GEXPPF Auxillary

GEXPPF

PURPOSE

Compute the generalized exponential percent point function.

DESCRIPTION

The generalized exponential distribution has the following probability density function:

$$f(x, \lambda_1, \lambda_{12}, s) = (\lambda_1 + \lambda_{12}(1 - e^{-sx}))e^{\lambda_1 x - \lambda_{12} x + \frac{\lambda_{12}}{s}(1 - e^{-sx})}$$
 $x \ge 0$ (EQ Aux-169)

where λ_1 , λ_{12} , and s are positive shape parameters.

The percent point function is the inverse of the cumulative distribution function. The cumulative distribution sums the probability from 0 to the given x value (i.e., the integral of the above function). The percent point function takes a cumulative probability value and computes the corresponding x value. The percent point function is calculated numerically using a bisection method.

This distribution is the marginal distribution for a joint bivariate exponential distribution proposed in a paper by Ryu (see the Reference section below).

SYNTAX

where $\langle p \rangle$ is a variable, a number, or a parameter in the range (0,1);

<y> is a variable or a parameter (depending on what <x> is) where the computed generalized exponential ppf value is saved;

<11> is variable, a number, or a parameter that specifies the first shape parameter;

<112> is variable, a number, or a parameter that specifies the second shape parameter;

<s> is variable, a number, or a parameter that specifies the third shape parameter;

and where the <SUBSET/EXCEPT/FOR qualification> is optional.

EXAMPLES

LET A = GEXPPF(0.95,0.5,2,1.5) LET X2 = GEXPPF(X1,LAM1,LAM12,SD)

DEFAULT

None

SYNONYMS

None

RELATED COMMANDS

GEXCDF Compute the generalized exponential cumulative distribution function. **GEXPDF** Compute the generalized exponential probability density function. = **EXPCDF** Compute the exponential cumulative distribution function. **EXPPDF** Compute the exponential probability density function. **EXPPPF** Compute the exponential percent point function. DEXCDF Compute the double exponential cumulative distribution function. **DEXPDF** Compute the double exponential probability density function. **DEXPPF** Compute the double exponential percent point function. WEICDF Compute the Weibull cumulative distribution function. WEIPDF Compute the Weibull probability density function. WEIPPF Compute the Weibull percent point function.

REFERENCE

"An Extension of Marshall and Olkin's Bivariate Exponential Distribution," Ryu, Journal of the American Statistical Association, 1993, (pp. 1458-1465).

"Continuous Univariate Distributions--Vol. I," 2nd. Ed., Johnson, Kotz, and Balakrishnan, John Wiley and Sons, 1994, (page 555).

APPLICATIONS

Reliability

Auxillary GEXPPF

IMPLEMENTATION DATE

96/2

PROGRAM

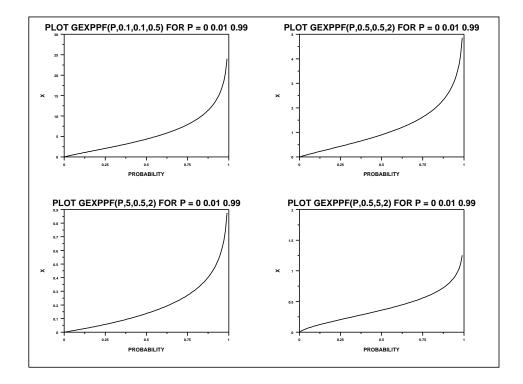
MULTIPLOT 2 2; MULTIPLOT CORNER COORDINATES 0 0 100 100

TITLE AUTOMATIC

Y1LABEL X

X1LABEL PROBABILITY

.


PLOT GEXPPF(P,0.1,0.1,0.5) FOR $P = 0 \ 0.01 \ 0.99$

PLOT GEXPPF(P,0.5,0.5,2) FOR $P = 0 \ 0.01 \ 0.99$

PLOT GEXPPF(P,5,0.5,2) FOR P = 0.0.01 0.99

PLOT GEXPPF(P,0.5,5,2) FOR $P = 0 \ 0.01 \ 0.99$

END OF MULTIPLOT

