|
ALPPDFName:
with denoting the shape parameter and where
= the standard normal probability density function This distribution can be generalized with location and scale parameters using the relation
If Y has a normal distribution with location and scale parameters and truncated to the left of 0, then X = 1/Y has an alpha distribution with shape parameter = / and scale parameter . This distribution has application in reliability.
<SUBSET/EXCEPT/FOR qualification> where <x> is a number, parameter, or variable containing positive values; <y> is a variable or a parameter (depending on what <x> is) where the computed alpha pdf value is stored; <alpha> is a positive number, parameter, or variable that specifies the shape parameter; <loc> is a number, parameter, or variable that specifies the location parameter; <scale> is a positive number, parameter, or variable that specifies the scale parameter; and where the <SUBSET/EXCEPT/FOR qualification> is optional. If <loc> and <scale> are omitted, they default to 0 and 1, respectively.
LET A = ALPPDF(X1,2.5,0,10) PLOT ALPPDF(X,2.5,0,3) FOR X = 0.1 0.1 10
to
This was done since BETA is in fact a scale parameter.
LET Y = ALPHA RANDOM NUMBERS FOR I = 1 1 N ALPHA PROBABILITY PLOT Y ALPHA PROBABILITY PLOT Y2 X2 ALPHA PROBABILITY PLOT Y3 XLOW XHIGH ALPHA KOLMOGOROV SMIRNOV GOODNESS OF FIT Y ALPHA CHI-SQUARE GOODNESS OF FIT Y2 X2 ALPHA CHI-SQUARE GOODNESS OF FIT Y3 XLOW XHIGH The following commands can be used to estimate the alpha shape parameter for the alpha distribution:
LET ALPHA2 = <value> ALPHA PPCC PLOT Y ALPHA PPCC PLOT Y2 X2 ALPHA PPCC PLOT Y3 XLOW XHIGH ALPHA KS PLOT Y ALPHA KS PLOT Y2 X2 ALPHA KS PLOT Y3 XLOW XHIGH The default values for ALPHA1 and ALPHA2 are 0.5 and 10. The probability plot can then be used to estimate the location and scale (location = PPA0, scale = PPA1). The BOOTSTRAP DISTRIBUTION command can be used to find uncertainty intervals for the parameter estimates obtained from the ppcc plot and the ks plot methods.
Salvia (1985), "Reliability applications of the Alpha Distribution", IEEE Transactions on Reliability, Vol. R-34, No. 3, pp. 251-252.
2007/11: Corrected the second shape parameter to be the scale parameter LABEL CASE ASIS TITLE CASE ASIS TITLE OFFSET 2 . MULTIPLOT 2 2 MULTIPLOT CORNER COORDINATES 0 0 100 95 MULTIPLOT SCALE FACTOR 2 . LET ALPHA = 0.5 TITLE ALPHA = ^alpha PLOT ALPPDF(X,ALPHA) FOR X = 0.01 0.01 5 . LET ALPHA = 1 TITLE ALPHA = ^alpha PLOT ALPPDF(X,ALPHA) FOR X = 0.01 0.01 5 . LET ALPHA = 2 TITLE ALPHA = ^alpha PLOT ALPPDF(X,ALPHA) FOR X = 0.01 0.01 5 . LET ALPHA = 5 TITLE ALPHA = ^alpha PLOT ALPPDF(X,ALPHA) FOR X = 0.01 0.01 5 . END OF MULTIPLOT . JUSTIFICATION CENTER MOVE 50 97 TEXT Alpha Probability Density Functions Program 2: let alpha = 2.4 let y = alpha random numbers for i = 1 1 200 let y = 10*y let alphasav = alpha let amax = maximum y . alpha ppcc plot y let alpha1 = alpha - 1 let alpha1 = max(alpha1,0.1) let alpha2 = alpha + 1 y1label Correlation Coefficient x1label Alpha alpha ppcc plot y justification center move 50 6 let alpha = shape text Alphahat = ^alpha (True Value: ^alphasav) . char x line bl y1label Data x1label Theoretical alpha prob plot y move 50 6 text Location = ^ppa0, Scale = ^ppa1 move 50 2 text PPCC = ^ppcc char bl line so label . relative histogram y limits freeze pre-erase off plot alppdf(x,alpha,ppa0,ppa1) for x = 0.01 .01 amax limits pre-erase on . let ksloc = ppa0 let ksscale = ppa1 alpha kolm smir goodness of fit y
Date created: 11/27/2007 |