
$=\quad$ Compute the normal cumulative distribution function.
NORPDF
$=\quad$ Compute the normal probability density function.
NORPPF
$=\quad$ Compute the normal percent point function.
HFNCDF $=$ Compute the half-normal cumulative distribution function.
HFNPDF $=\quad$ Compute the half-normal probability density function.
HFNPPF $=\quad$ Compute the half-normal percent point function.

REFERENCE

"Continuous Univariate Distributions - Vol. I," 2nd. ed., Johnson, Kotz, and Balakrishnan, Wiley and Sons, 1994 (page 328).

APPLICATIONS

Data Analysis

IMPLEMENTATION DATE
95/10

PROGRAM

TITLE AUTOMATIC
PLOT HFCCDF(X) FOR X = 00.0110

