FCACDF

PURPOSE

Compute the folded Cauchy cumulative distribution function.

DESCRIPTION

If X is Cauchy distributed, then $\mathrm{ABS}(\mathrm{X})$ has a folded Cauchy distribution whose probability density function can be expressed in terms of the standard Cauchy distribution as:

$$
\mathrm{f}(x, \mu, \sigma)=\frac{1}{\sigma}\left(\operatorname{CAUPDF}\left(\frac{x-\mu}{\sigma}\right)+\operatorname{CAUPDF}\left(\frac{x+\mu}{\sigma}\right)\right) \quad \mathrm{x} \geq 0
$$

(EQ Aux-137)
where CAUPDF is the probability density function of a standard Cauchy distribution and u and s are the location and scale parameters of the parent Cauchy distribution. These parameters are shape parameters for the folded Cauchy distribution. If u is zero, the folded Cauchy distribution reduces to a half-Cauchy distribution.

The formula for the cumulative distribution function of the folded Cauchy distribution can be expressed in terms of the cumulative distribution of the standard Cauchy distribution as follows:

$$
\mathrm{F}(x, \mu, \sigma)=\operatorname{CAUCDF}\left(\frac{x-\mu}{\sigma}\right)-\operatorname{CAUCDF}\left(\frac{-x-\mu}{\sigma}\right) \quad \mathrm{x} \geq 0
$$

(EQ Aux-138)
where CAUCDF is the standard Cauchy cumulative distribution function.

SYNTAX

LET $\langle\mathrm{y}\rangle=\operatorname{FCACDF}(\langle\mathrm{x}\rangle,\langle\mathrm{u}\rangle,\langle\mathrm{s}\rangle) \quad<$ SUBSET/EXCEPT/FOR qualification>
where $\langle x\rangle$ is a number, parameter, or variable;
$\langle\mathrm{u}\rangle$ is a number, parameter, or variable that defines the location parameter of the parent Cauchy distribution;
$\langle s\rangle$ is a number, parameter, or variable that defines the scale parameter of the parent Cauchy distribution;
$\langle y\rangle$ is a variable or a parameter (depending on what $\langle x\rangle$ is) where the computed folded Cauchy cdf value is stored; and where the <SUBSET/EXCEPT/FOR qualification> is optional.

EXAMPLES

LET A $=\operatorname{FCACDF}(3,2,0.7)$
LET X2 $=\mathrm{FCACDF}(\mathrm{X} 1, \mathrm{U}, \mathrm{SD})$

NOTE

Folded distributions are typically used when measurements are taken without regard to sign and the underlying distribution is assumed to be Cauchy.

DEFAULT

None
SYNONYMS
None
RELATED COMMANDS
FCAPDF $\quad=\quad$ Compute the folded Cauchy probability density function.
FCAPPF $=\quad$ Compute the folded Cauchy percent point function.
CAUCDF $\quad=\quad$ Compute the Cauchy cumulative distribution function.
CAUPDF
CAUPPF
$=\quad$ Compute the Cauchy probability density function.
$=\quad$ Compute the Cauchy percent point function.
FNRCDF
$=\quad$ Compute the folded normal cumulative distribution function.
FNRPDF
$=\quad$ Compute the folded normal probability density function.
FNRPPF
$=\quad$ Compute the folded normal percent point function.
HFCCDF
$=\quad$ Compute the half-Cauchy cumulative distribution function.
HFCPDF
$=\quad$ Compute the half-Cauchy probability density function.
HFCPPF
$=\quad$ Compute the half-Cauchy percent point function.

REFERENCE

"Continuous Univariate Distributions - Vol. 1," 2nd Ed., Johnson, Kotz, and Balakrishnan, Wiley and Sons, 1994 (page 328).

APPLICATIONS

Data Analysis

IMPLEMENTATION DATE

96/1

PROGRAM

MULTIPLOT 2 2; MULTIPLOT CORNER COORDINATES 00100100
TITLE AUTOMATIC
LET U $=0.5$
LET SD $=6$
X1LABEL $U={ }^{\wedge} U, S D={ }^{\wedge} S D$
PLOT FCACDF(X,U,SD) FOR X = 00.120
LET U $=6$
LET SD $=0.5$
X1LABEL $\mathrm{U}={ }^{\wedge} \mathrm{U}, \mathrm{SD}={ }^{\wedge} \mathrm{SD}$
PLOT FCACDF(X,U,SD) FOR X $=00.018 .0$
LET U = 2
LET SD = 10
X1LABEL $U={ }^{\wedge} U, S D={ }^{\wedge} S D$
PLOT FCACDF(X,U,SD) FOR X $=00.150$
LET U = 3
LET SD = 2
X1LABEL $\mathrm{U}={ }^{\wedge} \mathrm{U}, \mathrm{SD}={ }^{\wedge} \mathrm{SD}$
PLOT FCACDF(X,U,SD) FOR X = 00.0110
END OF MULTIPLOT

