|
B12PDFName:
with c and k denoting the shape parameters. This distribution can be generalized with location and scale parameters in the usual way using the relation
The Burr type 12 distribution is also sometimes referred to as the Singh-Maddala distribution.
<SUBSET/EXCEPT/FOR qualification> where <x> is a number, parameter, or variable; <y> is a variable or a parameter (depending on what <x> is) where the computed Burr type 6 pdf value is stored; <c> is a positive number, parameter, or variable that specifies the first shape parameter; <k> is a positive number, parameter, or variable that specifies the second shape parameter; <loc> is a number, parameter, or variable that specifies the location parameter; <scale> is a positive number, parameter, or variable that specifies the scale parameter; and where the <SUBSET/EXCEPT/FOR qualification> is optional. If <loc> and <scale> are omitted, they default to 0 and 1, respectively.
LET Y = B12PDF(X,0.5,2.2,0,5) PLOT B12PDF(X,2.3,1.4) FOR X = 0.01 0.01 5
LET K = <value> LET Y = BURR TYPE 12 RANDOM NUMBERS FOR I = 1 1 N BURR TYPE 12 PROBABILITY PLOT Y BURR TYPE 12 PROBABILITY PLOT Y2 X2 BURR TYPE 12 PROBABILITY PLOT Y3 XLOW XHIGH BURR TYPE 12 KOLMOGOROV SMIRNOV GOODNESS OF FIT Y BURR TYPE 12 CHI-SQUARE GOODNESS OF FIT Y2 X2 BURR TYPE 12 CHI-SQUARE GOODNESS OF FIT Y3 XLOW XHIGH The following commands can be used to estimate the c and k shape parameters for the Burr type 12 distribution:
LET C2 = <value> LET K1 = <value> LET K2 = <value> BURR TYPE 12 PPCC PLOT Y BURR TYPE 12 PPCC PLOT Y2 X2 BURR TYPE 12 PPCC PLOT Y3 XLOW XHIGH BURR TYPE 12 KS PLOT Y BURR TYPE 12 KS PLOT Y2 X2 BURR TYPE 12 KS PLOT Y3 XLOW XHIGH The default values for C1 and C2 are 0.5 and 10 and the default values for K1 and K2 are 0.5 and 10. The probability plot can then be used to estimate the location and scale (location = PPA0, scale = PPA1). The BOOTSTRAP DISTRIBUTION command can be used to find uncertainty intervals for the parameter estimates based on the ppcc plot and ks plot.
Johnson, Kotz, and Balakrishnan (1994), "Contiunuous Univariate Distributions--Volume 1", Second Edition, Wiley, pp. 53-54. Devroye (1986), "Non-Uniform Random Variate Generation", Springer-Verlang, pp. 476-477.
LABEL CASE ASIS
TITLE CASE ASIS
TITLE OFFSET 2
.
MULTIPLOT 4 4
MULTIPLOT CORNER COORDINATES 0 0 100 95
MULTIPLOT SCALE FACTOR 4
.
LET CVAL = DATA 0.5 1 2 5
LET KVAL = DATA 0.5 1 2 5
.
LOOP FOR IROW = 1 1 4
LOOP FOR ICOL = 1 1 4
LET C = CVAL(IROW)
LET K = KVAL(ICOL)
TITLE C = ^c, K = ^k
PLOT B12PDF(X,C,K) FOR X = 0.01 0.01 5
END OF LOOP
END OF LOOP
.
END OF MULTIPLOT
.
JUSTIFICATION CENTER
MOVE 50 97
TEXT Burr Type 12 Probability Density Functions
Program 2:
let c = 2.1
let k = 1.3
let csav = c
let ksav = k
.
let y = burr type 12 random numbers for i = 1 1 200
let y = 10*y
let amin = minimum y
let amax = maximum y
.
y1label KS Value
x1label K (Curves Represent Values of C)
let c1 = 0.5
let c2 = 5
let k1 = 0.5
let k2 = 3
burr type 12 ks plot y
let c = shape1
let k = shape2
justification center
move 50 6
text Chat = ^c (C = ^csav), Khat = ^k (K = ^ksav)
move 50 2
text Minimum KS = ^minks
.
y1label Data
x1label Theoretical
char x
line bl
burr type 12 prob plot y
move 50 6
text Location = ^ppa0, Scale = ^ppa1
char bl
line so
.
let loc = min(ppa0,amin)
let scale = ppa1
.
y1label Relative Frequency
x1label
relative hist y
limits freeze
pre-erase off
line color blue
plot b12pdf(x,c,k,loc,scale) for x = amin .01 amax
line color black
limits
pre-erase on
.
let ksloc = loc
let ksscale = scale
burr type 12 kolmogorov smirnov goodness of fit y
Date created: 12/17/2007 |