ccos

PURPOSE

Compute the real or complex component of the cosine of a complex number.

SYNTAX 1

LET <yr> = CCOS(<xr>,<xc>) <SUBSET/EXCEPT/FOR qualification>
where <xr> is a number, parameter, or variable that specifies the real component of the the complex number; $\langle x c\rangle$ is a number, parameter, or variable that specifies the complex component of the the complex number; < yr\rangle is a variable or a parameter (depending on what $\langle\mathrm{xr}\rangle$ and $\langle\mathrm{xc}\rangle$ are) where the real component of the computed cosine value is stored;
and where the <SUBSET/EXCEPT/FOR qualification> is optional.
This syntax computes the real component of the complex cosine function.

SYNTAX 2

LET <yc> = CCOSI(<xr>,<xc>) <SUBSET/EXCEPT/FOR qualification>
where <xr> is a number, parameter, or variable that specifies the real component of the the complex number; <xc> is a number, parameter, or variable that specifies the complex component of the the complex number; < yc\rangle is a variable or a parameter (depending on what $\langle\mathrm{xr}\rangle$ and $\langle\mathrm{xc}\rangle$ are) where the complex component of the computed cosine value is stored;
and where the <SUBSET/EXCEPT/FOR qualification> is optional.
This syntax computes the complex component of the complex cosine function.

EXAMPLES

LET AR $=\operatorname{CCOS}(-2,1)$
$\operatorname{LET} A C=\operatorname{CCOSI}(-2,1)$
LET ZR $=\operatorname{CCOS}(\mathrm{XR}, \mathrm{XC})$
LET ZC $=\operatorname{CCOSI}(\mathrm{XR}, \mathrm{XC})$

NOTE

DATAPLOT uses the Fortran intrinsic function CCOS to compute this function.

DEFAULT

None

SYNONYMS

None

RELATED COMMANDS

$\operatorname{COS} \quad=\quad$ Compute the cosine of a real number.

CABS $\quad=\quad$ Compute the absolute value of a complex number.
CEXP $\quad=\quad$ Compute the real component of the exponential of a complex number.
CEXPI $=$ Compute the complex component of the exponential of a complex number.
CLOG $=$ Compute the real component of the logarithm of a complex number.
CLOGI $=$ Compute the complex component of the logarithm of a complex number.
CSIN
$=\quad$ Compute the real component of the sine of a complex number.
CSINI
CSQRT
$=\quad$ Compute the complex component of the sine of a complex number.
CSQRTI
$=\quad$ Compute the real component of the square root of a complex number.
$=\quad$ Compute the complex component of the square root of a complex number.

APPLICATIONS

Elementary functions
IMPLEMENTATION DATE
94/10

```
PROGRAM
    X1LABEL SOLID = REAL COMPONENT
    X2LABEL DASH = COMPLEX COMPONENT
    LINE SOLID DASH
    YLIMITS -3 3
    MULTIPLOT 2 2; MULTIPLOT CORNER COORDINATES 00 100 100
    LET C = PI/4
    TITLE CCOS, COMPLEX COMPONENT = ^C
    PLOT CCOS(X,C) FOR X = -10 0.1 10 AND
    PLOT CCOSI(X,C) FOR X = -10 0.1 10
    LET C = -PI/4
    TITLE CCOS, COMPLEX COMPONENT = ^C
    PLOT CCOS(X,C) FOR X = -10 0.1 10 AND
    PLOT CCOSI(X,C) FOR X = -10 0.1 10
    LET C = PI/2
    TITLE CCOS, COMPLEX COMPONENT = ^`
    PLOT CCOS(X,C) FOR X = -10 0.1 10 AND
    PLOT CCOSI(X,C) FOR X = -10 0.1 10
    LET C = -PI/2
    TITLE CCOS, COMPLEX COMPONENT = ^^
    PLOT CCOS(X,C) FOR X = -10 0.1 10 AND
    PLOT CCOSI(X,C) FOR X = -10 0.1 10
    END OF MULTIPLOT
```


CCOS, COMPLEX COMPONENT $=1.570797$

CCOS, COMPLEX COMPONENT = - 1.5708

