CEXP

PURPOSE

Compute the real or complex component of the exponential function for a complex number.

SYNTAX 1

LET <yr> = CEXP(<xr>,<xc>) <SUBSET/EXCEPT/FOR qualification>
where <xr> is a number, parameter, or variable that specifies the real component of the the complex number; $\langle x c\rangle$ is a number, parameter, or variable that specifies the complex component of the the complex number; < $\mathrm{yr}>$ is a variable or a parameter (depending on what <xr> and <xc> are) where the real component of the computed exponential value is stored;
and where the <SUBSET/EXCEPT/FOR qualification> is optional.
This syntax computes the real component of the complex exponential function.

SYNTAX 2

LET <yc> = CEXP(<xr>,<xc>) <SUBSET/EXCEPT/FOR qualification>
where <xr> is a number, parameter, or variable that specifies the real component of the the complex number; $\langle x c\rangle$ is a number, parameter, or variable that specifies the complex component of the the complex number; $\langle\mathrm{yc}\rangle$ is a variable or a parameter (depending on what $\langle\mathrm{xr}\rangle$ and $\langle\mathrm{xc}\rangle$ are) where the complex component of the computed exponential value is stored;
and where the <SUBSET/EXCEPT/FOR qualification> is optional.
This syntax computes the complex component of the complex exponential function.

EXAMPLES

LET AR $=\operatorname{CEXP}(14,-2)$
LET AC $=\operatorname{CEXPI}(14,-2)$
LET XR $=\operatorname{CEXP}(X R, X C)$
LET XC $=\operatorname{CEXPI}(\mathrm{XR}, \mathrm{XC})$

NOTE

DATAPLOT uses the Fortran intrinsic function CEXP to compute this function.

DEFAULT

None

SYNONYMS

None

RELATED COMMANDS

EXP $\quad=\quad$ Compute the exponential of a real number.

CCOS
$=\quad$ Compute the real component of the cosine of a complex number.
CCOSI
$=\quad$ Compute the complex component of the cosine of a complex number.
CLOG
$=\quad$ Compute the real component of the logarithm of a complex number.
CLOGI
$=\quad$ Compute the complex component of the logarithm of a complex number.
CSIN
$=\quad$ Compute the real component of the sine of a complex number.
CSINI
CSQRT
$=\quad$ Compute the complex component of the sine of a complex number.
CSQRTI
$=\quad$ Compute the real component of the square root of a complex number.
$=\quad$ Compute the complex component of the square root of a complex number.

APPLICATIONS

Elementary functions
IMPLEMENTATION DATE
94/10

PROGRAM

X1LABEL SOLID = REAL COMPONENT
X2LABEL DASH = COMPLEX COMPONENT
LINE SOLID DASH
MULTIPLOT 2 2; MULTIPLOT CORNER COORDINATES 00100100
LET C = 1
TITLE CEXP, COMPLEX COMPONENT $={ }^{\wedge} \mathrm{C}$
PLOT CEXP(X,C) FOR X =-3 0.01 3 AND
$\operatorname{PLOT} \operatorname{CEXPI}(\mathrm{X}, \mathrm{C})$ FOR $\mathrm{X}=-3.013$
LET C $=-1$
TITLE CEXP, COMPLEX COMPONENT $={ }^{\wedge} \mathrm{C}$
PLOT CEXP (X,C) FOR X = - 30.013 AND
PLOT CEXPI (X,C) FOR X $=-3.013$
LET C = 2
TITLE CEXP, COMPLEX COMPONENT $={ }^{\wedge} \mathrm{C}$
PLOT CEXP (X,C) FOR $X=-30.013$ AND
PLOT CEXPI(X,C) FOR X = -3.013
LET C $=-2$
TITLE CEXP, COMPLEX COMPONENT $={ }^{\wedge} \mathrm{C}$
PLOT CEXP(X,C) FOR X $=-30.013$ AND
PLOT CEXPI(X,C) FOR X = -3.013
END OF MULTIPLOT

