SED navigation bar go to SED home page go to Dataplot home page go to NIST home page SED Home Page SED Staff SED Projects SED Products and Publications Search SED Pages
Dataplot Vol 2 Vol 1

B12PDF

Name:
    B12PDF (LET)
Type:
    Library Function
Purpose:
    Compute the Burr type 12 probability density function with shape parameters c and k.
Description:
    The standard Burr type 12 distribution has the following probability density function:

      f(x;c,k) = c*k*x**(c-1)*(1 + x**c)**(-k-1)     x > 0;  c, k > 0

    with c and k denoting the shape parameters.

    This distribution can be generalized with location and scale parameters in the usual way using the relation

      f(x;c,k,loc,scale) = (1/scale)*f((x-loc)/scale;c,k,0,1)

    The Burr type 12 distribution is also sometimes referred to as the Singh-Maddala distribution.

Syntax:
    LET <y> = B12PDF(<x>,<c>,<k>,<loc>,<scale>)
                            <SUBSET/EXCEPT/FOR qualification>
    where <x> is a number, parameter, or variable;
                <y> is a variable or a parameter (depending on what <x> is) where the computed Burr type 6 pdf value is stored;
                <c> is a positive number, parameter, or variable that specifies the first shape parameter;
                <k> is a positive number, parameter, or variable that specifies the second shape parameter;
                <loc> is a number, parameter, or variable that specifies the location parameter;
                <scale> is a positive number, parameter, or variable that specifies the scale parameter;
    and where the <SUBSET/EXCEPT/FOR qualification> is optional.

    If <loc> and <scale> are omitted, they default to 0 and 1, respectively.

Examples:
    LET A = B12PDF(0.3,0.2,1.7)
    LET Y = B12PDF(X,0.5,2.2,0,5)
    PLOT B12PDF(X,2.3,1.4) FOR X = 0.01 0.01 5
Note:
    Burr type 12 random numbers, probability plots, and goodness of fit tests can be generated with the commands:

      LET C = <value>
      LET K = <value>
      LET Y = BURR TYPE 12 RANDOM NUMBERS FOR I = 1 1 N
      BURR TYPE 12 PROBABILITY PLOT Y
      BURR TYPE 12 PROBABILITY PLOT Y2 X2
      BURR TYPE 12 PROBABILITY PLOT Y3 XLOW XHIGH
      BURR TYPE 12 KOLMOGOROV SMIRNOV GOODNESS OF FIT Y
      BURR TYPE 12 CHI-SQUARE GOODNESS OF FIT Y2 X2
      BURR TYPE 12 CHI-SQUARE GOODNESS OF FIT Y3 XLOW XHIGH

    The following commands can be used to estimate the c and k shape parameters for the Burr type 12 distribution:

      LET C1 = <value>
      LET C2 = <value>
      LET K1 = <value>
      LET K2 = <value>
      BURR TYPE 12 PPCC PLOT Y
      BURR TYPE 12 PPCC PLOT Y2 X2
      BURR TYPE 12 PPCC PLOT Y3 XLOW XHIGH
      BURR TYPE 12 KS PLOT Y
      BURR TYPE 12 KS PLOT Y2 X2
      BURR TYPE 12 KS PLOT Y3 XLOW XHIGH

    The default values for C1 and C2 are 0.5 and 10 and the default values for K1 and K2 are 0.5 and 10.

    The probability plot can then be used to estimate the location and scale (location = PPA0, scale = PPA1).

    The BOOTSTRAP DISTRIBUTION command can be used to find uncertainty intervals for the parameter estimates based on the ppcc plot and ks plot.

Default:
    None
Synonyms:
    BURR TYPE XII is a synonym for BURR TYPE 12.
Related Commands:
    B12CDF = Compute the Burr type 12 cumulative distribution function.
    B12PPF = Compute the Burr type 12 percent point function.
    BU2PDF = Compute the Burr type 2 probability density function.
    BU3PDF = Compute the Burr type 3 probability density function.
    BU4PDF = Compute the Burr type 4 probability density function.
    BU5PDF = Compute the Burr type 5 probability density function.
    BU6PDF = Compute the Burr type 6 probability density function.
    BU7PDF = Compute the Burr type 7 probability density function.
    BU8PDF = Compute the Burr type 8 probability density function.
    BU9PDF = Compute the Burr type 9 probability density function.
    B10PDF = Compute the Burr type 10 probability density function.
    B11PDF = Compute the Burr type 11 probability density function.
    RAYPDF = Compute the Rayleigh probability density function.
    WEIPDF = Compute the Weibull probability density function.
    EWEPDF = Compute the exponentiated Weibull probability density function.
Reference:
    Burr (1942), "Cumulative Frequency Functions", Annals of Mathematical Statistics, 13, pp. 215-232.

    Johnson, Kotz, and Balakrishnan (1994), "Contiunuous Univariate Distributions--Volume 1", Second Edition, Wiley, pp. 53-54.

    Devroye (1986), "Non-Uniform Random Variate Generation", Springer-Verlang, pp. 476-477.

Applications:
    Distributional Modeling
Implementation Date:
    2007/10
Program 1:
     
    LABEL CASE ASIS
    TITLE CASE ASIS
    TITLE OFFSET 2
    .
    MULTIPLOT 4 4
    MULTIPLOT CORNER COORDINATES 0 0 100 95
    MULTIPLOT SCALE FACTOR 4
    .
    LET CVAL = DATA 0.5  1  2  5
    LET KVAL = DATA 0.5  1  2  5
    .
    LOOP FOR IROW = 1 1 4
        LOOP FOR ICOL = 1 1 4
            LET C  = CVAL(IROW)
            LET K = KVAL(ICOL)
            TITLE C = ^c, K = ^k
            PLOT B12PDF(X,C,K) FOR X = 0.01  0.01  5
        END OF LOOP
    END OF LOOP
    .
    END OF MULTIPLOT
    .
    JUSTIFICATION CENTER
    MOVE 50 97
    TEXT Burr Type 12 Probability Density Functions
        
    plot generated by sample program

Program 2:
     
    let c = 2.1
    let k = 1.3
    let csav = c
    let ksav = k
    .
    let y = burr type 12 random numbers for i = 1 1 200
    let y = 10*y
    let amin = minimum y
    let amax = maximum y
    .
    y1label KS Value
    x1label K (Curves Represent Values of C)
    let c1 = 0.5
    let c2 = 5
    let k1 = 0.5
    let k2 = 3
    burr type 12 ks plot y
    let c = shape1
    let k = shape2
    justification center
    move 50 6
    text Chat = ^c (C = ^csav), Khat = ^k (K = ^ksav)
    move 50 2
    text Minimum KS = ^minks
    .
    y1label Data
    x1label Theoretical
    char x
    line bl
    burr type 12 prob plot y
    move 50 6
    text Location = ^ppa0, Scale = ^ppa1
    char bl
    line so
    .
    let loc = min(ppa0,amin)
    let scale = ppa1
    .
    y1label Relative Frequency
    x1label
    relative hist y
    limits freeze
    pre-erase off
    line color blue
    plot b12pdf(x,c,k,loc,scale) for x = amin .01 amax
    line color black
    limits 
    pre-erase on
    .
    let ksloc = loc
    let ksscale = scale
    burr type 12 kolmogorov smirnov goodness of fit y
        
    plot generated by sample program

    plot generated by sample program

    plot generated by sample program

                       KOLMOGOROV-SMIRNOV GOODNESS-OF-FIT TEST
      
     NULL HYPOTHESIS H0:      DISTRIBUTION FITS THE DATA
     ALTERNATE HYPOTHESIS HA: DISTRIBUTION DOES NOT FIT THE DATA
     DISTRIBUTION:            BURR TYPE 12
        NUMBER OF OBSERVATIONS              =      200
      
     TEST:
     KOLMOGOROV-SMIRNOV TEST STATISTIC      =   0.3026265E-01
      
        ALPHA LEVEL         CUTOFF              CONCLUSION
                10%       0.086*              ACCEPT H0
                          0.085**
                 5%       0.096*              ACCEPT H0
                          0.095**
                 1%       0.115*              ACCEPT H0
                          0.114**
      
         *  - STANDARD LARGE SAMPLE APPROXIMATION  ( C/SQRT(N) )
        ** - MORE ACCURATE LARGE SAMPLE APPROXIMATION  ( C/SQRT(N + SQRT(N/10)) )
        

Date created: 12/17/2007
Last updated: 12/17/2007
Please email comments on this WWW page to alan.heckert@nist.gov.