|
ALPPDFName:
.
with
= the standard normal cumulative distribution function
This distribution can be generalized with location and scale parameters using the relation
If Y has a normal distribution with location and scale
parameters
This distribution has application in reliability.
<SUBSET/EXCEPT/FOR qualification> where <x> is a number, parameter, or variable containing positive values; <y> is a variable or a parameter (depending on what <x> is) where the computed alpha pdf value is stored; <alpha> is a positive number, parameter, or variable that specifies the shape parameter; <loc> is a number, parameter, or variable that specifies the location parameter; <scale> is a positive number, parameter, or variable that specifies the scale parameter; and where the <SUBSET/EXCEPT/FOR qualification> is optional. If <loc> and <scale> are omitted, they default to 0 and 1, respectively.
LET A = ALPPDF(X1,2.5,0,10) PLOT ALPPDF(X,2.5,0,3) FOR X = 0.1 0.1 10
to
This was done since BETA is in fact a scale parameter.
LET Y = ALPHA RANDOM NUMBERS FOR I = 1 1 N ALPHA PROBABILITY PLOT Y ALPHA PROBABILITY PLOT Y2 X2 ALPHA PROBABILITY PLOT Y3 XLOW XHIGH ALPHA KOLMOGOROV SMIRNOV GOODNESS OF FIT Y ALPHA CHI-SQUARE GOODNESS OF FIT Y2 X2 ALPHA CHI-SQUARE GOODNESS OF FIT Y3 XLOW XHIGH The following commands can be used to estimate the alpha shape parameter for the alpha distribution:
LET ALPHA2 = <value> ALPHA PPCC PLOT Y ALPHA PPCC PLOT Y2 X2 ALPHA PPCC PLOT Y3 XLOW XHIGH ALPHA KS PLOT Y ALPHA KS PLOT Y2 X2 ALPHA KS PLOT Y3 XLOW XHIGH The default values for ALPHA1 and ALPHA2 are 0.5 and 10. The probability plot can then be used to estimate the location and scale (location = PPA0, scale = PPA1). The BOOTSTRAP DISTRIBUTION command can be used to find uncertainty intervals for the parameter estimates obtained from the ppcc plot and the ks plot methods.
Salvia (1985), "Reliability applications of the Alpha Distribution", IEEE Transactions on Reliability, Vol. R-34, No. 3, pp. 251-252.
2007/11: Corrected the second shape parameter to be the scale parameter
LABEL CASE ASIS
TITLE CASE ASIS
TITLE OFFSET 2
.
MULTIPLOT 2 2
MULTIPLOT CORNER COORDINATES 0 0 100 95
MULTIPLOT SCALE FACTOR 2
.
LET ALPHA = 0.5
TITLE ALPHA = ^alpha
PLOT ALPPDF(X,ALPHA) FOR X = 0.01 0.01 5
.
LET ALPHA = 1
TITLE ALPHA = ^alpha
PLOT ALPPDF(X,ALPHA) FOR X = 0.01 0.01 5
.
LET ALPHA = 2
TITLE ALPHA = ^alpha
PLOT ALPPDF(X,ALPHA) FOR X = 0.01 0.01 5
.
LET ALPHA = 5
TITLE ALPHA = ^alpha
PLOT ALPPDF(X,ALPHA) FOR X = 0.01 0.01 5
.
END OF MULTIPLOT
.
JUSTIFICATION CENTER
MOVE 50 97
TEXT Alpha Probability Density Functions
Program 2:
let alpha = 2.4
let y = alpha random numbers for i = 1 1 200
let y = 10*y
let alphasav = alpha
let amax = maximum y
.
alpha ppcc plot y
let alpha1 = alpha - 1
let alpha1 = max(alpha1,0.1)
let alpha2 = alpha + 1
y1label Correlation Coefficient
x1label Alpha
alpha ppcc plot y
justification center
move 50 6
let alpha = shape
text Alphahat = ^alpha (True Value: ^alphasav)
.
char x
line bl
y1label Data
x1label Theoretical
alpha prob plot y
move 50 6
text Location = ^ppa0, Scale = ^ppa1
move 50 2
text PPCC = ^ppcc
char bl
line so
label
.
relative histogram y
limits freeze
pre-erase off
plot alppdf(x,alpha,ppa0,ppa1) for x = 0.01 .01 amax
limits
pre-erase on
.
let ksloc = ppa0
let ksscale = ppa1
alpha kolm smir goodness of fit y
Date created: 11/27/2007 |