|
B12PDFName:
with c and k denoting the shape parameters. This distribution can be generalized with location and scale parameters in the usual way using the relation
The Burr type 12 distribution is also sometimes referred to as the Singh-Maddala distribution.
<SUBSET/EXCEPT/FOR qualification> where <x> is a number, parameter, or variable; <y> is a variable or a parameter (depending on what <x> is) where the computed Burr type 6 pdf value is stored; <c> is a positive number, parameter, or variable that specifies the first shape parameter; <k> is a positive number, parameter, or variable that specifies the second shape parameter; <loc> is a number, parameter, or variable that specifies the location parameter; <scale> is a positive number, parameter, or variable that specifies the scale parameter; and where the <SUBSET/EXCEPT/FOR qualification> is optional. If <loc> and <scale> are omitted, they default to 0 and 1, respectively.
LET Y = B12PDF(X,0.5,2.2,0,5) PLOT B12PDF(X,2.3,1.4) FOR X = 0.01 0.01 5
LET K = <value> LET Y = BURR TYPE 12 RANDOM NUMBERS FOR I = 1 1 N BURR TYPE 12 PROBABILITY PLOT Y BURR TYPE 12 PROBABILITY PLOT Y2 X2 BURR TYPE 12 PROBABILITY PLOT Y3 XLOW XHIGH BURR TYPE 12 KOLMOGOROV SMIRNOV GOODNESS OF FIT Y BURR TYPE 12 CHI-SQUARE GOODNESS OF FIT Y2 X2 BURR TYPE 12 CHI-SQUARE GOODNESS OF FIT Y3 XLOW XHIGH The following commands can be used to estimate the c and k shape parameters for the Burr type 12 distribution:
LET C2 = <value> LET K1 = <value> LET K2 = <value> BURR TYPE 12 PPCC PLOT Y BURR TYPE 12 PPCC PLOT Y2 X2 BURR TYPE 12 PPCC PLOT Y3 XLOW XHIGH BURR TYPE 12 KS PLOT Y BURR TYPE 12 KS PLOT Y2 X2 BURR TYPE 12 KS PLOT Y3 XLOW XHIGH The default values for C1 and C2 are 0.5 and 10 and the default values for K1 and K2 are 0.5 and 10. The probability plot can then be used to estimate the location and scale (location = PPA0, scale = PPA1). The BOOTSTRAP DISTRIBUTION command can be used to find uncertainty intervals for the parameter estimates based on the ppcc plot and ks plot.
Johnson, Kotz, and Balakrishnan (1994), "Contiunuous Univariate Distributions--Volume 1", Second Edition, Wiley, pp. 53-54. Devroye (1986), "Non-Uniform Random Variate Generation", Springer-Verlang, pp. 476-477.
LABEL CASE ASIS TITLE CASE ASIS TITLE OFFSET 2 . MULTIPLOT 4 4 MULTIPLOT CORNER COORDINATES 0 0 100 95 MULTIPLOT SCALE FACTOR 4 . LET CVAL = DATA 0.5 1 2 5 LET KVAL = DATA 0.5 1 2 5 . LOOP FOR IROW = 1 1 4 LOOP FOR ICOL = 1 1 4 LET C = CVAL(IROW) LET K = KVAL(ICOL) TITLE C = ^c, K = ^k PLOT B12PDF(X,C,K) FOR X = 0.01 0.01 5 END OF LOOP END OF LOOP . END OF MULTIPLOT . JUSTIFICATION CENTER MOVE 50 97 TEXT Burr Type 12 Probability Density Functions Program 2: let c = 2.1 let k = 1.3 let csav = c let ksav = k . let y = burr type 12 random numbers for i = 1 1 200 let y = 10*y let amin = minimum y let amax = maximum y . y1label KS Value x1label K (Curves Represent Values of C) let c1 = 0.5 let c2 = 5 let k1 = 0.5 let k2 = 3 burr type 12 ks plot y let c = shape1 let k = shape2 justification center move 50 6 text Chat = ^c (C = ^csav), Khat = ^k (K = ^ksav) move 50 2 text Minimum KS = ^minks . y1label Data x1label Theoretical char x line bl burr type 12 prob plot y move 50 6 text Location = ^ppa0, Scale = ^ppa1 char bl line so . let loc = min(ppa0,amin) let scale = ppa1 . y1label Relative Frequency x1label relative hist y limits freeze pre-erase off line color blue plot b12pdf(x,c,k,loc,scale) for x = amin .01 amax line color black limits pre-erase on . let ksloc = loc let ksscale = scale burr type 12 kolmogorov smirnov goodness of fit y
Date created: 12/17/2007 |