# FCAPPF

## PURPOSE

Compute the folded Cauchy percent point function.

# DESCRIPTION

If X is Cauchy distributed, then ABS(X) has a folded Cauchy distribution whose probability density function can be expressed in terms of the standard Cauchy distribution as:

$$f(x, \mu, \sigma) = \frac{1}{\sigma} \left( \text{CAUPDF}\left(\frac{x-\mu}{\sigma}\right) + \text{CAUPDF}\left(\frac{x+\mu}{\sigma}\right) \right) \qquad x \ge 0$$
 (EQ Aux-140)

where CAUPDF is the probability density function of a standard Cauchy distribution and u and s are the location and scale parameters of the parent Cauchy distribution. These parameters are shape parameters for the folded Cauchy distribution. If u is zero, the folded Cauchy distribution reduces to a half-Cauchy distribution.

The folded Cauchy percent point function is computed numerically using a bisection method.

#### SYNTAX

LET <y> = FCAPPF(,<u>,<s>)

<SUBSET/EXCEPT/FOR qualification>

where  $\langle p \rangle$  is a number, parameter, or variable in the range (0,1);

<u> is a number, parameter, or variable that defines the location parameter of the parent Cauchy distribution;

<s> is a number, parameter, or variable that defines the scale parameter of the parent Cauchy distribution;

<y> is a variable or a parameter (depending on what is) where the computed folded Cauchy ppf value is stored;

and where the <SUBSET/EXCEPT/FOR qualification> is optional.

# EXAMPLES

LET A = FCAPPF(0.95,2,0.7)LET X2 = FCAPPF(X1,U,SD)

#### NOTE

Folded distributions are typically used when measurements are taken without regard to sign and the underlying distribution is assumed to be Cauchy.

#### DEFAULT

None

#### SYNONYMS

None

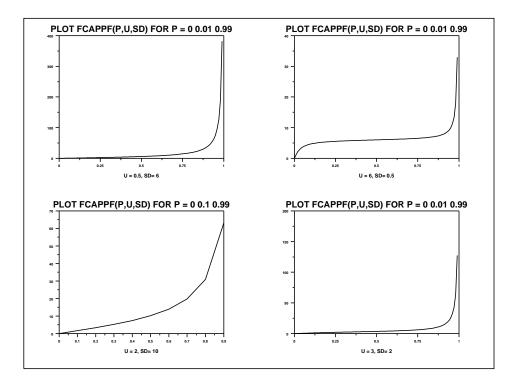
#### **RELATED COMMANDS**

| FCACDF | = | Compute the folded Cauchy cumulative distribution function. |
|--------|---|-------------------------------------------------------------|
| FCAPDF | = | Compute the folded Cauchy probability density function.     |
| CAUCDF | = | Compute the Cauchy cumulative distribution function.        |
| CAUPDF | = | Compute the Cauchy probability density function.            |
| CAUPPF | = | Compute the Cauchy percent point function.                  |
| FNRCDF | = | Compute the folded normal cumulative distribution function. |
| FNRPDF | = | Compute the folded normal probability density function.     |
| FNRPPF | = | Compute the folded normal percent point function.           |
| HFCCDF | = | Compute the half-Cauchy cumulative distribution function.   |
| HFCPDF | = | Compute the half-Cauchy probability density function.       |
| HFCPPF | = | Compute the half-Cauchy percent point function.             |
|        |   |                                                             |

# REFERENCE

"Continuous Univariate Distributions - Vol. 1," 2nd Ed., Johnson, Kotz, and Balakrishnan, Wiley and Sons, 1994 (page 328).

## **APPLICATIONS**


Data Analysis

## IMPLEMENTATION DATE

96/1

## PROGRAM

MULTIPLOT 2 2; MULTIPLOT CORNER COORDINATES 0 0 100 100 TITLE AUTOMATIC  $LET \; U = 0.5$ LET SD = 6X1LABEL U =  $^U$ , SD=  $^SD$ PLOT FCAPPF(P,U,SD) FOR P = 0 0.01 0.99 LET U = 6LET SD = 0.5X1LABEL U = ^U, SD= ^SD PLOT FCAPPF(P,U,SD) FOR P = 0 0.01 0.99 LET U = 2LET SD = 10X1LABEL U =  $^U$ , SD=  $^SD$ PLOT FCAPPF(P,U,SD) FOR P = 0 0.1 0.99 LET U = 3LET SD = 2X1LABEL U =  $^U$ , SD=  $^SD$ PLOT FCAPPF(P,U,SD) FOR P = 0 0.01 0.99 END OF MULTIPLOT

