Auxillary CHPDF

CHPDF

PURPOSE

Compute the chi probability density function with degrees of freedom parameter v.

DESCRIPTION

The distribution of the positive square root of a variable having a chi-square distribution is a chi-distribution. The chi-distribution has the following probability density function:

$$f(x, v) = \frac{e^{\frac{-x^2}{2}x^{v-1}}}{2^{\frac{v}{2}-1}\Gamma(\frac{v}{2})}$$
 $x > 0, v > 0$ (EQ Aux-66)

where Γ is the gamma function. The input value and the degrees of freedom should both be positive real numbers.

SYNTAX

```
LET <y2> = CHPDF(<y1>,<v>) <SUBSET/EXCEPT/FOR qualification> where <y1> is a positive number, parameter, or variable; <y2> is a variable or a parameter (depending on what <y1> is) where the computed chi pdf value is stored; <v> is a positive number, parameter, or variable that specifies the degrees of freedom; and where the <SUBSET/EXCEPT/FOR qualification> is optional.
```

EXAMPLES

```
LET A = CHPDF(3,10)
LET A = CHPDF(A1,10)
LET X2 = CHPDF(X1,10)
```

NOTE

The chi-distribution includes several distributions as special cases. If v is 1, the chi-distribution reduces to the half-normal distribution. If v is 2, the chi-distribution is a Rayleigh distribution. If v is 3, the chi-distribution is a Maxwell-Boltzmann distribution. The generalized Rayleigh distribution is a chi-distribution with a scale parameter equal to 1.

DEFAULT

None

SYNONYMS

None

RELATED COMMANDS

CHCDF Compute the chi cumulative distribution function. **CHPPF** Compute the chi percent point function. **CHSCDF** Compute the chi-square cumulative distribution function. **CHSPDF** Compute the chi-square probability density function. CHSPPF Compute the chi-square percent point function. WEICDF Compute the Weibull cumulative distribution function. WEIPDF Compute the Weibull probability density function. = WEIPPF Compute the Weibull percent point function. = NORCDF Compute the normal cumulative distribution function. NORPDF Compute the normal probability density function. **NORPPF** Compute the normal percent point function.

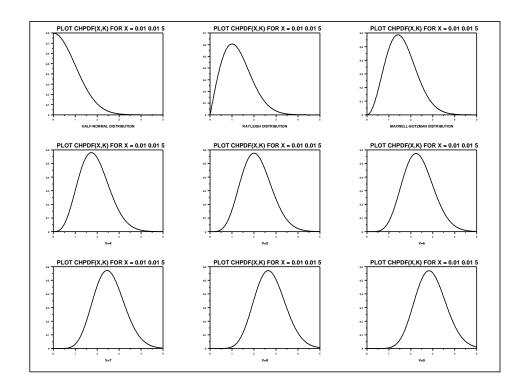
REFERENCE

"Continuous Univariate Distributions," Johnson, Kotz, and Balakrishnan, John Wiley and Sons, 1994, (chapter 18).

"Statistical Distributions," 2nd ed., Evans, Hastings, and Peacock, John Wiley and Sons, 1993, (chapters 8 and 34).

APPLICATIONS

Reliability


CHPDF Auxillary

IMPLEMENTATION DATE

END OF MULTIPLOT

95/4

PROGRAM

