Auxillary FCACDF

FCACDF

PURPOSE

Compute the folded Cauchy cumulative distribution function.

DESCRIPTION

If X is Cauchy distributed, then ABS(X) has a folded Cauchy distribution whose probability density function can be expressed in terms of the standard Cauchy distribution as:

$$f(x, \mu, \sigma) = \frac{1}{\sigma} \left(\text{CAUPDF} \left(\frac{x - \mu}{\sigma} \right) + \text{CAUPDF} \left(\frac{x + \mu}{\sigma} \right) \right) \qquad x \ge 0$$
 (EQ Aux-137)

where CAUPDF is the probability density function of a standard Cauchy distribution and u and s are the location and scale parameters of the parent Cauchy distribution. These parameters are shape parameters for the folded Cauchy distribution. If u is zero, the folded Cauchy distribution reduces to a half-Cauchy distribution.

The formula for the cumulative distribution function of the folded Cauchy distribution can be expressed in terms of the cumulative distribution of the standard Cauchy distribution as follows:

$$F(x, \mu, \sigma) = \text{CAUCDF}\left(\frac{x - \mu}{\sigma}\right) - \text{CAUCDF}\left(\frac{-x - \mu}{\sigma}\right) \qquad x \ge 0$$
 (EQ Aux-138)

where CAUCDF is the standard Cauchy cumulative distribution function.

SYNTAX

LET < y > = FCACDF(< x >, < u >, < s >)

<SUBSET/EXCEPT/FOR qualification>

where <x> is a number, parameter, or variable;

<u> is a number, parameter, or variable that defines the location parameter of the parent Cauchy distribution;

<s> is a number, parameter, or variable that defines the scale parameter of the parent Cauchy distribution;

<y> is a variable or a parameter (depending on what <x> is) where the computed folded Cauchy cdf value is stored; and where the <SUBSET/EXCEPT/FOR qualification> is optional.

EXAMPLES

LET A = FCACDF(3,2,0.7)LET X2 = FCACDF(X1,U,SD)

NOTE

Folded distributions are typically used when measurements are taken without regard to sign and the underlying distribution is assumed to be Cauchy.

DEFAULT

None

SYNONYMS

None

RELATED COMMANDS

FCAPDF Compute the folded Cauchy probability density function. **FCAPPF** Compute the folded Cauchy percent point function. **CAUCDF** Compute the Cauchy cumulative distribution function. Compute the Cauchy probability density function. **CAUPDF** = **CAUPPF** Compute the Cauchy percent point function. **FNRCDF** Compute the folded normal cumulative distribution function. **FNRPDF** Compute the folded normal probability density function. **FNRPPF** Compute the folded normal percent point function. **HFCCDF** Compute the half-Cauchy cumulative distribution function. **HFCPDF** Compute the half-Cauchy probability density function. HFCPPF Compute the half-Cauchy percent point function.

FCACDF Auxillary

REFERENCE

"Continuous Univariate Distributions - Vol. 1," 2nd Ed., Johnson, Kotz, and Balakrishnan, Wiley and Sons, 1994 (page 328).

APPLICATIONS

Data Analysis

IMPLEMENTATION DATE

96/1

PROGRAM

MULTIPLOT 2 2; MULTIPLOT CORNER COORDINATES 0 0 100 100

TITLE AUTOMATIC

LET U = 0.5

LET SD = 6

 $X1LABEL U = ^U, SD = ^SD$

PLOT FCACDF(X,U,SD) FOR X = 0.0.120

LET U = 6

LET SD = 0.5

 $X1LABEL U = ^U, SD = ^SD$

PLOT FCACDF(X,U,SD) FOR X = 0.0018.0

LET U = 2

LET SD = 10

 $X1LABEL U = ^U, SD = ^SD$

PLOT FCACDF(X,U,SD) FOR X = 0.0.150

LET U = 3

LET SD = 2

 $X1LABEL U = ^U, SD = ^SD$

PLOT FCACDF(X,U,SD) FOR X = 0.00110

END OF MULTIPLOT

