Auxillary AIRY

AIRY

PURPOSE

Compute the Airy function.

DESCRIPTION

The Airy function is defined as $(z = (2/3)x^{3/2})$:

Ai(x) =
$$\frac{1}{\pi} \sqrt{\frac{x}{3}} K_{1/3}(z)$$
 x >= 0 (EQ Aux-1)

Ai(x) =
$$\frac{\sqrt{-x}}{3} \left(J_{1/3}(-z) + \frac{1}{\sqrt{3}} Y_{1/3}(-z) \right)$$
 x < 0 (EQ Aux-2)

where K_N is the modified Bessel function of the third kind of order N, Y_N is the Bessel function of the second kind of order N, and J_N is the Bessel function of the first kind of order N. See the documentation for BESSKN, BESSJN, and BESSYN for a description of the Bessel functions.

SYNTAX

LET < y2 > = AIRY(< y1 >)

<SUBSET/EXCEPT/FOR qualification>

where <y1> is a decimal number, variable or a parameter;

<y2> is a variable or a parameter (depending on what <y1> is) where the computed Airy value is stored; and where the <SUBSET/EXCEPT/FOR qualification> is optional.

EXAMPLES

PLOT AIRY(X) FOR $X = -10 \ 0.1 \ 10$ LET A = AIRY(A1)LET X2 = AIRY(0.2)

NOTE 1

DATAPLOT uses the routine AI from the SLATEC Common Mathematical Library to compute this function. SLATEC is a large set of high quality, portable, public domain Fortran routines for various mathematical capabilities maintained by seven federal laboratories.

NOTE 2

The derivative of the Airy function is $(z = (2/3)x^{3/2})$:

Ai'(x) =
$$\frac{-x}{2} \left(J_{2/3}(-z) - \frac{1}{\sqrt{3}} Y_{2/3}(-z) \right)$$
 x < 0 (EQ Aux-4)

DEFAULT

None

SYNONYMS

None

RELATED COMMANDS

BAIRY = Compute the Airy function of the second kind.

BESSKN = Compute the modified Bessel function of the third kind (fractional orders allowed).

BESSKNE = Compute the exponentially scaled modified Bessel function of the third kind

(fractional orders allowed).

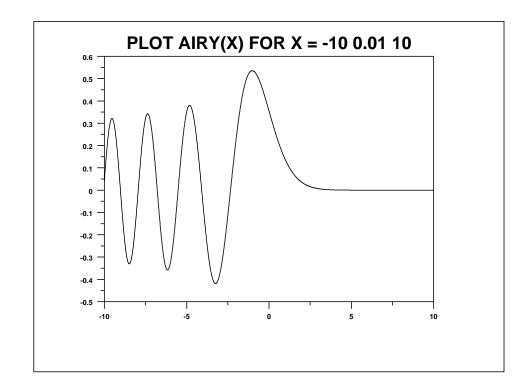
REFERENCE

"Handbook of Mathematical Functions, Applied Mathematics Series, Vol. 55," Abramowitz and Stegun, National Bureau of Standards, 1964 (chapter 10).

AIRY Auxillary

"Numerical Recipes: The Art of Scientific Computing (FORTRAN Version)," 2nd Edition, Press, Flannery, Teukolsky, and Vetterling. Cambridge University Press, 1992 (chapter 6).

APPLICATIONS


Special Functions

IMPLEMENTATION DATE

94/9

PROGRAM

TITLE AUTOMATIC
PLOT AIRY(X) FOR X = -5 .1 5

