ARSPDF

PURPOSE

Compute the arc-sine probability density function.

DESCRIPTION

The arc-sine distribution has the following probability density function:

$$
\begin{equation*}
\mathrm{f}(x)=\frac{1}{\pi \sqrt{x(1-x)}} \quad 0<x<1 \tag{EQAux-17}
\end{equation*}
$$

The arc-sine distribution is a special case of the beta distribution with both parameters equal to $1 / 2$. The generalized arc-sine distribution is the special case of the beta distribution where the 2 parameters sum to 1 but are not necessarily equal to $1 / 2$. The generalized arc-sine probability functions can be computed using the beta probability distributions in DATAPLOT (see the Related Commands section below).

Johnson, Kotz, and Balakrishnan (see the Reference section below give a derivation of this distribution based on random walks.

SYNTAX

LET $\langle\mathrm{y}>=\operatorname{ARSPDF}(<\mathrm{x}>)$

<SUBSET/EXCEPT/FOR qualification>

 where $\langle x\rangle$ is a number, parameter, or variable;$\langle\mathrm{y}>$ is a variable or a parameter (depending on what $\langle\mathrm{x}>$ is) where the computed arc-sine pdf value is stored; and where the <SUBSET/EXCEPT/FOR qualification> is optional.

EXAMPLES

LET A = ARSPDF(3)
LET $\mathrm{Y}=\operatorname{ARSPDF}(\mathrm{X} 1)$

DEFAULT

None

SYNONYMS

None

RELATED COMMANDS

ARSCDF $\quad=\quad$ Compute the arc-sine cumulative distribution function.
ARSPPF $\quad=\quad$ Compute the arc-sine percent point function.
BETCDF $=$ Compute the beta cumulative distribution function.
BETPDF $=$ Compute the beta probability density function.
BETPPF $=$ Compute the beta percent point function.

REFERENCE

"Continuous Univariate Distributions - Volume 2," 2nd Ed., Johnson, Kotz, and Balakrishnan, Wiley and Sons (pages 212, 253).

IMPLEMENTATION DATE 95/9

PROGRAM

TITLE AUTOMATIC
PLOT ARSPDF(X) FOR X = 0.01 0.010 .99

PLOT ARSPDF(X) FOR X $=0.010 .010 .99$

