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6. Process or Product Monitoring and Control 

6.1. Introduction

Contents
of Section 

This section discusses the basic concepts of statistical process
control, quality control and process capability. 
 

1. How did Statistical Quality Control Begin?
2. What are Process Control Techniques? 
3. What is Process Control?
4. What to do if the process is "Out of

Control"?
5. What to do if "In Control" but

Unacceptable?
6. What is Process Capability?
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6.1. Introduction 

6.1.1. How did Statistical Quality Control
Begin?

Historical
perspective

Quality Control has been with us for a long time. How
long? It is safe to say that when manufacturing began and
competition accompanied manufacturing, consumers would
compare and choose the most attractive product (barring a
monopoly of course). If manufacturer A discovered that
manufacturer B's profits soared, the former tried to
improve his/her offerings, probably by improving the
quality of the output, and/or lowering the price.
Improvement of quality did not necessarily stop with the
product - but also included the process used for making the
product.

The process was held in high esteem, as manifested by the
medieval guilds of the Middle Ages. These guilds
mandated long periods of training for apprentices, and
those who were aiming to become master craftsmen had to
demonstrate evidence of their ability. Such procedures
were, in general, aimed at the maintenance and
improvement of the quality of the process.

In modern times we have professional societies,
governmental regulatory bodies such as the Food and Drug
Administration, factory inspection, etc., aimed at assuring
the quality of products sold to consumers. Quality Control
has thus had a long history. 

Science of
statistics is
fairly recent

On the other hand, statistical quality control is
comparatively new. The science of statistics itself goes
back only two to three centuries. And its greatest
developments have taken place during the 20th century.
The earlier applications were made in astronomy and
physics and in the biological and social sciences. It was not
until the 1920s that statistical theory began to be applied
effectively to quality control as a result of the development
of sampling theory.

The concept of
quality
control in
manufacturing
was first

The first to apply the newly discovered statistical methods
to the problem of quality control was Walter A. Shewhart
of the Bell Telephone Laboratories. He issued a
memorandum on May 16, 1924 that featured a sketch of a
modern control chart. 
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advanced by
Walter
Shewhart

Shewhart kept improving and working on this scheme, and
in 1931 he published a book on statistical quality control,
"Economic Control of Quality of Manufactured Product",
published by Van Nostrand in New York. This book set the
tone for subsequent applications of statistical methods to
process control.

Contributions
of Dodge and
Romig to
sampling
inspection

Two other Bell Labs statisticians, H.F. Dodge and H.G.
Romig spearheaded efforts in applying statistical theory to
sampling inspection. The work of these three pioneers
constitutes much of what nowadays comprises the theory
of statistical quality and control. There is much more to
say about the history of statistical quality control and the
interested reader is invited to peruse one or more of the
references. A very good summary of the historical
background of SQC is found in chapter 1 of "Quality
Control and Industrial Statistics", by Acheson J. Duncan.
See also Juran (1997).
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6. Process or Product Monitoring and Control 
6.1. Introduction 

6.1.2. What are Process Control Techniques?

Statistical Process Control (SPC)

Typical
process
control
techniques

There are many ways to implement process control. Key
monitoring and investigating tools include:

Histograms
Check Sheets
Pareto Charts
Cause and Effect Diagrams
Defect Concentration Diagrams
Scatter Diagrams
Control Charts

All these are described in Montgomery (2000). This chapter
will focus (Section 3) on control chart methods, specifically:

Classical Shewhart Control charts,
Cumulative Sum (CUSUM) charts
Exponentially Weighted Moving Average (EWMA)
charts
Multivariate control charts

Underlying
concepts

The underlying concept of statistical process control is based
on a comparison of what is happening today with what
happened previously. We take a snapshot of how the process
typically performs or build a model of how we think the
process will perform and calculate control limits for the
expected measurements of the output of the process. Then we
collect data from the process and compare the data to the
control limits. The majority of measurements should fall
within the control limits. Measurements that fall outside the
control limits are examined to see if they belong to the same
population as our initial snapshot or model. Stated differently,
we use historical data to compute the initial control limits.
Then the data are compared against these initial limits. Points
that fall outside of the limits are investigated and, perhaps,
some will later be discarded. If so, the limits would be
recomputed and the process repeated. This is referred to as
Phase I. Real-time process monitoring, using the limits from
the end of Phase I, is Phase II.

Statistical Quality Control (SQC)
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Tools of
statistical
quality
control

Several techniques can be used to investigate the product for
defects or defective pieces after all processing is complete.
Typical tools of SQC (described in section 2) are:

Lot Acceptance sampling plans
Skip lot sampling plans
Military (MIL) Standard sampling plans

Underlying
concepts of
statistical
quality
control

The purpose of statistical quality control is to ensure, in a cost
efficient manner, that the product shipped to customers meets
their specifications. Inspecting every product is costly and
inefficient, but the consequences of shipping non conforming
product can be significant in terms of customer dissatisfaction.
Statistical Quality Control is the process of inspecting enough
product from given lots to probabilistically ensure a specified
quality level.
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6. Process or Product Monitoring and Control 
6.1. Introduction 

6.1.3. What is Process Control?

Two types
of
intervention
are
possible --
one is
based on
engineering
judgment
and the
other is
automated

Process Control is the active changing of the process based on
the results of process monitoring. Once the process
monitoring tools have detected an out-of-control situation,
the person responsible for the process makes a change to
bring the process back into control.

1. Out-of-control Action Plans (OCAPS) detail the action
to be taken once an out-of-control situation is detected.
A specific flowchart, that leads the process engineer
through the corrective procedure, may be provided for
each unique process.

2. Advanced Process Control Loops are automated
changes to the process that are programmed to correct
for the size of the out-of-control measurement.
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6. Process or Product Monitoring and Control 
6.1. Introduction 

6.1.4. What to do if the process is "Out of
Control"?

Reactions
to out-of-
control
conditions

If the process is out-of-control, the process engineer looks for
an assignable cause by following the out-of-control action
plan (OCAP) associated with the control chart. Out-of-control
refers to rejecting the assumption that the current data are from
the same population as the data used to create the initial
control chart limits. 

For classical Shewhart charts, a set of rules called the Western
Electric Rules (WECO Rules) and a set of trend rules often are
used to determine out-of-control.
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6.1.5. What to do if "In Control" but
Unacceptable?

In control
means
process is
predictable

"In Control" only means that the process is predictable in a
statistical sense. What do you do if the process is “in
control” but the average level is too high or too low or the
variability is unacceptable?

Process
improvement
techniques

Process improvement techniques such as

experiments
calibration
re-analysis of historical database

can be initiated to put the process on target or reduce the
variability.

Process
must be
stable

Note that the process must be stable before it can be
centered at a target value or its overall variation can be
reduced.
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6.1. Introduction 

6.1.6. What is Process Capability?

Process capability compares the output of an in-control process to the specification
limits by using capability indices. The comparison is made by forming the ratio of
the spread between the process specifications (the specification "width") to the
spread of the process values, as measured by 6 process standard deviation units (the
process "width").

Process Capability Indices

A process
capability
index uses
both the
process
variability
and the
process
specifications
to determine
whether the
process is
"capable"

We are often required to compare the output of a stable process with the process
specifications and make a statement about how well the process meets specification. 
To do this we compare the natural variability of a stable process with the process
specification limits. 

A process where almost all the measurements fall inside the specification limits is a
capable process. This can be represented pictorially by the plot below:

 

There are several statistics that can be used to measure the capability of a process: 
Cp, Cpk, Cpm.

Most capability indices estimates are valid only if the sample size used is 'large
enough'. Large enough is generally thought to be about 50 independent data values. 

The Cp, Cpk, and Cpm statistics assume that the population of data values is normally
distributed. Assuming a two-sided specification, if  and  are the mean and
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standard deviation, respectively, of the normal data and USL, LSL, and T are the
upper and lower specification limits and the target value, respectively, then the
population capability indices are defined as follows:

Definitions of
various
process
capability
indices

Sample
estimates of
capability
indices

Sample estimators for these indices are given below. (Estimators are indicated with
a "hat" over them).

The estimator for Cpk can also be expressed as Cpk = Cp(1-k), where k is a scaled
distance between the midpoint of the specification range, m, and the process mean, 
.

Denote the midpoint of the specification range by m = (USL+LSL)/2. The distance
between the process mean, , and the optimum, which is m, is  - m, where 

. The scaled distance is

(the absolute sign takes care of the case when ). To determine the
estimated value, , we estimate  by . Note that .

The estimator for the Cp index, adjusted by the k factor, is

Since , it follows that .

Plot showing
Cp for varying
process
widths

To get an idea of the value of the Cp statistic for varying process widths, consider
the following plot
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This can be expressed numerically by the table below:

Translating
capability into
"rejects"

USL - LSL 6 8 10 12

Cp 1.00 1.33 1.66 2.00

Rejects .27% 64 ppm .6 ppm 2 ppb

% of spec used 100 75 60 50

where ppm = parts per million and ppb = parts per billion. Note that the reject
figures are based on the assumption that the distribution is centered at .

We have discussed the situation with two spec. limits, the USL and LSL. This is
known as the bilateral or two-sided case. There are many cases where only the
lower or upper specifications are used. Using one spec limit is called unilateral or
one-sided. The corresponding capability indices are

One-sided
specifications
and the
corresponding
capability
indices

and

where  and  are the process mean and standard deviation, respectively.

Estimators of Cpu and Cpl are obtained by replacing  and  by  and s,
respectively. The following relationship holds



6.1.6. What is Process Capability?

http://www.itl.nist.gov/div898/handbook/pmc/section1/pmc16.htm[6/27/2012 2:35:40 PM]

Cp = (Cpu + Cpl) /2.

This can be represented pictorially by

Note that we also can write:

Cpk = min {Cpl, Cpu}.

Confidence Limits For Capability Indices

Confidence
intervals for
indices

Assuming normally distributed process data, the distribution of the sample 

follows from a Chi-square distribution and  and  have distributions related
to the non-central t distribution. Fortunately, approximate confidence limits related
to the normal distribution have been derived. Various approximations to the

distribution of  have been proposed, including those given by Bissell (1990),
and we will use a normal approximation.

The resulting formulas for confidence limits are given below:

100(1- )% Confidence Limits for Cp

where

      ν = degrees of freedom.
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Confidence
Intervals for
Cpu and Cpl

Approximate 100(1- )% confidence limits for Cpu with sample size n are:

with z denoting the percent point function of the standard normal distribution. If  is
not known, set it to .

Limits for Cpl are obtained by replacing  by .

Confidence
Interval for
Cpk

Zhang et al. (1990) derived the exact variance for the estimator of Cpk as well as an
approximation for large n. The reference paper is Zhang, Stenback and Wardrop
(1990), "Interval Estimation of the process capability index", Communications in
Statistics: Theory and Methods, 19(21), 4455-4470.

The variance is obtained as follows:

Let

Then

Their approximation is given by:

where
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The following approximation is commonly used in practice

It is important to note that the sample size should be at least 25 before these
approximations are valid. In general, however, we need n  100 for capability
studies. Another point to observe is that variations are not negligible due to the
randomness of capability indices.

Capability Index Example

An example For a certain process the USL = 20 and the LSL = 8. The observed process average, 
 = 16, and the standard deviation, s = 2. From this we obtain

This means that the process is capable as long as it is located at the midpoint, m =
(USL + LSL)/2 = 14.

But it doesn't, since  = 16. The  factor is found by

and

We would like to have  at least 1.0, so this is not a good process. If possible,

reduce the variability or/and center the process. We can compute the  and 

From this we see that the , which is the smallest of the above indices, is 0.6667.

Note that the formula  is the algebraic equivalent of the min{

, } definition.

What happens if the process is not approximately normally distributed?

What you can The indices that we considered thus far are based on normality of the process
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do with non-
normal data

distribution. This poses a problem when the process distribution is not normal.
Without going into the specifics, we can list some remedies.

1. Transform the data so that they become approximately normal. A popular
transformation is the Box-Cox transformation

2. Use or develop another set of indices, that apply to nonnormal distributions.
One statistic is called Cnpk (for non-parametric Cpk). Its estimator is calculated
by

where p(0.995) is the 99.5th percentile of the data and p(.005) is the 0.5th
percentile of the data.

For additional information on nonnormal distributions, see Johnson and Kotz
(1993).

There is, of course, much more that can be said about the case of nonnormal data.
However, if a Box-Cox transformation can be successfully performed, one is
encouraged to use it.
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6. Process or Product Monitoring and Control 

6.2. Test Product for Acceptability: Lot
Acceptance Sampling

This section describes how to make decisions on a lot-by-lot
basis whether to accept a lot as likely to meet requirements or
reject the lot as likely to have too many defective units.

Contents
of section
2

This section consists of the following topics.

1. What is Acceptance Sampling?
2. What kinds of Lot Acceptance Sampling Plans (LASPs)

are there?
3. How do you Choose a Single Sampling Plan?

1. Choosing a Sampling Plan: MIL Standard 105D
2. Choosing a Sampling Plan with a given OC

Curve
4. What is Double Sampling? 
5. What is Multiple Sampling?
6. What is a Sequential Sampling Plan?
7. What is Skip Lot Sampling?
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6.2. Test Product for Acceptability: Lot Acceptance Sampling 

6.2.1. What is Acceptance Sampling?

Contributions
of Dodge and
Romig to
acceptance
sampling

Acceptance sampling is an important field of statistical
quality control that was popularized by Dodge and Romig
and originally applied by the U.S. military to the testing of
bullets during World War II. If every bullet was tested in
advance, no bullets would be left to ship. If, on the other
hand, none were tested, malfunctions might occur in the
field of battle, with potentially disastrous results.

Definintion
of Lot
Acceptance
Sampling

Dodge reasoned that a sample should be picked at random
from the lot, and on the basis of information that was
yielded by the sample, a decision should be made regarding
the disposition of the lot. In general, the decision is either to
accept or reject the lot. This process is called Lot
Acceptance Sampling or just Acceptance Sampling.

"Attributes"
(i.e., defect
counting)
will be
assumed

Acceptance sampling is "the middle of the road" approach
between no inspection and 100% inspection. There are two
major classifications of acceptance plans: by attributes ("go,
no-go") and by variables. The attribute case is the most
common for acceptance sampling, and will be assumed for
the rest of this section.

Important
point

A point to remember is that the main purpose of acceptance
sampling is to decide whether or not the lot is likely to be
acceptable, not to estimate the quality of the lot.

Scenarios
leading to
acceptance
sampling

Acceptance sampling is employed when one or several of
the following hold: 

Testing is destructive
The cost of 100% inspection is very high
100% inspection takes too long

Acceptance
Quality
Control and
Acceptance
Sampling

It was pointed out by Harold Dodge in 1969 that
Acceptance Quality Control is not the same as Acceptance
Sampling. The latter depends on specific sampling plans,
which when implemented indicate the conditions for
acceptance or rejection of the immediate lot that is being
inspected. The former may be implemented in the form of
an Acceptance Control Chart. The control limits for the
Acceptance Control Chart are computed using the

http://www.itl.nist.gov/div898/handbook/index.htm
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specification limits and the standard deviation of what is
being monitored (see Ryan, 2000 for details).

An
observation
by Harold
Dodge

In 1942, Dodge stated:

"....basically the "acceptance quality control" system that
was developed encompasses the concept of protecting the
consumer from getting unacceptable defective product, and
encouraging the producer in the use of process quality
control by: varying the quantity and severity of acceptance
inspections in direct relation to the importance of the
characteristics inspected, and in the inverse relation to the
goodness of the quality level as indication by those
inspections."

To reiterate the difference in these two approaches:
acceptance sampling plans are one-shot deals, which
essentially test short-run effects. Quality control is of the
long-run variety, and is part of a well-designed system for
lot acceptance.

An
observation
by Ed
Schilling

Schilling (1989) said:

"An individual sampling plan has much the effect of a lone
sniper, while the sampling plan scheme can provide a
fusillade in the battle for quality improvement."

Control of
product
quality using
acceptance
control
charts

According to the ISO standard on acceptance control charts
(ISO 7966, 1993), an acceptance control chart combines
consideration of control implications with elements of
acceptance sampling. It is an appropriate tool for helping to
make decisions with respect to process acceptance. The
difference between acceptance sampling approaches and
acceptance control charts is the emphasis on process
acceptability rather than on product disposition decisions.
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6.2. Test Product for Acceptability: Lot Acceptance Sampling 

6.2.2. What kinds of Lot Acceptance Sampling
Plans (LASPs) are there?

LASP is a
sampling
scheme
and a set
of rules

A lot acceptance sampling plan (LASP) is a sampling scheme
and a set of rules for making decisions. The decision, based
on counting the number of defectives in a sample, can be to
accept the lot, reject the lot, or even, for multiple or sequential
sampling schemes, to take another sample and then repeat the
decision process.

Types of
acceptance
plans to
choose
from

LASPs fall into the following categories:

Single sampling plans:. One sample of items is
selected at random from a lot and the disposition of the
lot is determined from the resulting information. These
plans are usually denoted as (n,c) plans for a sample
size n, where the lot is rejected if there are more than c
defectives. These are the most common (and easiest)
plans to use although not the most efficient in terms of
average number of samples needed.

Double sampling plans: After the first sample is tested,
there are three possibilities:

1. Accept the lot
2. Reject the lot
3. No decision

If the outcome is (3), and a second sample is taken, the
procedure is to combine the results of both samples and
make a final decision based on that information.

Multiple sampling plans: This is an extension of the
double sampling plans where more than two samples are
needed to reach a conclusion. The advantage of multiple
sampling is smaller sample sizes.

Sequential sampling plans: . This is the ultimate
extension of multiple sampling where items are selected
from a lot one at a time and after inspection of each
item a decision is made to accept or reject the lot or
select another unit.

Skip lot sampling plans:. Skip lot sampling means that
only a fraction of the submitted lots are inspected.

http://www.itl.nist.gov/div898/handbook/index.htm
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Definitions
of basic
Acceptance
Sampling
terms

Deriving a plan, within one of the categories listed above, is
discussed in the pages that follow. All derivations depend on
the properties you want the plan to have. These are described
using the following terms:

Acceptable Quality Level (AQL): The AQL is a percent
defective that is the base line requirement for the quality
of the producer's product. The producer would like to
design a sampling plan such that there is a high
probability of accepting a lot that has a defect level less
than or equal to the AQL.

Lot Tolerance Percent Defective (LTPD): The LTPD is
a designated high defect level that would be
unacceptable to the consumer. The consumer would like
the sampling plan to have a low probability of
accepting a lot with a defect level as high as the LTPD.

Type I Error (Producer's Risk): This is the probability,
for a given (n,c) sampling plan, of rejecting a lot that
has a defect level equal to the AQL. The producer
suffers when this occurs, because a lot with acceptable
quality was rejected. The symbol  is commonly used
for the Type I error and typical values for  range from
0.2 to 0.01.

Type II Error (Consumer's Risk): This is the
probability, for a given (n,c) sampling plan, of
accepting a lot with a defect level equal to the LTPD.
The consumer suffers when this occurs, because a lot
with unacceptable quality was accepted. The symbol 
is commonly used for the Type II error and typical
values range from 0.2 to 0.01.

Operating Characteristic (OC) Curve: This curve plots
the probability of accepting the lot (Y-axis) versus the
lot fraction or percent defectives (X-axis). The OC
curve is the primary tool for displaying and
investigating the properties of a LASP.

Average Outgoing Quality (AOQ): A common
procedure, when sampling and testing is non-
destructive, is to 100% inspect rejected lots and replace
all defectives with good units. In this case, all rejected
lots are made perfect and the only defects left are those
in lots that were accepted. AOQ's refer to the long term
defect level for this combined LASP and 100%
inspection of rejected lots process. If all lots come in
with a defect level of exactly p, and the OC curve for
the chosen (n,c) LASP indicates a probability pa of
accepting such a lot, over the long run the AOQ can
easily be shown to be:
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where N is the lot size.

Average Outgoing Quality Level (AOQL): A plot of the
AOQ (Y-axis) versus the incoming lot p (X-axis) will
start at 0 for p = 0, and return to 0 for p = 1 (where
every lot is 100% inspected and rectified). In between,
it will rise to a maximum. This maximum, which is the
worst possible long term AOQ, is called the AOQL.

Average Total Inspection (ATI): When rejected lots are
100% inspected, it is easy to calculate the ATI if lots
come consistently with a defect level of p. For a LASP
(n,c) with a probability pa of accepting a lot with defect
level p, we have

ATI = n + (1 - pa) (N - n)

where N is the lot size.

Average Sample Number (ASN): For a single sampling
LASP (n,c) we know each and every lot has a sample
of size n taken and inspected or tested. For double,
multiple and sequential LASP's, the amount of sampling
varies depending on the number of defects observed.
For any given double, multiple or sequential plan, a
long term ASN can be calculated assuming all lots come
in with a defect level of p. A plot of the ASN, versus the
incoming defect level p, describes the sampling
efficiency of a given LASP scheme.

The final
choice is a
tradeoff
decision

Making a final choice between single or multiple sampling
plans that have acceptable properties is a matter of deciding
whether the average sampling savings gained by the various
multiple sampling plans justifies the additional complexity of
these plans and the uncertainty of not knowing how much
sampling and inspection will be done on a day-by-day basis.
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6.2.3. How do you Choose a Single Sampling
Plan?

Two
methods
for
choosing a
single
sample
acceptance
plan

A single sampling plan, as previously defined, is specified by
the pair of numbers (n,c). The sample size is n, and the lot is
rejected if there are more than c defectives in the sample;
otherwise the lot is accepted.

There are two widely used ways of picking (n,c):

1. Use tables (such as MIL STD 105D) that focus on either
the AQL or the LTPD desired.

2. Specify 2 desired points on the OC curve and solve for
the (n,c) that uniquely determines an OC curve going
through these points.

The next two pages describe these methods in detail.
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6.2.3.1. Choosing a Sampling Plan: MIL
Standard 105D

The AQL or
Acceptable
Quality
Level is the
baseline
requirement

Sampling plans are typically set up with reference to an
acceptable quality level, or AQL . The AQL is the base line
requirement for the quality of the producer's product. The
producer would like to design a sampling plan such that the
OC curve yields a high probability of acceptance at the AQL.
On the other side of the OC curve, the consumer wishes to be
protected from accepting poor quality from the producer. So
the consumer establishes a criterion, the lot tolerance percent
defective or LTPD . Here the idea is to only accept poor
quality product with a very low probability. Mil. Std. plans
have been used for over 50 years to achieve these goals.

The U.S. Department of Defense Military Standard 105E

Military
Standard
105E
sampling
plan

Standard military sampling procedures for inspection by
attributes were developed during World War II. Army
Ordnance tables and procedures were generated in the early
1940's and these grew into the Army Service Forces tables.
At the end of the war, the Navy also worked on a set of
tables. In the meanwhile, the Statistical Research Group at
Columbia University performed research and outputted many
outstanding results on attribute sampling plans.

These three streams combined in 1950 into a standard called
Mil. Std. 105A. It has since been modified from time to time
and issued as 105B, 195C and 105D. Mil. Std. 105D was
issued by the U.S. government in 1963. It was adopted in
1971 by the American National Standards Institute as ANSI
Standard Z1.4 and in 1974 it was adopted (with minor
changes) by the International Organization for
Standardization as ISO Std. 2859. The latest revision is Mil.
Std 105E and was issued in 1989.

These three similar standards are continuously being updated
and revised, but the basic tables remain the same. Thus the
discussion that follows of the germane aspects of Mil. Std.
105E also applies to the other two standards.

Description of Mil. Std. 105D

http://www.itl.nist.gov/div898/handbook/
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Military
Standard
105D
sampling
plan

This document is essentially a set of individual plans,
organized in a system of sampling schemes. A sampling
scheme consists of a combination of a normal sampling plan,
a tightened sampling plan, and a reduced sampling plan plus
rules for switching from one to the other.

AQL is
foundation
of standard

The foundation of the Standard is the acceptable quality level
or AQL. In the following scenario, a certain military agency,
called the Consumer from here on, wants to purchase a
particular product from a supplier, called the Producer from
here on.

In applying the Mil. Std. 105D it is expected that there is
perfect agreement between Producer and Consumer regarding
what the AQL is for a given product characteristic. It is
understood by both parties that the Producer will be
submitting for inspection a number of lots whose quality
level is typically as good as specified by the Consumer.
Continued quality is assured by the acceptance or rejection of
lots following a particular sampling plan and also by
providing for a shift to another, tighter sampling plan, when
there is evidence that the Producer's product does not meet
the agreed-upon AQL.

Standard
offers 3
types of
sampling
plans

Mil. Std. 105E offers three types of sampling plans: single,
double and multiple plans. The choice is, in general, up to the
inspectors.

Because of the three possible selections, the standard does
not give a sample size, but rather a sample code letter. This,
together with the decision of the type of plan yields the
specific sampling plan to be used.

Inspection
level

In addition to an initial decision on an AQL it is also
necessary to decide on an "inspection level". This determines
the relationship between the lot size and the sample size. The
standard offers three general and four special levels.

Steps in the
standard

The steps in the use of the standard can be summarized as
follows:

1. Decide on the AQL.
2. Decide on the inspection level.
3. Determine the lot size.
4. Enter the table to find sample size code letter.
5. Decide on type of sampling to be used.
6. Enter proper table to find the plan to be used.
7. Begin with normal inspection, follow the switching

rules and the rule for stopping the inspection (if
needed).

Additional There is much more that can be said about Mil. Std. 105E,
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information (and 105D). The interested reader is referred to references
such as (Montgomery (2000), Schilling, tables 11-2 to 11-17,
and Duncan, pages 214 - 248).

There is also (currently) a web site developed by Galit
Shmueli that will develop sampling plans interactively with
the user, according to Military Standard 105E (ANSI/ASQC
Z1.4, ISO 2859) Tables.
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6.2.3.2. Choosing a Sampling Plan with a given OC
Curve

Sample
OC
curve

We start by looking at a typical OC curve. The OC curve for a (52 ,3)
sampling plan is shown below.

Number of
defectives is
approximately
binomial

It is instructive to show how the points on this curve are
obtained, once we have a sampling plan (n,c) - later we
will demonstrate how a sampling plan (n,c) is obtained.

We assume that the lot size N is very large, as compared to
the sample size n, so that removing the sample doesn't
significantly change the remainder of the lot, no matter how
many defects are in the sample. Then the distribution of the
number of defectives, d, in a random sample of n items is
approximately binomial with parameters n and p, where p
is the fraction of defectives per lot.

The probability of observing exactly d defectives is given
by

The binomial
distribution
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The probability of acceptance is the probability that d, the
number of defectives, is less than or equal to c, the accept
number. This means that

Sample table
for Pa, Pd
using the
binomial
distribution

Using this formula with n = 52 and c=3 and p = .01, .02,
...,.12 we find

Pa Pd

.998 .01

.980 .02

.930 .03

.845 .04

.739 .05

.620 .06

.502 .07

.394 .08

.300 .09

.223 .10

.162 .11

.115 .12

Solving for (n,c)

Equations for
calculating a
sampling plan
with a given
OC curve

In order to design a sampling plan with a specified OC
curve one needs two designated points. Let us design a
sampling plan such that the probability of acceptance is 1-

 for lots with fraction defective p1 and the probability of
acceptance is  for lots with fraction defective p2. Typical
choices for these points are: p1 is the AQL, p2 is the LTPD
and ,  are the Producer's Risk (Type I error) and
Consumer's Risk (Type II error), respectively.

If we are willing to assume that binomial sampling is valid,
then the sample size n, and the acceptance number c are the
solution to

These two simultaneous equations are nonlinear so there is
no simple, direct solution. There are however a number of
iterative techniques available that give approximate
solutions so that composition of a computer program poses
few problems.
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Average Outgoing Quality (AOQ)

Calculating
AOQ's

We can also calculate the AOQ for a (n,c) sampling plan,
provided rejected lots are 100% inspected and defectives
are replaced with good parts.

Assume all lots come in with exactly a p0 proportion of
defectives. After screening a rejected lot, the final fraction
defectives will be zero for that lot. However, accepted lots
have fraction defectivep0. Therefore, the outgoing lots
from the inspection stations are a mixture of lots with
fractions defective p0 and 0. Assuming the lot size is N, we
have.

For example, let N = 10000, n = 52, c = 3, and p, the
quality of incoming lots, = 0.03. Now at p = 0.03, we glean
from the OC curve table that pa = 0.930 and

AOQ = (.930)(.03)(10000-52) / 10000 = 0.02775.

Sample table
of AOQ
versus p

Setting p = .01, .02, ..., .12, we can generate the following
table

AOQ p
.0010 .01
.0196 .02
.0278 .03
.0338 .04
.0369 .05
.0372 .06
.0351 .07
.0315 .08
.0270 .09
.0223 .10
.0178 .11
.0138 .12

Sample plot
of AOQ
versus p

A plot of the AOQ versus p is given below.



6.2.3.2. Choosing a Sampling Plan with a given OC Curve

http://www.itl.nist.gov/div898/handbook/pmc/section2/pmc232.htm[6/27/2012 2:35:45 PM]

Interpretation
of AOQ plot

From examining this curve we observe that when the
incoming quality is very good (very small fraction of
defectives coming in), then the outgoing quality is also very
good (very small fraction of defectives going out). When
the incoming lot quality is very bad, most of the lots are
rejected and then inspected. The "duds" are eliminated or
replaced by good ones, so that the quality of the outgoing
lots, the AOQ, becomes very good. In between these
extremes, the AOQ rises, reaches a maximum, and then
drops.

The maximum ordinate on the AOQ curve represents the
worst possible quality that results from the rectifying
inspection program. It is called the average outgoing
quality limit, (AOQL ).

From the table we see that the AOQL = 0.0372 at p = .06
for the above example.

One final remark: if N >> n, then the AOQ ~ pa p .

The Average Total Inspection (ATI)

Calculating
the Average
Total
Inspection

What is the total amount of inspection when rejected lots
are screened?

If all lots contain zero defectives, no lot will be rejected.

If all items are defective, all  lots will be inspected, and the
amount to be inspected is N.

Finally, if the lot quality is 0 < p < 1, the average amount
of inspection per lot will vary between the sample size n,
and the lot size N.

Let the quality of the lot be p and the probability of lot
acceptance be pa, then the ATI per lot is
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ATI = n + (1 - pa) (N - n)

For example, let N = 10000, n = 52, c = 3, and p = .03  We
know from the OC table that pa = 0.930. Then ATI = 52 +
(1-.930) (10000 - 52) = 753. (Note that while 0.930 was
rounded to three decimal places, 753 was obtained using
more decimal places.)

Sample table
of ATI versus
p

Setting p= .01, .02, ....14 generates the following table
ATI P
70 .01
253 .02
753 .03
1584 .04
2655 .05
3836 .06
5007 .07
6083 .08
7012 .09
7779 .10
8388 .11
8854 .12
9201 .13
9453 .14

Plot of ATI
versus p

A plot of ATI versus p, the Incoming Lot Quality (ILQ) is
given below.
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6.2.4. What is Double Sampling?

Double Sampling Plans

How double
sampling
plans work

Double and multiple sampling plans were invented to give a
questionable lot another chance. For example, if in double sampling
the results of the first sample are not conclusive with regard to
accepting or rejecting, a second sample is taken. Application of
double sampling requires that a first sample of size n1 is taken at
random from the (large) lot. The number of defectives is then
counted and compared to the first sample's acceptance number a1
and rejection number r1. Denote the number of defectives in sample
1 by d1 and in sample 2 by d2, then:

If d1  a1, the lot is accepted. 
If d1  r1, the lot is rejected. 
If a1 < d1 < r1, a second sample is taken. 

If a second sample of size n2 is taken, the number of defectives, d2,
is counted. The total number of defectives is D2 = d1 + d2. Now this
is compared to the acceptance number a2 and the rejection number
r2 of sample 2. In double sampling, r2 = a2 + 1 to ensure a decision
on the sample.

If D2  a2, the lot is accepted. 
If D2  r2, the lot is rejected. 

Design of a Double Sampling Plan

Design of a
double
sampling
plan

The parameters required to construct the OC curve are similar to the
single sample case. The two points of interest are (p1, 1- ) and (p2, 

, where p1 is the lot fraction defective for plan 1 and p2 is the lot
fraction defective for plan 2. As far as the respective sample sizes are
concerned, the second sample size must be equal to, or an even
multiple of, the first sample size.

There exist a variety of tables that assist the user in constructing
double and multiple sampling plans. The index to these tables is the
p2/p1 ratio, where p2 > p1. One set of tables, taken from the Army
Chemical Corps Engineering Agency for  = .05 and  = .10, is

http://www.itl.nist.gov/div898/handbook/index.htm
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given below:

Tables for n1 = n2
  accept   approximation values

R = numbers   of pn1 for
p2/p1 c1 c2 P = .95 P = .10

11.90 0 1 0.21 2.50
7.54 1 2 0.52 3.92
6.79 0 2 0.43 2.96
5.39 1 3 0.76 4.11
4.65 2 4 1.16 5.39
4.25 1 4 1.04 4.42
3.88 2 5 1.43 5.55
3.63 3 6 1.87 6.78
3.38 2 6 1.72 5.82
3.21 3 7 2.15 6.91
3.09 4 8 2.62 8.10
2.85 4 9 2.90 8.26
2.60 5 11 3.68 9.56
2.44 5 12 4.00 9.77
2.32 5 13 4.35 10.08
2.22 5 14 4.70 10.45
2.12 5 16 5.39 11.41

Tables for n2 = 2n1
  accept   approximation values

R = numbers   of pn1 for
p2/p1 c1 c2 P = .95 P = .10

14.50 0 1 0.16 2.32
8.07 0 2 0.30 2.42
6.48 1 3 0.60 3.89
5.39 0 3 0.49 2.64
5.09 0 4 0.77 3.92
4.31 1 4 0.68 2.93
4.19 0 5 0.96 4.02
3.60 1 6 1.16 4.17
3.26 1 8 1.68 5.47
2.96 2 10 2.27 6.72
2.77 3 11 2.46 6.82
2.62 4 13 3.07 8.05
2.46 4 14 3.29 8.11
2.21 3 15 3.41 7.55
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1.97 4 20 4.75 9.35
1.74 6 30 7.45 12.96

Example

Example of
a double
sampling
plan

We wish to construct a double sampling plan according to

p1 = 0.01      = 0.05     p2 = 0.05      = 0.10     and n1 = n2

The plans in the corresponding table are indexed on the ratio

R = p2/p1 = 5

We find the row whose R is closet to 5. This is the 5th row (R =
4.65). This gives c1 = 2 and c2 = 4. The value of n1 is determined
from either of the two columns labeled pn1.

The left holds  constant at 0.05 (P = 0.95 = 1 - ) and the right
holds  constant at 0.10. (P = 0.10). Then holding  constant we
find pn1 = 1.16 so n1 = 1.16/p1 = 116. And, holding  constant we
find pn1 = 5.39, so n1 = 5.39/p2 = 108. Thus the desired sampling
plan is

n1 = 108     c1 = 2     n2 = 108     c2 = 4

If we opt for n2 = 2n1, and follow the same procedure using the
appropriate table, the plan is:

n1 = 77     c1 = 1     n2 = 154     c2 = 4

The first plan needs less samples if the number of defectives in
sample 1 is greater than 2, while the second plan needs less samples
if the number of defectives in sample 1 is less than 2.

ASN Curve for a Double Sampling Plan

Construction
of the ASN
curve

Since when using a double sampling plan the sample size depends on
whether or not a second sample is required, an important
consideration for this kind of sampling is the Average Sample
Number (ASN) curve. This curve plots the ASN versus p', the true
fraction defective in an incoming lot.

We will illustrate how to calculate the ASN curve with an example.
Consider a double-sampling plan n1 = 50, c1= 2, n2 = 100, c2 = 6,
where n1 is the sample size for plan 1, with accept number c1, and
n2, c2, are the sample size and accept number, respectively, for plan
2.

Let p' = .06. Then the probability of acceptance on the first sample,
which is the chance of getting two or less defectives, is .416 (using
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binomial tables). The probability of rejection on the second sample,
which is the chance of getting more than six defectives, is (1-.971) =
.029. The probability of making a decision on the first sample is
.445, equal to the sum of .416 and .029. With complete inspection of
the second sample, the average size sample is equal to the size of the
first sample times the probability that there will be only one sample
plus the size of the combined samples times the probability that a
second sample will be necessary. For the sampling plan under
consideration, the ASN with complete inspection of the second
sample for a p' of .06 is

50(.445) + 150(.555) = 106

The general formula for an average sample number curve of a
double-sampling plan with complete inspection of the second sample
is

ASN = n1P1 + (n1 + n2)(1 - P1) = n1 + n2(1 - P1)

where P1 is the probability of a decision on the first sample. The
graph below shows a plot of the ASN versus p'.

The ASN
curve for a
double
sampling
plan
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6.2.5. What is Multiple Sampling?

Multiple
Sampling
is an
extension
of the
double
sampling
concept

Multiple sampling is an extension of double sampling. It
involves inspection of 1 to k successive samples as required to
reach an ultimate decision.

Mil-Std 105D suggests k = 7 is a good number. Multiple
sampling plans are usually presented in tabular form:

Procedure
for
multiple
sampling

The procedure commences with taking a random sample of
size n1from a large lot of size N and counting the number of
defectives, d1.

if d1  a1 the lot is accepted. 
if d1  r1 the lot is rejected. 
if a1 < d1 < r1, another sample is taken.

If subsequent samples are required, the first sample procedure
is repeated sample by sample. For each sample, the total
number of defectives found at any stage, say stage i, is

This is compared with the acceptance number ai and the
rejection number ri for that stage until a decision is made.
Sometimes acceptance is not allowed at the early stages of
multiple sampling; however, rejection can occur at any stage.

Efficiency
measured
by the
ASN

Efficiency for a multiple sampling scheme is measured by the
average sample number (ASN) required for a given Type I and
Type II set of errors. The number of samples needed when
following a multiple sampling scheme may vary from trial to
trial, and the ASN represents the average of what might
happen over many trials with a fixed incoming defect level.
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6.2.6. What is a Sequential Sampling Plan?

Sequential
Sampling

Sequential sampling is different from single, double or
multiple sampling. Here one takes a sequence of samples from
a lot. How many total samples looked at is a function of the
results of the sampling process.

Item-by-
item and
group
sequential
sampling

The sequence can be one sample at a time, and then the
sampling process is usually called item-by-item sequential
sampling. One can also select sample sizes greater than one, in
which case the process is referred to as group sequential
sampling. Item-by-item is more popular so we concentrate on
it. The operation of such a plan is illustrated below:

Diagram of
item-by-
item
sampling

Description
of
sequentail
sampling
graph

The cumulative observed number of defectives is plotted on
the graph. For each point, the x-axis is the total number of
items thus far selected, and the y-axis is the total number of
observed defectives. If the plotted point falls within the parallel
lines the process continues by drawing another sample. As
soon as a point falls on or above the upper line, the lot is
rejected. And when a point falls on or below the lower line,
the lot is accepted. The process can theoretically last until the
lot is 100% inspected. However, as a rule of thumb,
sequential-sampling plans are truncated after the number
inspected reaches three times the number that would have been
inspected using a corresponding single sampling plan.
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Equations
for the
limit lines

The equations for the two limit lines are functions of the
parameters p1, , p2, and .

 

where

 

 

 

Instead of using the graph to determine the fate of the lot, one
can resort to generating tables (with the help of a computer
program).

Example of
a
sequential
sampling
plan

As an example, let p1 = .01, p2 = .10,  = .05,  = .10. The
resulting equations are

 

Both acceptance numbers and rejection numbers must be
integers. The acceptance number is the next integer less than
or equal to xa and the rejection number is the next integer
greater than or equal to xr. Thus for n = 1, the acceptance
number = -1, which is impossible, and the rejection number =
2, which is also impossible. For n = 24, the acceptance number
is 0 and the rejection number = 3.

The results for n =1, 2, 3... 26 are tabulated below.

n
inspect

n
accept

n
reject

n
inspect

n
accept

n
reject

1 x x 14 x 2
2 x 2 15 x 2
3 x 2 16 x 3
4 x 2 17 x 3
5 x 2 18 x 3
6 x 2 19 x 3
7 x 2 20 x 3
8 x 2 21 x 3
9 x 2 22 x 3
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10 x 2 23 x 3
11 x 2 24 0 3
12 x 2 25 0 3
13 x 2 26 0 3

So, for n = 24 the acceptance number is 0 and the rejection
number is 3. The "x" means that acceptance or rejection is not
possible.

Other sequential plans are given below.

n
inspect

n
accept

n
reject

49 1 3
58 1 4
74 2 4
83 2 5
100 3 5
109 3 6

The corresponding single sampling plan is (52,2) and double
sampling plan is (21,0), (21,1).

Efficiency
measured
by ASN

Efficiency for a sequential sampling scheme is measured by
the average sample number (ASN) required for a given Type I
and Type II set of errors. The number of samples needed when
following a sequential sampling scheme may vary from trial to
trial, and the ASN represents the average of what might happen
over many trials with a fixed incoming defect level. Good
software for designing sequential sampling schemes will
calculate the ASN curve as a function of the incoming defect
level.
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6.2.7. What is Skip Lot Sampling?

Skip Lot
Sampling

Skip Lot sampling means that only a fraction of the submitted lots
are inspected. This mode of sampling is of the cost-saving variety in
terms of time and effort. However skip-lot sampling should only be
used when it has been demonstrated that the quality of the submitted
product is very good.

Implementation
of skip-lot
sampling plan

A skip-lot sampling plan is implemented as follows:

1. Design a single sampling plan by specifying the alpha and beta
risks and the consumer/producer's risks. This plan is called
"the reference sampling plan".

2. Start with normal lot-by-lot inspection, using the reference
plan.

3. When a pre-specified number, i, of consecutive lots are
accepted, switch to inspecting only a fraction f of the lots. The
selection of the members of that fraction is done at random.

4. When a lot is rejected return to normal inspection.

The f and i
parameters

The parameters f and i are essential to calculating the probability of
acceptance for a skip-lot sampling plan. In this scheme, i, called the
clearance number, is a positive integer and the sampling fraction f is
such that 0 < f < 1. Hence, when f = 1 there is no longer skip-lot
sampling. The calculation of the acceptance probability for the skip-
lot sampling plan is performed via the following formula

where P is the probability of accepting a lot with a given proportion
of incoming defectives p, from the OC curve of the single sampling
plan.

The following relationships hold:

for a given i, the smaller is f, the greater is Pa 
for a given f, the smaller is i, the greater is Pa

http://www.itl.nist.gov/div898/handbook/index.htm
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Illustration of
a skip lot
sampling plan

An illustration of a a skip-lot sampling plan is given below.

ASN of skip-lot
sampling plan

An important property of skip-lot sampling plans is the average
sample number (ASN ). The ASN of a skip-lot sampling plan is

ASNskip-lot = (F)(ASNreference)

where F is defined by

Therefore, since 0 < F < 1, it follows that the ASN of skip-lot
sampling is smaller than the ASN of the reference sampling plan.

In summary, skip-lot sampling is preferred when the quality of the
submitted lots is excellent and the supplier can demonstrate a proven
track record.
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6. Process or Product Monitoring and Control 

6.3. Univariate and Multivariate Control Charts

Contents
of section
3

Control charts in this section are classified and described
according to three general types: variables, attributes and
multivariate. 

1. What are Control Charts? 
2. What are Variables Control Charts? 

1. Shewhart X bar and R and S Control Charts 
2. Individuals Control Charts 
3. Cusum Control Charts 

1. Cusum Average Run Length 
4. EWMA Control Charts 

3. What are Attributes Control Charts? 
1. Counts Control Charts 
2. Proportions Control Charts 

4. What are Multivariate Control Charts? 
1. Hotelling Control Charts 
2. Principal Components Control Charts
3. Multivariate EWMA Charts
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6.3.1. What are Control Charts?

Comparison of
univariate and
multivariate
control data

Control charts are used to routinely monitor quality.
Depending on the number of process characteristics to be
monitored, there are two basic types of control charts. The
first, referred to as a univariate control chart, is a graphical
display (chart) of one quality characteristic. The second,
referred to as a multivariate control chart, is a graphical
display of a statistic that summarizes or represents more than
one quality characteristic.

Characteristics
of control
charts

If a single quality characteristic has been measured or
computed from a sample, the control chart shows the value
of the quality characteristic versus the sample number or
versus time. In general, the chart contains a center line that
represents the mean value for the in-control process. Two
other horizontal lines, called the upper control limit (UCL)
and the lower control limit (LCL), are also shown on the
chart. These control limits are chosen so that almost all of the
data points will fall within these limits as long as the process
remains in-control. The figure below illustrates this.

Chart
demonstrating
basis of
control chart

Why control
charts "work"

The control limits as pictured in the graph might be .001
probability limits. If so, and if chance causes alone were
present, the probability of a point falling above the upper
limit would be one out of a thousand, and similarly, a point
falling below the lower limit would be one out of a thousand.
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We would be searching for an assignable cause if a point
would fall outside these limits. Where we put these limits
will determine the risk of undertaking such a search when in
reality there is no assignable cause for variation.

Since two out of a thousand is a very small risk, the 0.001
limits may be said to give practical assurances that, if a point
falls outside these limits, the variation was caused be an
assignable cause. It must be noted that two out of one
thousand is a purely arbitrary number. There is no reason
why it could not have been set to one out a hundred or even
larger. The decision would depend on the amount of risk the
management of the quality control program is willing to take.
In general (in the world of quality control) it is customary to
use limits that approximate the 0.002 standard.

Letting X denote the value of a process characteristic, if the
system of chance causes generates a variation in X that
follows the normal distribution, the 0.001 probability limits
will be very close to the 3  limits. From normal tables we
glean that the 3  in one direction is 0.00135, or in both
directions 0.0027. For normal distributions, therefore, the 3
limits are the practical equivalent of 0.001 probability limits.

Plus or minus
"3 sigma"
limits are
typical

In the U.S., whether X is normally distributed or not, it is an
acceptable practice to base the control limits upon a multiple
of the standard deviation. Usually this multiple is 3 and thus
the limits are called 3-sigma limits. This term is used
whether the standard deviation is the universe or population
parameter, or some estimate thereof, or simply a "standard
value" for control chart purposes. It should be inferred from
the context what standard deviation is involved. (Note that in
the U.K., statisticians generally prefer to adhere to
probability limits.)

If the underlying distribution is skewed, say in the positive
direction, the 3-sigma limit will fall short of the upper 0.001
limit, while the lower 3-sigma limit will fall below the 0.001
limit. This situation means that the risk of looking for
assignable causes of positive variation when none exists will
be greater than one out of a thousand. But the risk of
searching for an assignable cause of negative variation, when
none exists, will be reduced. The net result, however, will be
an increase in the risk of a chance variation beyond the
control limits. How much this risk will be increased will
depend on the degree of skewness.

If variation in quality follows a Poisson distribution, for
example, for which np = .8, the risk of exceeding the upper
limit by chance would be raised by the use of 3-sigma limits
from 0.001 to 0.009 and the lower limit reduces from 0.001
to 0. For a Poisson distribution the mean and variance both
equal np. Hence the upper 3-sigma limit is 0.8 + 3 sqrt(.8) =
3.48 and the lower limit = 0 (here sqrt denotes "square root").
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For np = .8 the probability of getting more than 3 successes =
0.009.

Strategies for
dealing with
out-of-control
findings

If a data point falls outside the control limits, we assume that
the process is probably out of control and that an
investigation is warranted to find and eliminate the cause or
causes.

Does this mean that when all points fall within the limits, the
process is in control? Not necessarily. If the plot looks non-
random, that is, if the points exhibit some form of systematic
behavior, there is still something wrong. For example, if the
first 25 of 30 points fall above the center line and the last 5
fall below the center line, we would wish to know why this is
so. Statistical methods to detect sequences or nonrandom
patterns can be applied to the interpretation of control charts.
To be sure, "in control" implies that all points are between
the control limits and they form a random pattern.
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6.3.2. What are Variables Control Charts?

During the 1920's, Dr. Walter A. Shewhart proposed a general
model for control charts as follows:

Shewhart
Control
Charts for
variables

Let w be a sample statistic that measures some continuously
varying quality characteristic of interest (e.g., thickness), and
suppose that the mean of w is w, with a standard deviation of 

w. Then the center line, the UCL and the LCL are

UCL = w   + k w 
Center Line = w 
LCL = w   - k w

where k is the distance of the control limits from the center
line, expressed in terms of standard deviation units. When k is
set to 3, we speak of 3-sigma control charts.

Historically, k = 3 has become an accepted standard in
industry.

The centerline is the process mean, which in general is
unknown. We replace it with a target or the average of all the
data. The quantity that we plot is the sample average, . The
chart is called the  chart.

We also have to deal with the fact that  is, in general,
unknown. Here we replace w with a given standard value, or
we estimate it by a function of the average standard deviation.
This is obtained by averaging the individual standard
deviations that we calculated from each of m preliminary (or
present) samples, each of size n. This function will be
discussed shortly.

It is equally important to examine the standard deviations in
ascertaining whether the process is in control. There is,
unfortunately, a slight problem involved when we work with
the usual estimator of . The following discussion will
illustrate this.

Sample
Variance

If 2 is the unknown variance of a probability distribution,
then an unbiased estimator of 2 is the sample variance
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However, s, the sample standard deviation is not an unbiased
estimator of . If the underlying distribution is normal, then s
actually estimates c4 , where c4 is a constant that depends on
the sample size n. This constant is tabulated in most text books
on statistical quality control and may be calculated using

C4 factor

To compute this we need a non-integer factorial, which is
defined for n/2 as follows:

Fractional
Factorials

For example, let n = 7. Then n/2 = 7/2 = 3.5 and

With this definition the reader should have no problem
verifying that the c4 factor for n = 10 is .9727.

 Mean and
standard
deviation of
the
estimators

So the mean or expected value of the sample standard
deviation is c4 .

The standard deviation of the sample standard deviation is

What are the differences between control limits and
specification limits ?

Control
limits vs.
specifications

Control Limits are used to determine if the process is in a state
of statistical control (i.e., is producing consistent output).

Specification Limits are used to determine if the product will
function in the intended fashion.

How many data points are needed to set up a control chart?
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How many
samples are
needed?

Shewhart gave the following rule of thumb:

"It has also been observed that a person would
seldom if ever be justified in concluding that a
state of statistical control of a given repetitive
operation or production process has been reached
until he had obtained, under presumably the same
essential conditions, a sequence of not less than
twenty five samples of size four that are in
control."

It is important to note that control chart properties, such as
false alarm probabilities, are generally given under the
assumption that the parameters, such as  and , are known.
When the control limits are not computed from a large amount
of data, the actual properties might be quite different from
what is assumed (see, e.g., Quesenberry, 1993).

When do we recalculate control limits?

When do we
recalculate
control
limits?

Since a control chart "compares" the current performance of
the process characteristic to the past performance of this
characteristic, changing the control limits frequently would
negate any usefulness.

So, only change your control limits if you have a valid,
compelling reason for doing so. Some examples of reasons:

When you have at least 30 more data points to add to the
chart and there have been no known changes to the
process

- you get a better estimate of the variability

If a major process change occurs and affects the way
your process runs.

If a known, preventable act changes the way the tool or
process would behave (power goes out, consumable is
corrupted or bad quality, etc.)

What are the WECO rules for signaling "Out of Control"?

General
rules for
detecting out
of control or
non-random
situaltions

WECO stands for Western Electric Company Rules 
 

       Any Point Above +3 Sigma  
 ---------------------------------------------    +3  LIMIT 
       2 Out of the Last 3 Points Above +2 Sigma  
 ---------------------------------------------    +2  LIMIT 
       4 Out of the Last 5 Points Above +1 Sigma  
 ---------------------------------------------    +1  LIMIT 
       8 Consecutive Points on This Side of Control Line  
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===================================   CENTER
LINE  
       8 Consecutive Points on This Side of Control Line  
 ---------------------------------------------    -1  LIMIT 
       4 Out of the Last 5 Points Below - 1 Sigma  
----------------------------------------------   -2  LIMIT 
       2 Out of the Last 3 Points Below -2 Sigma  
 ---------------------------------------------    -3  LIMIT 
       Any Point Below -3 Sigma 

Trend
Rules:

6 in a row trending up or down. 14 in a row
alternating up and down

WECO rules
based on
probabilities

The WECO rules are based on probability. We know that, for a
normal distribution, the probability of encountering a point
outside ± 3  is 0.3%. This is a rare event. Therefore, if we
observe a point outside the control limits, we conclude the
process has shifted and is unstable. Similarly, we can identify
other events that are equally rare and use them as flags for
instability. The probability of observing two points out of three
in a row between 2  and 3  and the probability of observing
four points out of five in a row between 1  and 2  are also
about 0.3%.

WECO rules
increase
false alarms

Note: While the WECO rules increase a Shewhart chart's
sensitivity to trends or drifts in the mean, there is a severe
downside to adding the WECO rules to an ordinary Shewhart
control chart that the user should understand. When following
the standard Shewhart "out of control" rule (i.e., signal if and
only if you see a point beyond the plus or minus 3 sigma
control limits) you will have "false alarms" every 371 points on
the average (see the description of Average Run Length or
ARL on the next page). Adding the WECO rules increases the
frequency of false alarms to about once in every 91.75 points,
on the average (see Champ and Woodall, 1987). The user has
to decide whether this price is worth paying (some users add
the WECO rules, but take them "less seriously" in terms of the
effort put into troubleshooting activities when out of control
signals occur).

With this background, the next page will describe how to
construct Shewhart variables control charts.

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/
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6.3.2.1. Shewhart X-bar and R and S Control
Charts

 and S Charts

 and S
Shewhart
Control
Charts

We begin with  and s charts. We should use the s chart first
to determine if the distribution for the process characteristic is
stable.

Let us consider the case where we have to estimate  by
analyzing past data. Suppose we have m preliminary samples
at our disposition, each of size n, and let si be the standard
deviation of the ith sample. Then the average of the m
standard deviations is

Control
Limits for 

 and S
Control
Charts

We make use of the factor c4 described on the previous page.

The statistic  is an unbiased estimator of . Therefore, the
parameters of the S chart would be

Similarly, the parameters of the  chart would be

, the "grand" mean is the average of all the observations.

http://www.itl.nist.gov/div898/handbook/index.htm
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It is often convenient to plot the  and s charts on one page.

 and R Control Charts

 and R
control
charts

If the sample size is relatively small (say equal to or less than
10), we can use the range instead of the standard deviation of
a sample to construct control charts on  and the range, R.
The range of a sample is simply the difference between the
largest and smallest observation.

There is a statistical relationship (Patnaik, 1946) between the
mean range for data from a normal distribution and , the
standard deviation of that distribution. This relationship
depends only on the sample size, n. The mean of R is d2 ,
where the value of d2 is also a function of n. An estimator of 
is therefore R /d2.

Armed with this background we can now develop the  and R
control chart.

Let R1, R2, ..., Rk, be the range of k samples. The average
range is

Then an estimate of  can be computed as

 control
charts

So, if we use  (or a given target) as an estimator of  and 
/d2 as an estimator of , then the parameters of the  chart
are

The simplest way to describe the limits is to define the factor 
 and the construction of the  becomes
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The factor A2 depends only on n, and is tabled below.

The R chart

R control
charts

This chart controls the process variability since the sample
range is related to the process standard deviation. The center
line of the R chart is the average range.

To compute the control limits we need an estimate of the true,
but unknown standard deviation W = R/ . This can be found
from the distribution of W = R/  (assuming that the items that
we measure follow a normal distribution). The standard
deviation of W is d3, and is a known function of the sample
size, n. It is tabulated in many textbooks on statistical quality
control.

Therefore since R = W , the standard deviation of R is  R =
d3 . But since the true  is unknown, we may estimate  R by

As a result, the parameters of the R chart with the customary
3-sigma control limits are

As was the case with the control chart parameters for the
subgroup averages, defining another set of factors will ease the
computations, namely:

D3 = 1 - 3 d3 / d2 and D4 = 1 + 3 d3 / d2. These yield

The factors D3 and D4 depend only on n, and are tabled
below.

 
Factors for Calculating Limits for  and R Charts
n A2 D3 D4

2 1.880 0 3.267
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3 1.023 0 2.575
4 0.729 0 2.282
5 0.577 0 2.115
6 0.483 0 2.004
7 0.419 0.076 1.924
8 0.373 0.136 1.864
9 0.337 0.184 1.816
10 0.308 0.223 1.777

In general, the range approach is quite satisfactory for sample
sizes up to around 10. For larger sample sizes, using subgroup
standard deviations is preferable. For small sample sizes, the
relative efficiency of using the range approach as opposed to
using standard deviations is shown in the following table.

Efficiency
of R versus
S/c4

n Relative
Efficiency

2 1.000
3 0.992
4 0.975
5 0.955
6 0.930
10 0.850

A typical sample size is 4 or 5, so not much is lost by using
the range for such sample sizes.

 Time To Detection or Average Run Length (ARL)

Waiting
time to
signal "out
of control"

Two important questions when dealing with control charts are:

1. How often will there be false alarms where we look for
an assignable cause but nothing has changed?

2. How quickly will we detect certain kinds of systematic
changes, such as mean shifts?

The ARL tells us, for a given situation, how long on the
average we will plot successive control charts points before we
detect a point beyond the control limits.

For an  chart, with no change in the process, we wait on the
average 1/p points before a false alarm takes place, with p
denoting the probability of an observation plotting outside the
control limits. For a normal distribution, p = .0027 and the
ARL is approximately 371.

A table comparing Shewhart  chart ARL's to Cumulative
Sum (CUSUM) ARL's for various mean shifts is given later in
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this section.

There is also (currently) a web site developed by Galit
Shmueli that will do ARL calculations interactively with the
user, for Shewhart charts with or without additional (Western
Electric) rules added.

http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sqconline.com/
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.nist.gov/cgi-bin/exit_nist.cgi?url=http://www.sematech.org
http://www.nist.gov/
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6.3.2.2. Individuals Control Charts

Samples are Individual Measurements

Moving
range used
to derive
upper and
lower limits

Control charts for individual measurements, e.g., the sample size =
1, use the moving range of two successive observations to measure
the process variability.

The moving range is defined as

which is the absolute value of the first difference (e.g., the
difference between two consecutive data points) of the data.
Analogous to the Shewhart control chart, one can plot both the data
(which are the individuals) and the moving range.

Individuals
control
limits for an
observation

For the control chart for individual measurements, the lines plotted
are:

where  is the average of all the individuals and  is the
average of all the moving ranges of two observations. Keep in mind
that either or both averages may be replaced by a standard or
target, if available. (Note that 1.128 is the value of d2 for n = 2).

Example of
moving
range

The following example illustrates the control chart for individual
observations. A new process was studied in order to monitor flow
rate. The first 10 batches resulted in

Batch
Number

Flowrate
x

Moving
Range
MR

http://www.itl.nist.gov/div898/handbook/index.htm
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1 49.6  
2 47.6 2.0
3 49.9 2.3
4 51.3 1.4
5 47.8 3.5
6 51.2 3.4
7 52.6 1.4
8 52.4 0.2
9 53.6 1.2

10 52.1 1.5
   = 50.81  =

1.8778

Limits for
the moving
range chart

This yields the parameters below.

Example of
individuals
chart

The control chart is given below

The process is in control, since none of the plotted points fall
outside either the UCL or LCL.

Alternative
for
constructing
individuals
control

Note: Another way to construct the individuals chart is by using
the standard deviation. Then we can obtain the chart from
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chart It is preferable to have the limits computed this way for the start of
Phase 2.

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/
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6.3.2.3. CUSUM Control Charts

CUSUM is
an efficient
alternative
to
Shewhart
procedures

CUSUM charts, while not as intuitive and simple to operate as
Shewhart charts, have been shown to be more efficient in
detecting small shifts in the mean of a process. In particular,
analyzing ARL's for CUSUM control charts shows that they
are better than Shewhart control charts when it is desired to
detect shifts in the mean that are 2 sigma or less.

CUSUM works as follows: Let us collect m samples, each of
size n, and compute the mean of each sample. Then the
cumulative sum (CUSUM) control chart is formed by plotting
one of the following quantities:

Definition
of
cumulative
sum against the sample number m, where  is the estimate of the

in-control mean and  is the known (or estimated) standard
deviation of the sample means. The choice of which of these
two quantities is plotted is usually determined by the statistical
software package. In either case, as long as the process

remains in control centered at , the CUSUM plot will show
variation in a random pattern centered about zero. If the
process mean shifts upward, the charted CUSUM points will
eventually drift upwards, and vice versa if the process mean
decreases.

V-Mask
used to
determine
if process
is out of
control

A visual procedure proposed by Barnard in 1959, known as
the V-Mask, is sometimes used to determine whether a process
is out of control. More often, the tabular form of the V-Mask
is preferred. The tabular form is illustrated later in this section.

A V-Mask is an overlay shape in the form of a V on its side
that is superimposed on the graph of the cumulative sums. The
origin point of the V-Mask (see diagram below) is placed on
top of the latest cumulative sum point and past points are
examined to see if any fall above or below the sides of the V.
As long as all the previous points lie between the sides of the
V, the process is in control. Otherwise (even if one point lies
outside) the process is suspected of being out of control.

http://www.itl.nist.gov/div898/handbook/index.htm
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Sample V-
Mask
demonstrating
an out of
control
process

Interpretation
of the V-
Mask on the
plot

In the diagram above, the V-Mask shows an out of control
situation because of the point that lies above the upper arm.
By sliding the V-Mask backwards so that the origin point
covers other cumulative sum data points, we can determine
the first point that signaled an out-of-control situation. This
is useful for diagnosing what might have caused the process
to go out of control.

From the diagram it is clear that the behavior of the V-Mask
is determined by the distance k (which is the slope of the
lower arm) and the rise distance h. These are the design
parameters of the V-Mask. Note that we could also specify
d and the vertex angle (or, as is more common in the
literature, θ = 1/2 of the vertex angle) as the design
parameters, and we would end up with the same V-Mask.

In practice, designing and manually constructing a V-Mask
is a complicated procedure. A CUSUM spreadsheet style
procedure shown below is more practical, unless you have
statistical software that automates the V-Mask
methodology. Before describing the spreadsheet approach,
we will look briefly at an example of a V-Mask in graph
form.

V-Mask
Example

An example will be used to illustrate the construction and
application of a V-Mask. The 20 data points

324.925, 324.675, 324.725, 324.350, 325.350, 325.225,
324.125, 324.525, 325.225, 324.600, 324.625, 325.150,
328.325, 327.250, 327.825, 328.500, 326.675, 327.775,
326.875, 328.350

are each the average of samples of size 4 taken from a
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process that has an estimated mean of 325. Based on
process data, the process standard deviation is 1.27 and
therefore the sample means have a standard deviation of
1.27/(41/2)  = 0.635.

We can design a V-Mask using h and k or we can use an
alpha and beta design approach. For the latter approach we
must specify

α: the probability of a false alarm, i.e., concluding
that a shift in the process has occurred, while in fact it
did not,

β: the the probability of not detecting that a shift in
the process mean has, in fact, occurred, and

δ (delta): the amount of shift in the process mean that
we wish to detect, expressed as a multiple of the
standard deviation of the data points (which are the
sample means).

Note: Technically, α and β are calculated in terms of one
sequential trial where we monitor Sm until we have either
an out-of-control signal or Sm returns to the starting point
(and the monitoring begins, in effect, all over again).

The values of h and k are related to α, β, and δ based on the
following equations (adapted from Montgomery, 2000).

In our example we choose α = 0.0027 (equivalent to the
plus or minus 3 sigma criteria used in a standard Shewhart
chart), and β = 0.01. Finally, we decide we want to quickly
detect a shift as large as 1 sigma, which sets δ = 1.

CUSUM
Chart with
V-Mask

When the V-Mask is placed over the last data point, the
mask clearly indicates an out of control situation.
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CUSUM
chart after
moving V-
Mask to first
out of control
point

We next move the V-Mask and back to the first point that
indicated the process was out of control. This is point
number 14, as shown below.
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Rule of
thumb for
choosing h
and k

Note: A general rule of thumb (Montgomery) if one chooses
to design with the h and k approach, instead of the α and β
method illustrated above, is to choose k to be half the δ shift
(0.5 in our example) and h to be around 4 or 5.

For more information on CUSUM chart design, see Woodall
and Adams (1993).

Tabular or Spreadsheet Form of the V-Mask

A
spreadsheet
approach to
CUSUM
monitoring

Most users of CUSUM procedures prefer tabular charts over
the V-Mask. The V-Mask is actually a carry-over of the pre-
computer era. The tabular method can be quickly
implemented by standard spreadsheet software.

To generate the tabular form we use the h and k parameters
expressed in the original data units. It is also possible to use
sigma units.

The following quantities are calculated:

Shi(i) = max(0, Shi(i-1) + xi -  - k)

Slo(i) = max(0, Slo(i-1) +  - k - xi) )

where Shi(0) and Slo(0) are 0. When either Shi(i) or Slo(i)
exceeds h, the process is out of control.

Example of
spreadsheet
calculations

We will construct a CUSUM tabular chart for the example
described above. For this example, the parameter are h =
4.1959 and k = 0.3175. Using these design values, the tabular
form of the example is

h k

325 4.1959 0.3175

      Increase
in mean

  Decrease
in mean

   

Group x x-
325

x-325-k Shi 325-k-x Slo CUSUM

1 324.93 -
0.07

-0.39 0.00 -0.24 0.00 -0.007

2 324.68 -
0.32

-0.64 0.00 0.01 0.01 -0.40

3 324.73 -
0.27

-0.59 0.00 -0.04 0.00 -0.67

4 324.35 -
0.65

-0.97 0.00 0.33 0.33 -1.32

5 325.35 0.35 0.03 0.03 -0.67 0.00 -0.97
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6 325.23 0.23 -0.09 0.00 -0.54 0.00 -0.75
7 324.13 -

0.88
-1.19 0.00 0.56 0.56 -1.62

8 324.53 -
0.48

-0.79 0.00 0.16 0.72 -2.10

9 325.23 0.23 -0.09 0.00 0.54 0.17 -1.87
10 324.60 -

0.40
-0.72 0.00 0.08 0.25 -2.27

11 324.63 -
0.38

-0.69 0.00 0.06 0.31 -2.65

12 325.15 0.15 -0.17 0.00 0.47 0.00 -2.50
13 328.33 3.32 3.01 3.01 -3.64 0.00 0.83
14 327.25 2.25 1.93 4.94* -0.57 0.00 3.08
15 327.83 2.82 2.51 7.45* -3.14 0.00 5.90
16 328.50 3.50 3.18 10.63* -3.82 0.00 9.40
17 326.68 1.68 1.36 11.99* -1.99 0.00 11.08
18 327.78 2.77 2.46 14.44* -3.09 0.00 13.85
19 326.88 1.88 1.56 16.00* -2.19 0.00 15.73
20 328.35 3.35 3.03 19.04* -3.67 0.00 19.08

* = out of control signal

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/
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6.3.2.3.1. Cusum Average Run Length

The Average Run Length of Cumulative Sum Control
Charts

The ARL of
CUSUM

The operation of obtaining samples to use with a cumulative sum
(CUSUM) control chart consists of taking samples of size n and
plotting the cumulative sums

versus the sample number r, where  is the sample mean and k is a
reference value.

In practice, k might be set equal to ( + 1)/2, where  is the
estimated in-control mean, which is sometimes known as the
acceptable quality level, and 1 is referred to as the rejectable
quality level.

If the distance between a plotted point and the lowest previous point
is equal to or greater than h, one concludes that the process mean has
shifted (increased).

h is decision
limit

Hence, h is referred to as the decision limit. Thus the sample size n,
reference value k, and decision limit h are the parameters required
for operating a one-sided CUSUM chart. If one has to control both
positive and negative deviations, as is usually the case, two one-
sided charts are used, with respective values k1, k2, (k1 > k2) and
respective decision limits h and -h.

Standardizing
shift in mean
and decision
limit

The shift in the mean can be expressed as  - k. If we are dealing
with normally distributed measurements, we can standardize this
shift by

Similarly, the decision limit can be standardized by

http://www.itl.nist.gov/div898/handbook/index.htm
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Determination
of the ARL,
given h and k

The average run length (ARL) at a given quality level is the average
number of samples (subgroups) taken before an action signal is
given. The standardized parameters ks and hs together with the
sample size n are usually selected to yield approximate ARL's L0 and
L1 at acceptable and rejectable quality levels 0 and 1 respectively.
We would like to see a high ARL, L0, when the process is on target,
(i.e. in control), and a low ARL, L1, when the process mean shifts to
an unsatisfactory level.

In order to determine the parameters of a CUSUM chart, the
acceptable and rejectable quality levels along with the desired
respective ARL ' s are usually specified. The design parameters can
then be obtained by a number of ways. Unfortunately, the
calculations of the ARL for CUSUM charts are quite involved.

There are several nomographs available from different sources that
can be utilized to find the ARL's when the standardized h and k are
given. Some of the nomographs solve the unpleasant integral
equations that form the basis of the exact solutions, using an
approximation of Systems of Linear Algebraic Equations (SLAE).
This Handbook used a computer program that furnished the required
ARL's given the standardized h and k. An example is given below:

Example of
finding ARL's
given the
standardized
h and k

mean shift Shewart
(k = .5) 4 5

0 336 930 371.00
.25 74.2 140 281.14
.5 26.6 30.0 155.22
.75 13.3 17.0 81.22
1.00 8.38 10.4 44.0
1.50 4.75 5.75 14.97
2.00 3.34 4.01 6.30
2.50 2.62 3.11 3.24
3.00 2.19 2.57 2.00
4.00 1.71 2.01 1.19

Using the
table

If k = .5, then the shift of the mean (in multiples of the standard
deviation of the mean) is obtained by adding .5 to the first column.
For example to detect a mean shift of 1 sigma at h = 4, the ARL =
8.38. (at first column entry of .5).

The last column of the table contains the ARL's for a Shewhart
control chart at selected mean shifts. The ARL for Shewhart = 1/p,
where p is the probability for a point to fall outside established
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control limits. Thus, for 3-sigma control limits and assuming
normality, the probability to exceed the upper control limit = .00135
and to fall below the lower control limit is also .00135 and their sum
= .0027. (These numbers come from standard normal distribution
tables or computer programs, setting z = 3). Then the ARL = 1/.0027
= 370.37. This says that when a process is in control one expects an
out-of-control signal (false alarm) each 371 runs.

ARL if a 1
sigma shift
has occurred

When the means shifts up by 1 sigma, then the distance between the
upper control limit and the shifted mean is 2 sigma (instead of 3 ).
Entering normal distribution tables with z = 2 yields a probability of
p = .02275 to exceed this value. The distance between the shifted
mean and the lower limit is now 4 sigma and the probability of  <
-4  is only .000032 and can be ignored. The ARL is 1 / .02275 =
43.96 .

Shewhart is
better for
detecting
large shifts,
CUSUM is
faster for
small shifts

The conclusion can be drawn that the Shewhart chart is superior for
detecting large shifts and the CUSUM scheme is faster for small
shifts. The break-even point is a function of h, as the table shows.

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/
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EWMA
statistic

The Exponentially Weighted Moving Average (EWMA) is a
statistic for monitoring the process that averages the data in a
way that gives less and less weight to data as they are further
removed in time.

Comparison
of Shewhart
control
chart and
EWMA
control
chart
techniques

For the Shewhart chart control technique, the decision
regarding the state of control of the process at any time, t,
depends solely on the most recent measurement from the
process and, of course, the degree of 'trueness' of the
estimates of the control limits from historical data. For the
EWMA control technique, the decision depends on the
EWMA statistic, which is an exponentially weighted average
of all prior data, including the most recent measurement.

By the choice of weighting factor, , the EWMA control
procedure can be made sensitive to a small or gradual drift in
the process, whereas the Shewhart control procedure can only
react when the last data point is outside a control limit.

Definition
of EWMA

The statistic that is calculated is:

EWMAt =  Yt + ( 1- ) EWMAt-1    for t = 1, 2, ..., n.

where

EWMA0 is the mean of historical data (target)
Yt is the observation at time t
n is the number of observations to be monitored
including EWMA0
0 <   1 is a constant that determines the depth of
memory of the EWMA.

The equation is due to Roberts (1959).

Choice of
weighting
factor

The parameter  determines the rate at which 'older' data
enter into the calculation of the EWMA statistic. A value of 
= 1 implies that only the most recent measurement influences
the EWMA (degrades to Shewhart chart). Thus, a large value
of  = 1 gives more weight to recent data and less weight to
older data; a small value of  gives more weight to older
data. The value of  is usually set between 0.2 and 0.3
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(Hunter) although this choice is somewhat arbitrary. Lucas
and Saccucci (1990) give tables that help the user select .

Variance of
EWMA
statistic

The estimated variance of the EWMA statistic is
approximately

s2
ewma = ( /(2- )) s2

when t is not small, where s is the standard deviation
calculated from the historical data.

Definition
of control
limits for
EWMA

The center line for the control chart is the target value or
EWMA0. The control limits are:

UCL = EWMA0 + ksewma 
LCL = EWMA0 - ksewma

where the factor k is either set equal 3 or chosen using the
Lucas and Saccucci (1990) tables. The data are assumed to
be independent and these tables also assume a normal
population.

As with all control procedures, the EWMA procedure
depends on a database of measurements that are truly
representative of the process. Once the mean value and
standard deviation have been calculated from this database,
the process can enter the monitoring stage, provided the
process was in control when the data were collected. If not,
then the usual Phase 1 work would have to be completed
first.

Example of
calculation
of
parameters
for an
EWMA
control
chart

To illustrate the construction of an EWMA control chart,
consider a process with the following parameters calculated
from historical data:

EWMA0 = 50 
s = 2.0539

with  chosen to be 0.3 so that  / (2- ) = .3 / 1.7 = 0.1765
and the square root = 0.4201. The control limits are given by

UCL = 50 + 3 (0.4201)(2.0539) = 52.5884 
LCL = 50 - 3 (0.4201) (2.0539) = 47.4115

Sample
data

Consider the following data consisting of 20 points where 1 -
10 are on the top row from left to right and 11-20 are on the
bottom row from left to right:

  52.0 47.0 53.0 49.3 50.1 47.0
  51.0 50.1 51.2 50.5 49.6 47.6
  49.9 51.3 47.8 51.2 52.6 52.4
  53.6 52.1
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EWMA
statistics for
sample data

These data represent control measurements from the process
which is to be monitored using the EWMA control chart
technique. The corresponding EWMA statistics that are
computed from this data set are:

  50.00 50.60 49.52 50.56 50.18
  50.16 49.12 49.75 49.85 50.26
  50.33 50.11 49.36 49.52 50.05
  49.34 49.92 50.73 51.23 51.94

Sample
EWMA
plot

The control chart is given below.

Interpretation
of EWMA
control chart

The red dots are the raw data; the jagged line is the EWMA
statistic over time. The chart tells us that the process is in
control because all EWMAt lie between the control limits.
However, there seems to be a trend upwards for the last 5
periods.
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Attributes
data arise
when
classifying
or counting
observations

The Shewhart control chart plots quality characteristics that
can be measured and expressed numerically. We measure
weight, height, position, thickness, etc. If we cannot
represent a particular quality characteristic numerically, or if
it is impractical to do so, we then often resort to using a
quality characteristic to sort or classify an item that is
inspected into one of two "buckets".

An example of a common quality characteristic classification
would be designating units as "conforming units" or
"nonconforming units". Another quality characteristic criteria
would be sorting units into "non defective" and "defective"
categories. Quality characteristics of that type are called
attributes.

Note that there is a difference between "nonconforming to an
engineering specification" and "defective" -- a
nonconforming unit may function just fine and be, in fact,
not defective at all, while a part can be "in spec" and not
fucntion as desired (i.e., be defective).

Examples of quality characteristics that are attributes are the
number of failures in a production run, the proportion of
malfunctioning wafers in a lot, the number of people eating
in the cafeteria on a given day, etc.

Types of
attribute
control
charts

Control charts dealing with the number of defects or
nonconformities are called c charts (for count).

Control charts dealing with the proportion or fraction of
defective product are called  p charts (for proportion).

There is another chart which handles defects per unit, called
the u chart (for unit). This applies when we wish to work
with the average number of nonconformities per unit of
product.

For additional references, see Woodall (1997) which reviews
papers showing examples of attribute control charting,
including examples from semiconductor manufacturing such
as those examining the spatial depencence of defects.

http://www.itl.nist.gov/div898/handbook/index.htm
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Defective
items vs
individual
defects

The literature differentiates between defect and defective,
which is the same as differentiating between
nonconformity and nonconforming units. This may sound
like splitting hairs, but in the interest of clarity let's try to
unravel this man-made mystery.

Consider a wafer with a number of chips on it. The wafer
is referred to as an "item of a product". The chip may be
referred to as "a specific point". There exist certain
specifications for the wafers. When a particular wafer (e.g.,
the item of the product) does not meet at least one of the
specifications, it is classified as a nonconforming item.
Furthermore, each chip, (e.g., the specific point) at which a
specification is not met becomes a defect or
nonconformity.

So, a nonconforming or defective item contains at least
one defect or nonconformity. It should be pointed out that
a wafer can contain several defects but still be classified as
conforming. For example, the defects may be located at
noncritical positions on the wafer. If, on the other hand, the
number of the so-called "unimportant" defects becomes
alarmingly large, an investigation of the production of
these wafers is warranted.

Control charts involving counts can be either for the total
number of nonconformities (defects) for the sample of
inspected units, or for the average number of defects per
inspection unit.

Poisson
approximation
for numbers
or counts of
defects

Let us consider an assembled product such as a
microcomputer. The opportunity for the occurrence of any
given defect may be quite large. However, the probability
of occurrence of a defect in any one arbitrarily chosen spot
is likely to be very small. In such a case, the incidence of
defects might be modeled by a Poisson distribution.
Actually, the Poisson distribution is an approximation of
the binomial distribution and applies well in this capacity
according to the following rule of thumb:

The sample size n should be equal to or larger
than 20 and the probability of a single success,
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p, should be smaller than or equal to .05. If n 
 100, the approximation is excellent if np is

also  10.

Illustrate
Poisson
approximation
to binomial

To illustrate the use of the Poisson distribution as an
approximation of a binomial distribution, consider the
following comparison: Let p, the probability of a single
success in n = 200 trials, be .025.

Find the probability of exactly 3 successes. If we assume
that p remains constant then the solution follows the
binomial distribution rules, that is:

By the Poisson approximation we have

and

The inspection
unit

Before the control chart parameters are defined there is one
more definition: the inspection unit. We shall count the
number of defects that occur in a so-called inspection unit.
More often than not, an inspection unit is a single unit or
item of product; for example, a wafer. However,
sometimes the inspection unit could consist of five wafers,
or ten wafers and so on. The size of the inspection units
may depend on the recording facility, measuring
equipment, operators, etc.

Suppose that defects occur in a given inspection unit
according to the Poisson distribution, with parameter c
(often denoted by np or the Greek letter ). In other words

Control charts
for counts,
using the
Poisson
distribution

where x is the number of defects and c > 0 is the parameter
of the Poisson distribution. It is known that both the mean
and the variance of this distribution are equal to c. Then
the k-sigma control chart is
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If the LCL comes out negative, then there is no lower
control limit. This control scheme assumes that a standard
value for c is available. If this is not the case then c may
be estimated as the average of the number of defects in a
preliminary sample of inspection units, call it . Usually k
is set to 3 by many practioners.

Control chart
example using
counts

An example may help to illustrate the construction of
control limits for counts data. We are inspecting 25
successive wafers, each containing 100 chips. Here the
wafer is the inspection unit. The observed number of
defects are

Wafer Number Wafer Number
Number of Defects Number of Defects

1 16 14 16
2 14 15 15
3 28 16 13
4 16 17 14
5 12 18 16
6 20 19 11
7 10 20 20
8 12 21 11
9 10 22 19

10 17 23 16
11 19 24 31
12 17 25 13
13 14    

From this table we have

Sample
counts
control

Control Chart for Counts
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chart

Transforming Poisson Data

Normal
approximation
to Poisson is
adequate
when the
mean of the
Poisson is at
least 5

We have seen that the 3-sigma limits for a c chart, where c
represents the number of nonconformities, are given by

where it is assumed that the normal approximation to the
Poisson distribution holds, hence the symmetry of the
control limits. It is shown in the literature that the normal
approximation to the Poisson is adequate when the mean of
the Poisson is at least 5. When applied to the c chart this
implies that the mean of the defects should be at least 5.
This requirement will often be met in practice, but still,
when the mean is smaller than 9 (solving the above
equation) there will be no lower control limit.

Let the mean be 10. Then the lower control limit = 0.513.
However, P(c = 0) = .000045, using the Poisson formula.
This is only 1/30 of the assumed area of .00135. So one
has to raise the lower limit so as to get as close as possible
to .00135. From Poisson tables or computer software we
find that P(1) = .0005 and P(2) = .0027, so the lower limit
should actually be 2 or 3.

Transforming
count data
into
approximately
normal data

To avoid this type of problem, we may resort to a
transformation that makes the transformed data match the
normal distribution better. One such transformation
described by Ryan (2000) is

which is, for a large sample, approximately normally
distributed with mean = 2  and variace = 1, where  is
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the mean of the Poisson distribution.

Similar transformations have been proposed by Anscombe
(1948) and Freeman and Tukey (1950). When applied to a
c chart these are

The repspective control limits are

While using transformations may result in meaningful
control limits, one has to bear in mind that the user is now
working with data on a different scale than the original
measurements. There is another way to remedy the
problem of symmetric limits applied to non symmetric
cases, and that is to use probability limits. These can be
obtained from tables given by Molina (1973). This allows
the user to work with data on the original scale, but they
require special tables to obtain the limits. Of course,
software might be used instead.

Warning for
highly skewed
distributions

Note: In general, it is not a good idea to use 3-sigma limits
for distributions that are highly skewed (see Ryan and
Schwertman (1997) for more about the possibly extreme
consequences of doing this).
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p is the
fraction
defective in
a lot or
population

The proportion or fraction nonconforming (defective) in a
population is defined as the ratio of the number of
nonconforming items in the population to the total number of
items in that population. The item under consideration may
have one or more quality characteristics that are inspected
simultaneously. If at least one of the characteristics does not
conform to standard, the item is classified as nonconforming.

The fraction or proportion can be expressed as a decimal, or,
when multiplied by 100, as a percent. The underlying
statistical principles for a control chart for proportion
nonconforming are based on the binomial distribution.

Let us suppose that the production process operates in a stable
manner, such that the probability that a given unit will not
conform to specifications is p. Furthermore, we assume that
successive units produced are independent. Under these
conditions, each unit that is produced is a realization of a
Bernoulli random variable with parameter p. If a random
sample of n units of product is selected and if D is the number
of units that are nonconforming, the D follows a binomial
distribution with parameters n and p

The
binomial
distribution
model for
number of
defectives
in a sample The mean of D is np and the variance is np(1-p). The sample

proportion nonconforming is the ratio of the number of
nonconforming units in the sample, D, to the sample size n,

The mean and variance of this estimator are

and

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda366i.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda366i.htm


6.3.3.2. Proportions Control Charts

http://www.itl.nist.gov/div898/handbook/pmc/section3/pmc332.htm[6/27/2012 2:36:02 PM]

This background is sufficient to develop the control chart for
proportion or fraction nonconforming. The chart is called the
p-chart.

p control
charts for
lot
proportion
defective

If the true fraction conforming p is known (or a standard
value is given), then the center line and control limits of the
fraction nonconforming control chart is

When the process fraction (proportion) p is not known, it
must be estimated from the available data. This is
accomplished by selecting m preliminary samples, each of
size n. If there are Di defectives in sample i, the fraction
nonconforming in sample i is

and the average of these individuals sample fractions is

The  is used instead of p in the control chart setup.

Example of
a p-chart

A numerical example will now be given to illustrate the above
mentioned principles. The location of chips on a wafer is
measured on 30 wafers.

On each wafer 50 chips are measured and a defective is
defined whenever a misregistration, in terms of horizontal
and/or vertical distances from the center, is recorded. The
results are

Sample Fraction Sample Fraction Sample Fraction
Number Defectives Number Defectives Number Defectives

1 .24 11 .10 21 .40
2 .30 12 .12 22 .36
3 .16 13 .34 23 .48
4 .20 14 .24 24 .30
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5 .08 15 .44 25 .18
6 .14 16 .16 26 .24
7 .32 17 .20 27 .14
8 .18 18 .10 28 .26
9 .28 19 .26 29 .18
10 .20 20 .22 30 .12

Sample
proportions
control
chart

The corresponding control chart is given below:
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Multivariate
control
charts and
Hotelling's 
T 2 statistic

It is a fact of life that most data are naturally multivariate.
Hotelling in 1947 introduced a statistic which uniquely lends
itself to plotting multivariate observations. This statistic,
appropriately named Hotelling's T 2, is a scalar that combines
information from the dispersion and mean of several variables.
Due to the fact that computations are laborious and fairly
complex and require some knowledge of matrix algebra,
acceptance of multivariate control charts by industry was slow
and hesitant.

Multivariate
control
charts now
more
accessible

Nowadays, modern computers in general and the PC in
particular have made complex calculations accessible and
during the last decade, multivariate control charts were given
more attention. In fact, the multivariate charts which display the
Hotelling T 2 statistic became so popular that they sometimes
are called Shewhart charts as well (e.g., Crosier, 1988),
although Shewhart had nothing to do with them.

Hotelling
charts for
both means
and
dispersion

As in the univariate case, when data are grouped, the T 2 chart
can be paired with a chart that displays a measure of variability
within the subgroups for all the analyzed characteristics. The
combined T 2 and  (dispersion) charts are thus a multivariate
counterpart of the univariate  and S (or  and R) charts.

Hotelling
mean and
dispersion
control
charts

An example of a Hotelling T 2 and  pair of charts is given
below:
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Interpretation
of sample
Hotelling
control
charts

Each chart represents 14 consecutive measurements on the
means of four variables. The T 2 chart for means indicates an
out-of-control state for groups 1,2 and 9-11. The T 2

d chart for
dispersions indicate that groups 10, 13 and 14 are also out of
control. The interpretation is that the multivariate system is
suspect. To find an assignable cause, one has to resort to the
individual univariate control charts or some other univariate
procedure that should accompany this multivariate chart.

Additional
discussion

For more details and examples see the next page and also
Tutorials, section 5, subsections 4.3, 4.3.1 and 4.3.2. An
introduction to Elements of multivariate analysis is also given
in the Tutorials.
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Definition
of
Hotelling's
T 2

"distance"
statistic

The Hotelling T 2 distance is a measure that accounts for the
covariance structure of a multivariate normal distribution. It
was proposed by Harold Hotelling in 1947 and is called
Hotelling T 2. It may be thought of as the multivariate
counterpart of the Student's-t statistic.

The T 2 distance is a constant multiplied by a quadratic form.
This quadratic form is obtained by multiplying the following
three quantities:

1. The vector of deviations between the
observations and the mean m, which is
expressed by (X-m)',

2. The inverse of the covariance matrix, S-1,

3. The vector of deviations, (X-m).

It should be mentioned that for independent variables, the
covariance matrix is a diagonal matrix and T 2 becomes
proportional to the sum of squared standardized variables.

In general, the higher the T 2 value, the more distant is the
observation from the mean. The formula for computing the T 2

is:

The constant c is the sample size from which the covariance
matrix was estimated.

T 2 readily
graphable

The T 2 distances lend themselves readily to graphical
displays and as a result the T 2-chart is the most popular
among the multivariate control charts.

Estimation of the Mean and Covariance Matrix

Mean and
Covariance
matrices

Let X1,...Xn be n p-dimensional vectors of observations that
are sampled independently from Np(m, ) with p < n-1, with 
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 the covariance matrix of X. The observed mean vector 
and the sample dispersion matrix

are the unbiased estimators of m and , respectively.

Additional
discussion

See Tutorials (section 5), subsections 4.3, 4.3.1 and 4.3.2 for
more details and examples. An introduction to Elements of
multivariate analysis is also given in the Tutorials.
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Problems
with T 2

charts

Although the T 2 chart is the most popular, easiest to use and
interpret method for handling multivariate process data, and
is beginning to be widely accepted by quality engineers and
operators, it is not a panacea. First, unlike the univariate case,
the scale of the values displayed on the chart is not related to
the scales of any of the monitored variables. Secondly, when
the T 2 statistic exceeds the upper control limit (UCL), the
user does not know which particular variable(s) caused the
out-of-control signal.

Run
univariate
charts
along with
the
multivariate
ones

With respect to scaling, we strongly advise to run individual
univariate charts in tandem with the multivariate chart. This
will also help in honing in on the culprit(s) that might have
caused the signal. However, individual univariate charts
cannot explain situations that are a result of some problems
in the covariance or correlation between the variables. This is
why a dispersion chart must also be used.

Another
way to
monitor
multivariate
data:
Principal
Components
control
charts

Another way to analyze the data is to use principal
components. For each multivariate measurement (or
observation), the principal components are linear
combinations of the standardized p variables (to standardize
subtract their respective targets and divide by their standard
deviations). The principal components have two important
advantages:

1. the new variables are uncorrelated (or almost)

2. very often, a few (sometimes 1 or 2) principal
components may capture most of the variability in the
data so that we do not have to use all of the p principal
components for control.

Eigenvalues Unfortunately, there is one big disadvantage: The identity of
the original variables is lost! However, in some cases the
specific linear combinations corresponding to the principal
components with the largest eigenvalues may yield
meaningful measurement units. What is being used in control
charts are the principal factors.
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A principal factor is the principal component divided by the
square root of its eigenvalue.

Additional
discussion

More details and examples are given in the Tutorials (section
5).
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6.3.4.3. Multivariate EWMA Charts

Multivariate EWMA Control Chart

Univariate
EWMA
model

The model for a univariate EWMA chart is given by:

where Zi is the ith EWMA, Xi is the the ith observation, Z0 is
the average from the historical data, and 0 <   1.

Multivariate
EWMA
model

In the multivariate case, one can extend this formula to

where Zi is the ith EWMA vector, Xi is the the ith
observation vector i = 1, 2, ..., n, Z0 is the vector of variable
values from the historical data,  is the diag( 1, 2, ... , p)
which is a diagonal matrix with 1, 2, ... , p on the main
diagonal, and p is the number of variables; that is the number
of elements in each vector.

Illustration of
multivariate
EWMA

The following illustration may clarify this. There are p
variables and each variable contains n observations. The
input data matrix looks like:

The quantity to be plotted on the control chart is
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Simplification It has been shown (Lowry et al., 1992) that the (k,l)th
element of the covariance matrix of the ith EWMA, , is

where  is the (k,l)th element of , the covariance matrix
of the X's.

If 1 = 2 = ... = p = , then the above expression simplifies
to

where  is the covariance matrix of the input data.

Further
simplification

There is a further simplification. When i becomes large, the
covariance matrix may be expressed as:

The question is "What is large?". When we examine the
formula with the 2i in it, we observe that when 2i becomes
sufficiently large such that (1 - ) 2i becomes almost zero,
then we can use the simplified formula.

Table for
selected
values of 
and i

The following table gives the values of (1- ) 2i for selected
values of  and i.

  2i
1 - 4 6 8 10 12 20 30 40 50

.9 .656 .531 .430 .349 .282 .122 .042 .015 .005

.8 .410 .262 .168 .107 .069 .012 .001 .000 .000

.7 .240 .118 .058 .028 .014 .001 .000 .000 .000

.6 .130 .047 .017 .006 .002 .000 .000 .000 .000

.5 .063 .016 .004 .001 .000 .000 .000 .000 .000

.4 .026 .004 .001 .000 .000 .000 .000 .000 .000

.3 .008 .001 .000 .000 .000 .000 .000 .000 .000

.2 .002 .000 .000 .000 .000 .000 .000 .000 .000

.1 .000 .000 .000 .000 .000 .000 .000 .000 .000

Simplified
formuala not
required

It should be pointed out that a well-meaning computer
program does not have to adhere to the simplified formula,
and potential inaccuracies for low values for  and i can thus
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be avoided.

MEWMA
computer
output for
the Lowry
data

Here is an example of the application of an MEWMA control
chart. To faciltate comparison with existing literature, we used
data from Lowry et al. The data were simulated from a
bivariate normal distribution with unit variances and a
correlation coefficient of 0.5. The value for  = .10 and the
values for  were obtained by the equation given above. The
covariance of the MEWMA vectors was obtained by using the
non-simplified equation. That means that for each MEWMA
control statistic, the computer computed a covariance matrix,
where i = 1, 2, ...10. The results of the computer routine are:

*****************************************************
*      Multi-Variate EWMA Control Chart             
*
*****************************************************

DATA SERIES            MEWMA Vector          MEWMA
   1          2          1         2       
STATISTIC
-1.190     0.590     -0.119     0.059        2.1886
 0.120     0.900     -0.095     0.143        2.0697
-1.690     0.400     -0.255     0.169        4.8365
 0.300     0.460     -0.199     0.198        3.4158
 0.890    -0.750     -0.090     0.103        0.7089
 0.820     0.980      0.001     0.191        0.9268
-0.300     2.280     -0.029     0.400        4.0018
 0.630     1.750      0.037     0.535        6.1657
 1.560     1.580      0.189     0.639        7.8554
 1.460     3.050      0.316     0.880       14.4158

VEC    XBAR      MSE      Lamda
 1     .260     1.200     0.100
 2    1.124     1.774     0.100

The UCL = 5.938 for  = .05. Smaller choices of  are also
used.

Sample
MEWMA
plot

The following is the plot of the above MEWMA.
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6. Process or Product Monitoring and Control 

6.4. Introduction to Time Series Analysis

Time
series
methods
take into
account
possible
internal
structure
in the data

Time series data often arise when monitoring industrial
processes or tracking corporate business metrics. The essential
difference between modeling data via time series methods or
using the process monitoring methods discussed earlier in this
chapter is the following:

Time series analysis accounts for the fact that
data points taken over time may have an internal
structure (such as autocorrelation, trend or
seasonal variation) that should be accounted for.

This section will give a brief overview of some of the more
widely used techniques in the rich and rapidly growing field
of time series modeling and analysis.

Contents
for this
section

Areas covered are:

1. Definitions, Applications and Techniques
2. What are Moving Average or Smoothing

Techniques?
1. Single Moving Average
2. Centered Moving Average

3. What is Exponential Smoothing?
1. Single Exponential Smoothing
2. Forecasting with Single Exponential  

Smoothing
3. Double Exponential Smoothing
4. Forecasting with Double Exponential

Smoothing
5. Triple Exponential Smoothing
6. Example of Triple Exponential

Smoothing
7. Exponential Smoothing Summary

4. Univariate Time Series Models
1. Sample Data Sets
2. Stationarity
3. Seasonality
4. Common Approaches
5. Box-Jenkins Approach
6. Box-Jenkins Model Identification
7. Box-Jenkins Model Estimation
8. Box-Jenkins Model Validation
9. Example of Univariate Box-Jenkins

Analysis
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10. Box-Jenkins Model Analysis on
Seasonal Data

5. Multivariate Time Series Models
1. Example of Multivariate Time Series

Analysis
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6.4. Introduction to Time Series Analysis 

6.4.1. Definitions, Applications and Techniques

Definition Definition of Time Series: An ordered sequence of values of a
variable at equally spaced time intervals.

Time
series
occur
frequently
when
looking at
industrial
data

Applications: The usage of time series models is twofold:

Obtain an understanding of the underlying forces and
structure that produced the observed data
Fit a model and proceed to forecasting, monitoring or
even feedback and feedforward control.

Time Series Analysis is used for many applications such as:

Economic Forecasting
Sales Forecasting
Budgetary Analysis
Stock Market Analysis
Yield Projections
Process and Quality Control
Inventory Studies
Workload Projections
Utility Studies
Census Analysis

and many, many more...

There are
many
methods
used to
model and
forecast
time series

Techniques: The fitting of time series models can be an
ambitious undertaking. There are many methods of model
fitting including the following:

Box-Jenkins ARIMA models
Box-Jenkins Multivariate Models
Holt-Winters Exponential Smoothing (single, double,
triple)

The user's application and preference will decide the selection
of the appropriate technique. It is beyond the realm and
intention of the authors of this handbook to cover all these
methods. The overview presented here will start by looking at
some basic smoothing techniques:

Averaging Methods
Exponential Smoothing Techniques.
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Later in this section we will discuss the Box-Jenkins modeling
methods and Multivariate Time Series.
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6.4. Introduction to Time Series Analysis 

6.4.2. What are Moving Average or Smoothing
Techniques?

Smoothing
data
removes
random
variation
and shows
trends and
cyclic
components

Inherent in the collection of data taken over time is some
form of random variation. There exist methods for reducing
of canceling the effect due to random variation. An often-
used technique in industry is "smoothing". This technique,
when properly applied, reveals more clearly the underlying
trend, seasonal and cyclic components.

There are two distinct groups of smoothing methods 

Averaging Methods
Exponential Smoothing Methods

Taking
averages is
the simplest
way to
smooth data

We will first investigate some averaging methods, such as the
"simple" average of all past data.

A manager of a warehouse wants to know how much a
typical supplier delivers in 1000 dollar units. He/she takes a
sample of 12 suppliers, at random, obtaining the following
results:

Supplier Amount Supplier Amount

1 9 7 11
2 8 8 7
3 9 9 13
4 12 10 9
5 9 11 11
6 12 12 10

The computed mean or average of the data = 10. The
manager decides to use this as the estimate for expenditure of
a typical supplier.

Is this a good or bad estimate? 

Mean
squared
error is a
way to
judge how

We shall compute the "mean squared error":

The "error" = true amount spent minus the estimated
amount.
The "error squared" is the error above, squared.

http://www.itl.nist.gov/div898/handbook/index.htm
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good a
model is

The "SSE" is the sum of the squared errors.
The "MSE" is the mean of the squared errors.

MSE results
for example

The results are:
Error and Squared Errors

The estimate = 10

Supplier $ Error
Error

Squared

1 9 -1 1
2 8 -2 4
3 9 -1 1
4 12 2 4
5 9 -1 1
6 12 2 4
7 11 1 1
8 7 -3 9
9 13 3 9
10 9 -1 1
11 11 1 1
12 10 0 0

The SSE = 36 and the MSE = 36/12 = 3.

Table of
MSE results
for example
using
different
estimates

So how good was the estimator for the amount spent for each
supplier? Let us compare the estimate (10) with the
following estimates: 7, 9, and 12. That is, we estimate that
each supplier will spend $7, or $9 or $12.

Performing the same calculations we arrive at:

Estimator 7 9 10 12

SSE 144 48 36 84
MSE 12 4 3 7

The estimator with the smallest MSE is the best. It can be
shown mathematically that the estimator that minimizes the
MSE for a set of random data is the mean.

Table
showing
squared
error for the
mean for
sample data

Next we will examine the mean to see how well it predicts
net income over time.

The next table gives the income before taxes of a PC
manufacturer between 1985 and 1994.

Squared



6.4.2. What are Moving Average or Smoothing Techniques?

http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc42.htm[6/27/2012 2:36:08 PM]

Year $ (millions) Mean Error Error

1985 46.163 48.776 -2.613 6.828
1986 46.998 48.776 -1.778 3.161
1987 47.816 48.776 -0.960 0.922
1988 48.311 48.776 -0.465 0.216
1989 48.758 48.776 -0.018 0.000
1990 49.164 48.776 0.388 0.151
1991 49.548 48.776 0.772 0.596
1992 48.915 48.776 1.139 1.297
1993 50.315 48.776 1.539 2.369
1994 50.768 48.776 1.992 3.968

The MSE = 1.9508.

The mean is
not a good
estimator
when there
are trends

The question arises: can we use the mean to forecast income
if we suspect a trend? A look at the graph below shows
clearly that we should not do this.

Average
weighs all
past
observations
equally

In summary, we state that

1. The "simple" average or mean of all past observations
is only a useful estimate for forecasting when there are
no trends. If there are trends, use different estimates
that take the trend into account.

2. The average "weighs" all past observations equally. For
example, the average of the values 3, 4, 5 is 4. We
know, of course, that an average is computed by adding
all the values and dividing the sum by the number of
values. Another way of computing the average is by
adding each value divided by the number of values, or

3/3 + 4/3 + 5/3 = 1 + 1.3333 + 1.6667 = 4.

The multiplier 1/3 is called the weight. In general:
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The  are the weights and of course they sum to 1.
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6.4.2.1. Single Moving Average

Taking a
moving
average is
a
smoothing
process

An alternative way to summarize the past data is to compute
the mean of successive smaller sets of numbers of past data as
follows:

Recall the set of numbers 9, 8, 9, 12, 9, 12, 11, 7,
13, 9, 11, 10 which were the dollar amount of 12
suppliers selected at random. Let us set M, the
size of the "smaller set" equal to 3. Then the
average of the first 3 numbers is:  (9 + 8 + 9) / 3
= 8.667.

This is called "smoothing" (i.e., some form of averaging). This
smoothing process is continued by advancing one period and
calculating the next average of three numbers, dropping the
first number.

Moving
average
example

The next table summarizes the process, which is referred to as
Moving Averaging. The general expression for the moving
average is

Mt = [ Xt + Xt-1 + ... + Xt-N+1] / N

Results of Moving Average

Supplier $ MA Error Error squared

1 9      
2 8      
3 9 8.667 0.333 0.111
4 12 9.667 2.333 5.444
5 9 10.000 -1.000 1.000
6 12 11.000 1.000 1.000
7 11 10.667 0.333 0.111
8 7 10.000 -3.000 9.000
9 13 10.333 2.667 7.111
10 9 9.667 -0.667 0.444
11 11 11.000 0 0
12 10 10.000 0 0
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The MSE = 2.018 as compared to 3 in the previous case.
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6.4.2.2. Centered Moving Average

When
computing
a running
moving
average,
placing the
average in
the middle
time
period
makes
sense

In the previous example we computed the average of the first
3 time periods and placed it next to period 3. We could have
placed the average in the middle of the time interval of three
periods, that is, next to period 2. This works well with odd
time periods, but not so good for even time periods. So where
would we place the first moving average when M = 4?

Technically, the Moving Average would fall at t = 2.5, 3.5, ...

To avoid this problem we smooth the MA's using M = 2. Thus
we smooth the smoothed values!

If we
average an
even
number of
terms, we
need to
smooth the
smoothed
values

The following table shows the results using M = 4.

Interim Steps
Period Value MA Centered

1 9    
1.5      
2 8    

2.5   9.5  
3 9   9.5

3.5   9.5  
4 12   10.0

4.5   10.5  
5 9   10.750

5.5   11.0  
6 12    

6.5      
7 9    

Final table This is the final table:

Period Value Centered MA

1 9  
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2 8  
3 9 9.5
4 12 10.0
5 9 10.75
6 12  
7 11  

Double Moving Averages for a Linear Trend
Process

Moving
averages
are still
not able to
handle
significant
trends
when
forecasting

Unfortunately, neither the mean of all data nor the moving
average of the most recent M values, when used as forecasts
for the next period, are able to cope with a significant trend.

There exists a variation on the MA procedure that often does a
better job of handling trend. It is called Double Moving
Averages for a  Linear Trend Process. It calculates a second
moving average from the original moving average, using the
same value for M. As soon as both single and double moving
averages are available, a computer routine uses these averages
to compute a slope and intercept, and then forecasts one or
more periods ahead.
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6.4.3. What is Exponential Smoothing?

Exponential
smoothing
schemes
weight past
observations
using
exponentially
decreasing
weights

This is a very popular scheme to produce a smoothed Time
Series. Whereas in Single Moving Averages the past
observations are weighted equally, Exponential Smoothing
assigns exponentially decreasing weights as the observation
get older.

In other words, recent observations are given relatively
more weight in forecasting than the older observations.

In the case of moving averages, the weights assigned to the
observations are the same and are equal to 1/N. In
exponential smoothing, however, there are one or more
smoothing parameters to be determined (or estimated) and
these choices determine the weights assigned to the
observations.

Single, double and triple Exponential Smoothing will be
described in this section.
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6.4.3.1. Single Exponential Smoothing

Exponential
smoothing
weights past
observations
with
exponentially
decreasing
weights to
forecast
future values

This smoothing scheme begins by setting S2 to y1, where Si
stands for smoothed observation or EWMA, and y stands for
the original observation. The subscripts refer to the time
periods, 1, 2, ..., n. For the third period, S3 =  y2 + (1- )
S2; and so on. There is no S1; the smoothed series starts with
the smoothed version of the second observation.

For any time period t, the smoothed value St is found by
computing

This is the basic equation of exponential smoothing and the
constant or parameter  is called the smoothing constant.

Note: There is an alternative approach to exponential
smoothing that replaces yt-1 in the basic equation with yt, the
current observation. That formulation, due to Roberts (1959),
is described in the section on EWMA control charts. The
formulation here follows Hunter (1986).

Setting the first EWMA

The first
forecast is
very
important

The initial EWMA plays an important role in computing all
the subsequent EWMA's. Setting S2 to y1 is one method of
initialization. Another way is to set it to the target of the
process.

Still another possibility would be to average the first four or
five observations.

It can also be shown that the smaller the value of , the
more important is the selection of the initial EWMA. The
user would be wise to try a few methods, (assuming that the
software has them available) before finalizing the settings.

Why is it called "Exponential"?

Expand basic Let us expand the basic equation by first substituting for S
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equation
t-1

in the basic equation to obtain

St =  yt-1 + (1- ) [  yt-2 + (1- ) St-2 ] 
   =  yt-1 +  (1- ) yt-2 + (1- )2 St-2

Summation
formula for
basic
equation

By substituting for St-2, then for St-3, and so forth, until we
reach S2 (which is just y1), it can be shown that the
expanding equation can be written as:

Expanded
equation for
S5

For example, the expanded equation for the smoothed value
S5 is:

Illustrates
exponential
behavior

This illustrates the exponential behavior. The weights,  (1-
) t decrease geometrically, and their sum is unity as shown
below, using a property of geometric series:

From the last formula we can see that the summation term
shows that the contribution to the smoothed value St becomes
less at each consecutive time period.

Example
for  = .3

Let  = .3. Observe that the weights  (1- ) t  decrease
exponentially (geometrically) with time.

  Value weight

last y1 .2100
  y2 .1470
  y3 .1029
  y4 .0720

What is the "best" value for ?

How do
you choose

The speed at which the older responses are dampened
(smoothed) is a function of the value of . When  is close to
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the weight
parameter?

1, dampening is quick and when  is close to 0, dampening is
slow. This is illustrated in the table below:

---------------> towards past observations

(1- ) (1- ) 2 (1- ) 3 (1- ) 4

.9 .1 .01 .001 .0001

.5 .5 .25 .125 .0625

.1 .9 .81 .729 .6561

We choose the best value for  so the value which results in
the smallest MSE.

Example Let us illustrate this principle with an example. Consider the
following data set consisting of 12 observations taken over
time:

Time yt S ( =.1) Error
Error

squared

1 71      
2 70 71 -1.00 1.00
3 69 70.9 -1.90 3.61
4 68 70.71 -2.71 7.34
5 64 70.44 -6.44 41.47
6 65 69.80 -4.80 23.04
7 72 69.32 2.68 7.18
8 78 69.58 8.42 70.90
9 75 70.43 4.57 20.88
10 75 70.88 4.12 16.97
11 75 71.29 3.71 13.76
12 70 71.67 -1.67 2.79

The sum of the squared errors (SSE) = 208.94. The mean of
the squared errors (MSE) is the SSE /11 = 19.0.

Calculate
for
different
values of 

The MSE was again calculated for  = .5 and turned out to be
16.29, so in this case we would prefer an  of .5. Can we do
better? We could apply the proven trial-and-error method.
This is an iterative procedure beginning with a range of 
between .1 and .9. We determine the best initial choice for 
and then search between  -  and  + . We could repeat
this perhaps one more time to find the best  to 3 decimal
places.

Nonlinear
optimizers
can be

But there are better search methods, such as the Marquardt
procedure. This is a nonlinear optimizer that minimizes the
sum of squares of residuals. In general, most well designed



6.4.3.1. Single Exponential Smoothing

http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc431.htm[6/27/2012 2:36:11 PM]

used statistical software programs should be able to find the value
of  that minimizes the MSE.

Sample
plot
showing
smoothed
data for 2
values of 
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6.4.3.2. Forecasting with Single Exponential
Smoothing

Forecasting Formula

Forecasting
the next point

The forecasting formula is the basic equation

New forecast
is previous
forecast plus
an error
adjustment

This can be written as:

where  t is the forecast error (actual - forecast) for period t.

In other words, the new forecast is the old one plus an
adjustment for the error that occurred in the last forecast.

Bootstrapping of Forecasts

Bootstrapping
forecasts

What happens if you wish to forecast from some origin,
usually the last data point, and no actual observations are
available? In this situation we have to modify the formula to
become:

where yorigin remains constant. This technique is known as
bootstrapping.

Example of Bootstrapping

Example The last data point in the previous example was 70 and its
forecast (smoothed value S) was 71.7. Since we do have the
data point and the forecast available, we can calculate the
next forecast using the regular formula
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= .1(70) + .9(71.7) = 71.5      (  = .1)

But for the next forecast we have no data point (observation).
So now we compute:

St+2 =. 1(70) + .9(71.5 )= 71.35

Comparison between bootstrap and regular forecasting

Table
comparing
two methods

The following table displays the comparison between the two
methods:

Period Bootstrap
forecast

Data Single Smoothing
Forecast

13 71.50 75 71.5
14 71.35 75 71.9
15 71.21 74 72.2
16 71.09 78 72.4
17 70.98 86 73.0

 Single Exponential Smoothing with Trend

Single Smoothing (short for single exponential smoothing) is
not very good when there is a trend. The single coefficient 
is not enough.

Sample data
set with trend

Let us demonstrate this with the following data set smoothed
with an  of 0.3:

Data Fit

6.4  
5.6 6.4
7.8 6.2
8.8 6.7
11.0 7.3
11.6 8.4
16.7 9.4
15.3 11.6
21.6 12.7
22.4 15.4

Plot
demonstrating

The resulting graph looks like:
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inadequacy of
single
exponential
smoothing
when there is
trend
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6.4.3.3. Double Exponential Smoothing

Double
exponential
smoothing
uses two
constants
and is better
at handling
trends

As was previously observed, Single Smoothing does not
excel in following the data when there is a trend. This
situation can be improved by the introduction of a second
equation with a second constant, , which must be chosen in
conjunction with .

Here are the two equations associated with Double
Exponential Smoothing:

Note that the current value of the series is used to calculate
its smoothed value replacement in double exponential
smoothing.

Initial Values

Several
methods to
choose the
initial
values

As in the case for single smoothing, there are a variety of
schemes to set initial values for St and bt in double
smoothing.

S1 is in general set to y1. Here are three suggestions for b1:

b1 = y2 - y1

b1 = [(y2 - y1) + (y3 - y2) + (y4 - y3)]/3

b1 = (yn - y1)/(n - 1)

Comments

Meaning of
the
smoothing
equations

The first smoothing equation adjusts St directly for the trend
of the previous period, bt-1, by adding it to the last smoothed
value, St-1. This helps to eliminate the lag and brings St to
the appropriate base of the current value.

http://www.itl.nist.gov/div898/handbook/index.htm
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The second smoothing equation then updates the trend,
which is expressed as the difference between the last two
values. The equation is similar to the basic form of single
smoothing, but here applied to the updating of the trend.

Non-linear
optimization
techniques
can be used

The values for  and  can be obtained via non-linear
optimization techniques, such as the Marquardt Algorithm.
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6.4.3.4. Forecasting with Double Exponential
Smoothing(LASP)

Forecasting
formula

The one-period-ahead forecast is given by:

Ft+1 = St + bt

The m-periods-ahead forecast is given by:

Ft+m = St + mbt

Example

Example Consider once more the data set:

6.4,  5.6,  7.8,  8.8,  11,  11.6,  16.7,  15.3,  21.6,  22.4.

Now we will fit a double smoothing model with  = .3623
and  = 1.0. These are the estimates that result in the lowest
possible MSE when comparing the orignal series to one step
ahead at a time forecasts (since this version of double
exponential smoothing uses the current series value to
calculate a smoothed value, the smoothed series cannot be
used to determine an  with minimum MSE). The chosen
starting values are S1 = y1 = 6.4 and b1 = ((y2 - y1) + (y3 -
y2) + (y4 - y3))/3 = 0.8.

For comparison's sake we also fit a single smoothing model
with  = 0.977 (this results in the lowest MSE for single
exponential smoothing).

The MSE for double smoothing is 3.7024. 
The MSE for single smoothing is 8.8867.

Forecasting
results for
the example

The smoothed results for the example are:

Data Double Single

6.4 6.4  
5.6 6.6 (Forecast = 7.2) 6.4
7.8 7.2 (Forecast = 6.8) 5.6
8.8 8.1 (Forecast = 7.8) 7.8
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11.0 9.8 (Forecast = 9.1) 8.8
11.6 11.5 (Forecast = 11.4) 10.9
16.7 14.5 (Forecast = 13.2) 11.6
15.3 16.7 (Forecast = 17.4) 16.6
21.6 19.9 (Forecast = 18.9) 15.3
22.4 22.8 (Forecast = 23.1) 21.5

Comparison of Forecasts

Table
showing
single and
double
exponential
smoothing
forecasts

To see how each method predicts the future, we computed the
first five forecasts from the last observation as follows:

Period Single Double

11 22.4 25.8
12 22.4 28.7
13 22.4 31.7
14 22.4 34.6
15 22.4 37.6

Plot
comparing
single and
double
exponential
smoothing
forecasts

A plot of these results (using the forecasted double smoothing
values) is very enlightening.

This graph indicates that double smoothing follows the data
much closer than single smoothing. Furthermore, for
forecasting single smoothing cannot do better than projecting
a straight horizontal line, which is not very likely to occur in
reality. So in this case double smoothing is preferred.

Plot
comparing
double
exponential
smoothing
and

Finally, let us compare double smoothing with linear
regression:
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regression
forecasts

This is an interesting picture. Both techniques follow the data
in similar fashion, but the regression line is more
conservative. That is, there is a slower increase with the
regression line than with double smoothing.

Selection of
technique
depends on
the
forecaster

The selection of the technique depends on the forecaster. If it
is desired to portray the growth process in a more aggressive
manner, then one selects double smoothing. Otherwise,
regression may be preferable. It should be noted that in linear
regression "time" functions as the independent variable.
Chapter 4 discusses the basics of linear regression, and the
details of regression estimation.
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6.4.3.5. Triple Exponential Smoothing

What happens if the data show trend and seasonality?

To handle
seasonality,
we have to
add a third
parameter

In this case double smoothing will not work. We now introduce a
third equation to take care of seasonality (sometimes called
periodicity). The resulting set of equations is called the "Holt-
Winters" (HW) method after the names of the inventors.

The basic equations for their method are given by:

where

y is the observation
S is the smoothed observation
b is the trend factor
I is the seasonal index
F is the forecast at m periods ahead
t is an index denoting a time period

and , , and  are constants that must be estimated in such a
way that the MSE of the error is minimized. This is best left to a
good software package.

Complete
season
needed

To initialize the HW method we need at least one complete
season's data to determine initial estimates of the seasonal indices
I t-L.

L periods
in a season

A complete season's data consists of L periods. And we need to
estimate the trend factor from one period to the next. To
accomplish this, it is advisable to use two complete seasons; that
is, 2L periods.

http://www.itl.nist.gov/div898/handbook/index.htm
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Initial values for the trend factor

How to get
initial
estimates
for trend
and
seasonality
parameters

The general formula to estimate the initial trend is given by

Initial values for the Seasonal Indices

As we will see in the example, we work with data that consist of
6 years with 4 periods (that is, 4 quarters) per year. Then

Step 1:
compute
yearly
averages

Step 1: Compute the averages of each of the 6 years

Step 2:
divide by
yearly
averages

Step 2: Divide the observations by the appropriate yearly mean
1 2 3 4 5 6

y1/A1 y5/A2 y9/A3 y13/A4 y17/A5 y21/A6

y2/A1 y6/A2 y10/A3 y14/A4 y18/A5 y22/A6

y3/A1 y7/A2 y11/A3 y15/A4 y19/A5 y23/A6

y4/A1 y8/A2 y12/A3 y16/A4 y20/A5 y24/A6

Step 3:
form
seasonal
indices

Step 3: Now the seasonal indices are formed by computing the
average of each row. Thus the initial seasonal indices
(symbolically) are:

I1 = ( y1/A1 + y5/A2 + y9/A3 + y13/A4 + y17/A5 +
y21/A6)/6 
I2 = ( y2/A1 + y6/A2 + y10/A3 + y14/A4 + y18/A5 +
y22/A6)/6 
I3 = ( y3/A1 + y7/A2 + y11/A3 + y15/A4 + y19/A5 +
y22/A6)/6 
I4 = ( y4/A1 + y8/A2 + y12/A3 + y16/A4 + y20/A5 +
y24/A6)/6

We now know the algebra behind the computation of the initial
estimates.

The next page contains an example of triple exponential
smoothing.
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The case of the Zero Coefficients

Zero
coefficients
for trend
and
seasonality
parameters

Sometimes it happens that a computer program for triple
exponential smoothing outputs a final coefficient for trend ( ) or
for seasonality ( ) of zero. Or worse, both are outputted as zero!

Does this indicate that there is no trend and/or no seasonality?

Of course not! It only means that the initial values for trend
and/or seasonality were right on the money. No updating was
necessary in order to arrive at the lowest possible MSE. We
should inspect the updating formulas to verify this.
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6.4.3.6. Example of Triple Exponential
Smoothing

Example
comparing
single,
double,
triple
exponential
smoothing

This example shows comparison of single, double and triple
exponential smoothing for a data set.

The following data set represents 24 observations. These are
six years of quarterly data (each year = 4 quarters).

Table
showing the
data for the
example

  Quarter Period Sales     Quarter Period Sales

90 1 1 362   93 1 13 544
  2 2 385     2 14 582
  3 3 432     3 15 681
  4 4 341     4 16 557

91 1 5 382   94 1 17 628
  2 6 409     2 18 707
  3 7 498     3 19 773
  4 8 387     4 20 592

92 1 9 473   95 1 21 627
  2 10 513     2 22 725
  3 11 582     3 23 854
  4 12 474     4 24 661

Plot of raw
data with
single,
double, and
triple
exponential
forecasts
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Plot of raw
data with
triple
exponential
forecasts

Actual Time Series with forecasts

Comparison
of MSE's

Comparison of MSE's

MSE
 

demand
 

trend
 

seasonality

6906 .4694    
5054 .1086 1.000  
936 1.000   1.000
520 .7556 0.000 .9837

The updating coefficients were chosen by a computer
program such that the MSE for each of the methods was
minimized.

Example of the computation of the Initial Trend

Computation
of initial
trend

The data set consists of quarterly sales data. The season is 1
year and since there are 4 quarters per year, L = 4. Using the
formula we obtain:
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Example of the computation of the Initial Seasonal
Indices

Table of
initial
seasonal
indices

  1 2 3 4 5 6

1 362 382 473 544 628 627
2 385 409 513 582 707 725
3 432 498 582 681 773 854
4 341 387 474 557 592 661

380 419 510.5 591 675 716.75

In this example we used the full 6 years of data. Other
schemes may use only 3, or some other number of years.
There are also a number of ways to compute initial estimates.
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6.4.3.7. Exponential Smoothing Summary

Summary

Exponential
smoothing
has proven
to be a
useful
technique

Exponential smoothing has proven through the years to be
very useful in many forecasting situations. It was first
suggested by C.C. Holt in 1957 and was meant to be used for
non-seasonal time series showing no trend. He later offered a
procedure (1958) that does handle trends. Winters(1965)
generalized the method to include seasonality, hence the
name "Holt-Winters Method".

Holt-
Winters has
3 updating
equations

The Holt-Winters Method has 3 updating equations, each
with a constant that ranges from 0 to 1. The equations are
intended to give more weight to recent observations and less
weights to observations further in the past.

These weights are geometrically decreasing by a constant
ratio.

The HW procedure can be made fully automatic by user-
friendly software.
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6.4.4. Univariate Time Series Models

Univariate
Time
Series

The term "univariate time series" refers to a time series that
consists of single (scalar) observations recorded sequentially
over equal time increments. Some examples are monthly CO2
concentrations and southern oscillations to predict el nino
effects.

Although a univariate time series data set is usually given as a
single column of numbers, time is in fact an implicit variable
in the time series. If the data are equi-spaced, the time
variable, or index, does not need to be explicitly given. The
time variable may sometimes be explicitly used for plotting
the series. However, it is not used in the time series model
itself.

The analysis of time series where the data are not collected in
equal time increments is beyond the scope of this handbook. 

Contents 1. Sample Data Sets 
2. Stationarity 
3. Seasonality 
4. Common Approaches 
5. Box-Jenkins Approach 
6. Box-Jenkins Model Identification 
7. Box-Jenkins Model Estimation 
8. Box-Jenkins Model Validation 
9. SEMPLOT Sample Output for a Box-Jenkins Analysis 

10. SEMPLOT Sample Output for a Box-Jenkins Analysis
with Seasonality
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6.4.4.1. Sample Data Sets

Sample
Data Sets

The following two data sets are used as examples in the text
for this section.

1. Monthly mean CO2 concentrations.
2. Southern oscillations.
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6.4.4.1.1. Data Set of Monthly CO2
Concentrations

Source and
Background

This data set contains selected monthly mean CO2
concentrations at the Mauna Loa Observatory from 1974 to
1987. The CO2 concentrations were measured by the
continuous infrared analyser of the Geophysical Monitoring
for Climatic Change division of NOAA's Air Resources
Laboratory. The selection has been for an approximation of
'background conditions'. See Thoning et al., "Atmospheric
Carbon Dioxide at Mauna Loa Observatory: II Analysis of
the NOAA/GMCC Data 1974-1985", Journal of Geophysical
Research (submitted) for details.

This dataset was received from Jim Elkins of NOAA in 1988.

Data Each line contains the CO2 concentration (mixing ratio in dry
air, expressed in the WMO X85 mole fraction scale,
maintained by the Scripps Institution of Oceanography). In
addition, it contains the year, month, and a numeric value for
the combined month and year. This combined date is useful
for plotting purposes.

    CO2        Year&Month      Year        Month
--------------------------------------------------
  333.13        1974.38        1974          5
  332.09        1974.46        1974          6
  331.10        1974.54        1974          7
  329.14        1974.63        1974          8
  327.36        1974.71        1974          9
  327.29        1974.79        1974         10
  328.23        1974.88        1974         11
  329.55        1974.96        1974         12
 
  330.62        1975.04        1975          1
  331.40        1975.13        1975          2
  331.87        1975.21        1975          3
  333.18        1975.29        1975          4
  333.92        1975.38        1975          5
  333.43        1975.46        1975          6
  331.85        1975.54        1975          7
  330.01        1975.63        1975          8
  328.51        1975.71        1975          9
  328.41        1975.79        1975         10
  329.25        1975.88        1975         11
  330.97        1975.96        1975         12
 
  331.60        1976.04        1976          1
  332.60        1976.13        1976          2
  333.57        1976.21        1976          3
  334.72        1976.29        1976          4
  334.68        1976.38        1976          5
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  334.17        1976.46        1976          6
  332.96        1976.54        1976          7
  330.80        1976.63        1976          8
  328.98        1976.71        1976          9
  328.57        1976.79        1976         10
  330.20        1976.88        1976         11
  331.58        1976.96        1976         12
 
  332.67        1977.04        1977          1
  333.17        1977.13        1977          2
  334.86        1977.21        1977          3
  336.07        1977.29        1977          4
  336.82        1977.38        1977          5
  336.12        1977.46        1977          6
  334.81        1977.54        1977          7
  332.56        1977.63        1977          8
  331.30        1977.71        1977          9
  331.22        1977.79        1977         10
  332.37        1977.88        1977         11
  333.49        1977.96        1977         12
 
  334.71        1978.04        1978          1
  335.23        1978.13        1978          2
  336.54        1978.21        1978          3
  337.79        1978.29        1978          4
  337.95        1978.38        1978          5
  338.00        1978.46        1978          6
  336.37        1978.54        1978          7
  334.47        1978.63        1978          8
  332.46        1978.71        1978          9
  332.29        1978.79        1978         10
  333.76        1978.88        1978         11
  334.80        1978.96        1978         12
 
  336.00        1979.04        1979          1
  336.63        1979.13        1979          2
  337.93        1979.21        1979          3
  338.95        1979.29        1979          4
  339.05        1979.38        1979          5
  339.27        1979.46        1979          6
  337.64        1979.54        1979          7
  335.68        1979.63        1979          8
  333.77        1979.71        1979          9
  334.09        1979.79        1979         10
  335.29        1979.88        1979         11
  336.76        1979.96        1979         12
 
  337.77        1980.04        1980          1
  338.26        1980.13        1980          2
  340.10        1980.21        1980          3
  340.88        1980.29        1980          4
  341.47        1980.38        1980          5
  341.31        1980.46        1980          6
  339.41        1980.54        1980          7
  337.74        1980.63        1980          8
  336.07        1980.71        1980          9
  336.07        1980.79        1980         10
  337.22        1980.88        1980         11
  338.38        1980.96        1980         12
 
  339.32        1981.04        1981          1
  340.41        1981.13        1981          2
  341.69        1981.21        1981          3
  342.51        1981.29        1981          4
  343.02        1981.38        1981          5
  342.54        1981.46        1981          6
  340.88        1981.54        1981          7
  338.75        1981.63        1981          8
  337.05        1981.71        1981          9
  337.13        1981.79        1981         10
  338.45        1981.88        1981         11
  339.85        1981.96        1981         12
 
  340.90        1982.04        1982          1
  341.70        1982.13        1982          2
  342.70        1982.21        1982          3
  343.65        1982.29        1982          4
  344.28        1982.38        1982          5
  343.42        1982.46        1982          6
  342.02        1982.54        1982          7
  339.97        1982.63        1982          8
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  337.84        1982.71        1982          9
  338.00        1982.79        1982         10
  339.20        1982.88        1982         11
  340.63        1982.96        1982         12
 
  341.41        1983.04        1983          1
  342.68        1983.13        1983          2
  343.04        1983.21        1983          3
  345.27        1983.29        1983          4
  345.92        1983.38        1983          5
  345.40        1983.46        1983          6
  344.16        1983.54        1983          7
  342.11        1983.63        1983          8
  340.11        1983.71        1983          9
  340.15        1983.79        1983         10
  341.38        1983.88        1983         11
  343.02        1983.96        1983         12
 
  343.87        1984.04        1984          1
  344.59        1984.13        1984          2
  345.11        1984.21        1984          3
  347.07        1984.29        1984          4
  347.38        1984.38        1984          5
  346.78        1984.46        1984          6
  344.96        1984.54        1984          7
  342.71        1984.63        1984          8
  340.86        1984.71        1984          9
  341.13        1984.79        1984         10
  342.84        1984.88        1984         11
  344.32        1984.96        1984         12
 
  344.88        1985.04        1985          1
  345.62        1985.13        1985          2
  347.23        1985.21        1985          3
  347.62        1985.29        1985          4
  348.53        1985.38        1985          5
  347.87        1985.46        1985          6
  346.00        1985.54        1985          7
  343.86        1985.63        1985          8
  342.55        1985.71        1985          9
  342.57        1985.79        1985         10
  344.11        1985.88        1985         11
  345.49        1985.96        1985         12
 
  346.04        1986.04        1986          1
  346.70        1986.13        1986          2
  347.38        1986.21        1986          3
  349.38        1986.29        1986          4
  349.93        1986.38        1986          5
  349.26        1986.46        1986          6
  347.44        1986.54        1986          7
  345.55        1986.63        1986          8
  344.21        1986.71        1986          9
  343.67        1986.79        1986         10
  345.09        1986.88        1986         11
  346.27        1986.96        1986         12
 
  347.33        1987.04        1987          1
  347.82        1987.13        1987          2
  349.29        1987.21        1987          3
  350.91        1987.29        1987          4
  351.71        1987.38        1987          5
  350.94        1987.46        1987          6
  349.10        1987.54        1987          7
  346.77        1987.63        1987          8
  345.73        1987.71        1987          9

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/
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6. Process or Product Monitoring and Control 
6.4. Introduction to Time Series Analysis 
6.4.4. Univariate Time Series Models 
6.4.4.1. Sample Data Sets 

6.4.4.1.2. Data Set of Southern Oscillations

Source and
Background

The southern oscillation is defined as the barametric pressure
difference between Tahiti and the Darwin Islands at sea level.
The southern oscillation is a predictor of el nino which in
turn is thought to be a driver of world-wide weather.
Specifically, repeated southern oscillation values less than -1
typically defines an el nino. Note: the decimal values in the
second column of the data given below are obtained as
(month number - 0.5)/12.

Data  Southern

Oscillation  Year + fraction  Year       Month
----------------------------------------------

  -0.7         1955.04        1955         1
   1.3         1955.13        1955         2
   0.1         1955.21        1955         3
  -0.9         1955.29        1955         4
   0.8         1955.38        1955         5
   1.6         1955.46        1955         6
   1.7         1955.54        1955         7
   1.4         1955.63        1955         8
   1.4         1955.71        1955         9
   1.5         1955.79        1955        10
   1.4         1955.88        1955        11
   0.9         1955.96        1955        12
 
   1.2         1956.04        1956         1
   1.1         1956.13        1956         2
   0.9         1956.21        1956         3
   1.1         1956.29        1956         4
   1.4         1956.38        1956         5
   1.2         1956.46        1956         6
   1.1         1956.54        1956         7
   1.0         1956.63        1956         8
   0.0         1956.71        1956         9
   1.9         1956.79        1956        10
   0.1         1956.88        1956        11
   0.9         1956.96        1956        12
 
   0.4         1957.04        1957         1
  -0.4         1957.13        1957         2
  -0.4         1957.21        1957         3
   0.0         1957.29        1957         4
  -1.1         1957.38        1957         5
  -0.4         1957.46        1957         6
   0.1         1957.54        1957         7
  -1.1         1957.63        1957         8
  -1.0         1957.71        1957         9
  -0.1         1957.79        1957        10
  -1.2         1957.88        1957        11
  -0.5         1957.96        1957        12
 
  -1.9         1958.04        1958         1
  -0.7         1958.13        1958         2
  -0.3         1958.21        1958         3
   0.1         1958.29        1958         4

http://www.itl.nist.gov/div898/handbook/index.htm
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  -1.3         1958.38        1958         5
  -0.3         1958.46        1958         6
   0.3         1958.54        1958         7
   0.7         1958.63        1958         8
  -0.4         1958.71        1958         9
  -0.4         1958.79        1958        10
  -0.6         1958.88        1958        11
  -0.8         1958.96        1958        12
 
  -0.9         1959.04        1959         1
  -1.5         1959.13        1959         2
   0.8         1959.21        1959         3
   0.2         1959.29        1959         4
   0.2         1959.38        1959         5
  -0.9         1959.46        1959         6
  -0.5         1959.54        1959         7
  -0.6         1959.63        1959         8
   0.0         1959.71        1959         9
   0.3         1959.79        1959        10
   0.9         1959.88        1959        11
   0.8         1959.96        1959        12
 
   0.0         1960.04        1960         1
  -0.2         1960.13        1960         2
   0.5         1960.21        1960         3
   0.9         1960.29        1960         4
   0.2         1960.38        1960         5
  -0.5         1960.46        1960         6
   0.4         1960.54        1960         7
   0.5         1960.63        1960         8
   0.7         1960.71        1960         9
  -0.1         1960.79        1960        10
   0.6         1960.88        1960        11
   0.7         1960.96        1960        12
 
  -0.4         1961.04        1961         1
   0.5         1961.13        1961         2
  -2.6         1961.21        1961         3
   1.1         1961.29        1961         4
   0.2         1961.38        1961         5
  -0.4         1961.46        1961         6
   0.1         1961.54        1961         7
  -0.3         1961.63        1961         8
   0.0         1961.71        1961         9
  -0.8         1961.79        1961        10
   0.7         1961.88        1961        11
   1.4         1961.96        1961        12
 
   1.7         1962.04        1962         1
  -0.5         1962.13        1962         2
  -0.4         1962.21        1962         3
   0.0         1962.29        1962         4
   1.2         1962.38        1962         5
   0.5         1962.46        1962         6
  -0.1         1962.54        1962         7
   0.3         1962.63        1962         8
   0.5         1962.71        1962         9
   0.9         1962.79        1962        10
   0.2         1962.88        1962        11
   0.0         1962.96        1962        12
 
   0.8         1963.04        1963         1
   0.3         1963.13        1963         2
   0.6         1963.21        1963         3
   0.9         1963.29        1963         4
   0.0         1963.38        1963         5
  -1.5         1963.46        1963         6
  -0.3         1963.54        1963         7
  -0.4         1963.63        1963         8
  -0.7         1963.71        1963         9
  -1.6         1963.79        1963        10
  -1.0         1963.88        1963        11
  -1.4         1963.96        1963        12
 
  -0.5         1964.04        1964         1
  -0.2         1964.13        1964         2
   0.6         1964.21        1964         3
   1.7         1964.29        1964         4
  -0.2         1964.38        1964         5
   0.7         1964.46        1964         6
   0.5         1964.54        1964         7
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   1.4         1964.63        1964         8
   1.3         1964.71        1964         9
   1.3         1964.79        1964        10
   0.0         1964.88        1964        11
  -0.5         1964.96        1964        12
 
  -0.5         1965.04        1965         1
   0.0         1965.13        1965         2
   0.2         1965.21        1965         3
  -1.1         1965.29        1965         4
   0.0         1965.38        1965         5
  -1.5         1965.46        1965         6
  -2.3         1965.54        1965         7
  -1.3         1965.63        1965         8
  -1.4         1965.71        1965         9
  -1.2         1965.79        1965        10
  -1.8         1965.88        1965        11
   0.0         1965.96        1965        12
 
  -1.4         1966.04        1966         1
  -0.5         1966.13        1966         2
  -1.6         1966.21        1966         3
  -0.7         1966.29        1966         4
  -0.6         1966.38        1966         5
   0.0         1966.46        1966         6
  -0.1         1966.54        1966         7
   0.3         1966.63        1966         8
  -0.3         1966.71        1966         9
  -0.3         1966.79        1966        10
  -0.1         1966.88        1966        11
  -0.5         1966.96        1966        12
 
   1.5         1967.04        1967         1
   1.2         1967.13        1967         2
   0.8         1967.21        1967         3
  -0.2         1967.29        1967         4
  -0.4         1967.38        1967         5
   0.6         1967.46        1967         6
   0.0         1967.54        1967         7
   0.4         1967.63        1967         8
   0.5         1967.71        1967         9
  -0.2         1967.79        1967        10
  -0.7         1967.88        1967        11
  -0.7         1967.96        1967        12
 
   0.5         1968.04        1968         1
   0.8         1968.13        1968         2
  -0.5         1968.21        1968         3
  -0.3         1968.29        1968         4
   1.2         1968.38        1968         5
   1.4         1968.46        1968         6
   0.6         1968.54        1968         7
  -0.1         1968.63        1968         8
  -0.3         1968.71        1968         9
  -0.3         1968.79        1968        10
  -0.4         1968.88        1968        11
   0.0         1968.96        1968        12
 
  -1.4         1969.04        1969         1
   0.8         1969.13        1969         2
  -0.1         1969.21        1969         3
  -0.8         1969.29        1969         4
  -0.8         1969.38        1969         5
  -0.2         1969.46        1969         6
  -0.7         1969.54        1969         7
  -0.6         1969.63        1969         8
  -1.0         1969.71        1969         9
  -1.4         1969.79        1969        10
  -0.1         1969.88        1969        11
   0.3         1969.96        1969        12
 
  -1.2         1970.04        1970         1
  -1.2         1970.13        1970         2
   0.0         1970.21        1970         3
  -0.5         1970.29        1970         4
   0.1         1970.38        1970         5
   1.1         1970.46        1970         6
  -0.6         1970.54        1970         7
   0.3         1970.63        1970         8
   1.2         1970.71        1970         9
   0.8         1970.79        1970        10
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   1.8         1970.88        1970        11
   1.8         1970.96        1970        12
 
   0.2         1971.04        1971         1
   1.4         1971.13        1971         2
   2.0         1971.21        1971         3
   2.6         1971.29        1971         4
   0.9         1971.38        1971         5
   0.2         1971.46        1971         6
   0.1         1971.54        1971         7
   1.4         1971.63        1971         8
   1.5         1971.71        1971         9
   1.8         1971.79        1971        10
   0.5         1971.88        1971        11
   0.1         1971.96        1971        12
 
   0.3         1972.04        1972         1
   0.6         1972.13        1972         2
   0.1         1972.21        1972         3
  -0.5         1972.29        1972         4
  -2.1         1972.38        1972         5
  -1.7         1972.46        1972         6
  -1.9         1972.54        1972         7
  -1.1         1972.63        1972         8
  -1.5         1972.71        1972         9
  -1.1         1972.79        1972        10
  -0.4         1972.88        1972        11
  -1.5         1972.96        1972        12
 
  -0.4         1973.04        1973         1
  -1.5         1973.13        1973         2
   0.2         1973.21        1973         3
  -0.4         1973.29        1973         4
   0.3         1973.38        1973         5
   1.2         1973.46        1973         6
   0.5         1973.54        1973         7
   1.2         1973.63        1973         8
   1.3         1973.71        1973         9
   0.6         1973.79        1973        10
   2.9         1973.88        1973        11
   1.7         1973.96        1973        12
 
   2.2         1974.04        1974         1
   1.5         1974.13        1974         2
   2.1         1974.21        1974         3
   1.3         1974.29        1974         4
   1.3         1974.38        1974         5
   0.1         1974.46        1974         6
   1.2         1974.54        1974         7
   0.5         1974.63        1974         8
   1.1         1974.71        1974         9
   0.8         1974.79        1974        10
  -0.4         1974.88        1974        11
   0.0         1974.96        1974        12
 
  -0.6         1975.04        1975         1
   0.4         1975.13        1975         2
   1.1         1975.21        1975         3
   1.5         1975.29        1975         4
   0.5         1975.38        1975         5
   1.7         1975.46        1975         6
   2.1         1975.54        1975         7
   2.0         1975.63        1975         8
   2.2         1975.71        1975         9
   1.7         1975.79        1975        10
   1.3         1975.88        1975        11
   2.0         1975.96        1975        12
 
   1.2         1976.04        1976         1
   1.2         1976.13        1976         2
   1.3         1976.21        1976         3
   0.2         1976.29        1976         4
   0.6         1976.38        1976         5
  -0.1         1976.46        1976         6
  -1.2         1976.54        1976         7
  -1.5         1976.63        1976         8
  -1.2         1976.71        1976         9
   0.2         1976.79        1976        10
   0.7         1976.88        1976        11
  -0.5         1976.96        1976        12
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  -0.5         1977.04        1977         1
   0.8         1977.13        1977         2
  -1.2         1977.21        1977         3
  -1.3         1977.29        1977         4
  -1.1         1977.38        1977         5
  -2.3         1977.46        1977         6
  -1.5         1977.54        1977         7
  -1.4         1977.63        1977         8
  -0.9         1977.71        1977         9
  -1.4         1977.79        1977        10
  -1.6         1977.88        1977        11
  -1.3         1977.96        1977        12
 
  -0.5         1978.04        1978         1
  -2.6         1978.13        1978         2
  -0.8         1978.21        1978         3
  -0.9         1978.29        1978         4
   1.3         1978.38        1978         5
   0.4         1978.46        1978         6
   0.4         1978.54        1978         7
   0.1         1978.63        1978         8
   0.0         1978.71        1978         9
  -0.8         1978.79        1978        10
  -0.1         1978.88        1978        11
  -0.2         1978.96        1978        12
 
  -0.5         1979.04        1979         1
   0.6         1979.13        1979         2
  -0.5         1979.21        1979         3
  -0.7         1979.29        1979         4
   0.5         1979.38        1979         5
   0.6         1979.46        1979         6
   1.3         1979.54        1979         7
  -0.7         1979.63        1979         8
   0.1         1979.71        1979         9
  -0.4         1979.79        1979        10
  -0.6         1979.88        1979        11
  -0.9         1979.96        1979        12
 
   0.3         1980.04        1980         1
   0.0         1980.13        1980         2
  -1.1         1980.21        1980         3
  -1.7         1980.29        1980         4
  -0.3         1980.38        1980         5
  -0.7         1980.46        1980         6
  -0.2         1980.54        1980         7
  -0.1         1980.63        1980         8
  -0.5         1980.71        1980         9
  -0.3         1980.79        1980        10
  -0.5         1980.88        1980        11
  -0.2         1980.96        1980        12
 
   0.3         1981.04        1981         1
  -0.5         1981.13        1981         2
  -2.0         1981.21        1981         3
  -0.6         1981.29        1981         4
   0.8         1981.38        1981         5
   1.6         1981.46        1981         6
   0.8         1981.54        1981         7
   0.4         1981.63        1981         8
   0.3         1981.71        1981         9
  -0.7         1981.79        1981        10
   0.1         1981.88        1981        11
   0.4         1981.96        1981        12
 
   1.0         1982.04        1982         1
   0.0         1982.13        1982         2
   0.0         1982.21        1982         3
  -0.1         1982.29        1982         4
  -0.6         1982.38        1982         5
  -2.5         1982.46        1982         6
  -2.0         1982.54        1982         7
  -2.7         1982.63        1982         8
  -1.9         1982.71        1982         9
  -2.2         1982.79        1982        10
  -3.2         1982.88        1982        11
  -2.5         1982.96        1982        12
 
  -3.4         1983.04        1983         1
  -3.5         1983.13        1983         2
  -3.2         1983.21        1983         3
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  -2.1         1983.29        1983         4
   0.9         1983.38        1983         5
  -0.5         1983.46        1983         6
  -0.9         1983.54        1983         7
  -0.4         1983.63        1983         8
   0.9         1983.71        1983         9
   0.3         1983.79        1983        10
  -0.1         1983.88        1983        11
  -0.1         1983.96        1983        12
 
   0.0         1984.04        1984         1
   0.4         1984.13        1984         2
  -0.8         1984.21        1984         3
   0.4         1984.29        1984         4
   0.0         1984.38        1984         5
  -1.2         1984.46        1984         6
   0.0         1984.54        1984         7
   0.1         1984.63        1984         8
   0.1         1984.71        1984         9
  -0.6         1984.79        1984        10
   0.3         1984.88        1984        11
  -0.3         1984.96        1984        12
 
  -0.5         1985.04        1985         1
   0.8         1985.13        1985         2
   0.2         1985.21        1985         3
   1.4         1985.29        1985         4
  -0.2         1985.38        1985         5
  -1.4         1985.46        1985         6
  -0.3         1985.54        1985         7
   0.7         1985.63        1985         8
   0.0         1985.71        1985         9
  -0.8         1985.79        1985        10
  -0.4         1985.88        1985        11
   0.1         1985.96        1985        12
 
   0.8         1986.04        1986         1
  -1.2         1986.13        1986         2
  -0.1         1986.21        1986         3
   0.1         1986.29        1986         4
  -0.6         1986.38        1986         5
   1.0         1986.46        1986         6
   0.1         1986.54        1986         7
  -0.9         1986.63        1986         8
  -0.5         1986.71        1986         9
   0.6         1986.79        1986        10
  -1.6         1986.88        1986        11
  -1.6         1986.96        1986        12
 
  -0.7         1987.04        1987         1
  -1.4         1987.13        1987         2
  -2.0         1987.21        1987         3
  -2.7         1987.29        1987         4
  -2.0         1987.38        1987         5
  -2.7         1987.46        1987         6
  -1.8         1987.54        1987         7
  -1.7         1987.63        1987         8
  -1.1         1987.71        1987         9
  -0.7         1987.79        1987        10
  -0.1         1987.88        1987        11
  -0.6         1987.96        1987        12
 
  -0.3         1988.04        1988         1
  -0.6         1988.13        1988         2
   0.1         1988.21        1988         3
   0.0         1988.29        1988         4
   1.1         1988.38        1988         5
  -0.3         1988.46        1988         6
   1.1         1988.54        1988         7
   1.4         1988.63        1988         8
   1.9         1988.71        1988         9
   1.5         1988.79        1988        10
   1.9         1988.88        1988        11
   1.1         1988.96        1988        12
 
   1.5         1989.04        1989         1
   1.1         1989.13        1989         2
   0.6         1989.21        1989         3
   1.6         1989.29        1989         4
   1.2         1989.38        1989         5
   0.5         1989.46        1989         6



6.4.4.1.2. Data Set of Southern Oscillations

http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc4412.htm[6/27/2012 2:36:20 PM]

   0.8         1989.54        1989         7
  -0.8         1989.63        1989         8
   0.6         1989.71        1989         9
   0.6         1989.79        1989        10
  -0.4         1989.88        1989        11
  -0.7         1989.96        1989        12
 
  -0.2         1990.04        1990         1
  -2.4         1990.13        1990         2
  -1.2         1990.21        1990         3
   0.0         1990.29        1990         4
   1.1         1990.38        1990         5
   0.0         1990.46        1990         6
   0.5         1990.54        1990         7
  -0.5         1990.63        1990         8
  -0.8         1990.71        1990         9
   0.1         1990.79        1990        10
  -0.7         1990.88        1990        11
  -0.4         1990.96        1990        12
 
   0.6         1991.04        1991         1
  -0.1         1991.13        1991         2
  -1.4         1991.21        1991         3
  -1.0         1991.29        1991         4
  -1.5         1991.38        1991         5
  -0.5         1991.46        1991         6
  -0.2         1991.54        1991         7
  -0.9         1991.63        1991         8
  -1.8         1991.71        1991         9
  -1.5         1991.79        1991        10
  -0.8         1991.88        1991        11
  -2.3         1991.96        1991        12
 
  -3.4         1992.04        1992         1
  -1.4         1992.13        1992         2
  -3.0         1992.21        1992         3
  -1.4         1992.29        1992         4
   0.0         1992.38        1992         5
  -1.2         1992.46        1992         6
  -0.8         1992.54        1992         7
   0.0         1992.63        1992         8
   0.0         1992.71        1992         9
  -1.9         1992.79        1992        10
  -0.9         1992.88        1992        11
  -1.1         1992.96        1992        12
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6.4.4.2. Stationarity

Stationarity A common assumption in many time series techniques is
that the data are stationary.

A stationary process has the property that the mean,
variance and autocorrelation structure do not change over
time. Stationarity can be defined in precise mathematical
terms, but for our purpose we mean a flat looking series,
without trend, constant variance over time, a constant
autocorrelation structure over time and no periodic
fluctuations (seasonality).

For practical purposes, stationarity can usually be
determined from a run sequence plot.

Transformations
to Achieve
Stationarity

If the time series is not stationary, we can often transform
it to stationarity with one of the following techniques.

1. We can difference the data. That is, given the series
Zt, we create the new series

The differenced data will contain one less point than
the original data. Although you can difference the
data more than once, one difference is usually
sufficient.

2. If the data contain a trend, we can fit some type of
curve to the data and then model the residuals from
that fit. Since the purpose of the fit is to simply
remove long term trend, a simple fit, such as a
straight line, is typically used.

3. For non-constant variance, taking the logarithm or
square root of the series may stabilize the variance.
For negative data, you can add a suitable constant
to make all the data positive before applying the
transformation. This constant can then be subtracted
from the model to obtain predicted (i.e., the fitted)
values and forecasts for future points.

The above techniques are intended to generate series with

http://www.itl.nist.gov/div898/handbook/index.htm
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constant location and scale. Although seasonality also
violates stationarity, this is usually explicitly incorporated
into the time series model.

Example The following plots are from a data set of monthly CO2
concentrations.

Run Sequence
Plot

The initial run sequence plot of the data indicates a rising
trend. A visual inspection of this plot indicates that a
simple linear fit should be sufficient to remove this
upward trend.

This plot also shows periodical behavior. This is discussed
in the next section.

Linear Trend
Removed

This plot contains the residuals from a linear fit to the
original data. After removing the linear trend, the run
sequence plot indicates that the data have a constant
location and variance, although the pattern of the residuals
shows that the data depart from the model in a systematic
way.
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6.4.4.3. Seasonality

Seasonality Many time series display seasonality. By seasonality, we
mean periodic fluctuations. For example, retail sales tend to
peak for the Christmas season and then decline after the
holidays. So time series of retail sales will typically show
increasing sales from September through December and
declining sales in January and February.

Seasonality is quite common in economic time series. It is less
common in engineering and scientific data.

If seasonality is present, it must be incorporated into the time
series model. In this section, we discuss techniques for
detecting seasonality. We defer modeling of seasonality until
later sections.

Detecting
Seasonality

he following graphical techniques can be used to detect
seasonality.

1. A run sequence plot will often show seasonality.

2. A seasonal subseries plot is a specialized technique for
showing seasonality.

3. Multiple box plots can be used as an alternative to the
seasonal subseries plot to detect seasonality.

4. The autocorrelation plot can help identify seasonality.

Examples of each of these plots will be shown below.

The run sequence plot is a recommended first step for
analyzing any time series. Although seasonality can
sometimes be indicated with this plot, seasonality is shown
more clearly by the seasonal subseries plot or the box plot.
The seasonal subseries plot does an excellent job of showing
both the seasonal differences (between group patterns) and
also the within-group patterns. The box plot shows the
seasonal difference (between group patterns) quite well, but it
does not show within group patterns. However, for large data
sets, the box plot is usually easier to read than the seasonal
subseries plot.

Both the seasonal subseries plot and the box plot assume that

http://www.itl.nist.gov/div898/handbook/index.htm
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the seasonal periods are known. In most cases, the analyst will
in fact know this. For example, for monthly data, the period is
12 since there are 12 months in a year. However, if the period
is not known, the autocorrelation plot can help. If there is
significant seasonality, the autocorrelation plot should show
spikes at lags equal to the period. For example, for monthly
data, if there is a seasonality effect, we would expect to see
significant peaks at lag 12, 24, 36, and so on (although the
intensity may decrease the further out we go).

Example
without
Seasonality

The following plots are from a data set of southern
oscillations for predicting el nino.

Run
Sequence
Plot

No obvious periodic patterns are apparent in the run sequence
plot.

Seasonal
Subseries
Plot

The means for each month are relatively close and show no
obvious pattern.
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Box Plot

As with the seasonal subseries plot, no obvious seasonal
pattern is apparent.

Due to the rather large number of observations, the box plot
shows the difference between months better than the seasonal
subseries plot.

Example
with
Seasonality

The following plots are from a data set of monthly CO2
concentrations. A linear trend has been removed from these
data.

Run
Sequence
Plot

This plot shows periodic behavior. However, it is difficult to
determine the nature of the seasonality from this plot.

Seasonal
Subseries
Plot
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The seasonal subseries plot shows the seasonal pattern more
clearly. In this case, the CO2 concentrations are at a minimun
in September and October. From there, steadily the
concentrations increase until June and then begin declining
until September.

Box Plot

As with the seasonal subseries plot, the seasonal pattern is
quite evident in the box plot.
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6.4.4.3.1. Seasonal Subseries Plot

Purpose Seasonal subseries plots (Cleveland 1993) are a tool for
detecting seasonality in a time series.

This plot is only useful if the period of the seasonality is
already known. In many cases, this will in fact be known. For
example, monthly data typically has a period of 12.

If the period is not known, an autocorrelation plot or spectral
plot can be used to determine it.

Sample
Plot

This seasonal subseries plot containing monthly data of CO2
concentrations reveals a strong seasonality pattern. The CO2
concentrations peak in May, steadily decrease through
September, and then begin rising again until the May peak.

This plot allows you to detect both between group and within
group patterns.

If there is a large number of observations, then a box plot may
be preferable.

Definition Seasonal subseries plots are formed by

Vertical Response variable

http://www.itl.nist.gov/div898/handbook/index.htm
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axis:
Horizontal
axis:

Time ordered by season. For example, with
monthly data, all the January values are
plotted (in chronological order), then all the
February values, and so on.

In addition, a reference line is drawn at the group means.

The user must specify the length of the seasonal pattern before
generating this plot. In most cases, the analyst will know this
from the context of the problem and data collection.
Sometimes the series will need to be detrended before
generating the plot, as was the case for the CO2 data.

Questions The seasonal subseries plot can provide answers to the
following questions:

1. Do the data exhibit a seasonal pattern?
2. What is the nature of the seasonality?
3. Is there a within-group pattern (e.g., do January and

July exhibit similar patterns)?
4. Are there any outliers once seasonality has been

accounted for?

Importance It is important to know when analyzing a time series if there is
a significant seasonality effect. The seasonal subseries plot is
an excellent tool for determining if there is a seasonal pattern.

Related
Techniques

Box Plot 
Run Sequence Plot 
Autocorrelation Plot

Software Seasonal subseries plots are available in a few general purpose
statistical software programs. It may possible to write macros
to generate this plot in most statistical software programs that
do not provide it directly. Seasonal subseries plots can be
generated using both Dataplot code and R code.
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6.4.4.4. Common Approaches to Univariate Time
Series

There are a number of approaches to modeling time series.
We outline a few of the most common approaches below.

Trend,
Seasonal,
Residual
Decompositions

One approach is to decompose the time series into a trend,
seasonal, and residual component.

Triple exponential smoothing is an example of this approach.
Another example, called seasonal loess, is based on locally
weighted least squares and is discussed by Cleveland (1993).
We do not discuss seasonal loess in this handbook.

Frequency
Based Methods

Another approach, commonly used in scientific and
engineering applications, is to analyze the series in the
frequency domain. An example of this approach in modeling
a sinusoidal type data set is shown in the beam deflection
case study. The spectral plot is the primary tool for the
frequency analysis of time series.

Detailed discussions of frequency-based methods are
included in Bloomfield (1976), Jenkins and Watts (1968),
and Chatfield (1996).

Autoregressive
(AR) Models

A common approach for modeling univariate time series is
the autoregressive (AR) model:

where Xt is the time series, At is white noise, and

with  denoting the process mean.

An autoregressive model is simply a linear regression of the
current value of the series against one or more prior values
of the series. The value of p is called the order of the AR
model.

AR models can be analyzed with one of various methods,
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including standard linear least squares techniques. They also
have a straightforward interpretation.

Moving
Average (MA)
Models

Another common approach for modeling univariate time
series models is the moving average (MA) model:

where Xt is the time series,  is the mean of the series, At-i
are white noise, and 1, ... , q are the parameters of the
model. The value of q is called the order of the MA model.

That is, a moving average model is conceptually a linear
regression of the current value of the series against the white
noise or random shocks of one or more prior values of the
series. The random shocks at each point are assumed to come
from the same distribution, typically a normal distribution,
with location at zero and constant scale. The distinction in
this model is that these random shocks are propogated to
future values of the time series. Fitting the MA estimates is
more complicated than with AR models because the error
terms are not observable. This means that iterative non-linear
fitting procedures need to be used in place of linear least
squares. MA models also have a less obvious interpretation
than AR models.

Sometimes the ACF and PACF will suggest that a MA
model would be a better model choice and sometimes both
AR and MA terms should be used in the same model (see
Section 6.4.4.5).

Note, however, that the error terms after the model is fit
should be independent and follow the standard assumptions
for a univariate process.

Box-Jenkins
Approach

Box and Jenkins popularized an approach that combines the
moving average and the autoregressive approaches in the
book "Time Series Analysis: Forecasting and Control" (Box,
Jenkins, and Reinsel, 1994).

Although both autoregressive and moving average
approaches were already known (and were originally
investigated by Yule), the contribution of Box and Jenkins
was in developing a systematic methodology for identifying
and estimating models that could incorporate both
approaches. This makes Box-Jenkins models a powerful
class of models. The next several sections will discuss these
models in detail.
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6.4.4.5. Box-Jenkins Models

Box-
Jenkins
Approach

The Box-Jenkins ARMA model is a combination of the AR
and MA models (described on the previous page):

where the terms in the equation have the same meaning as
given for the AR and MA model.

Comments
on Box-
Jenkins
Model

A couple of notes on this model.

1. The Box-Jenkins model assumes that the time series is
stationary. Box and Jenkins recommend differencing
non-stationary series one or more times to achieve
stationarity. Doing so produces an ARIMA model, with
the "I" standing for "Integrated".

2. Some formulations transform the series by subtracting
the mean of the series from each data point. This yields
a series with a mean of zero. Whether you need to do
this or not is dependent on the software you use to
estimate the model.

3. Box-Jenkins models can be extended to include
seasonal autoregressive and seasonal moving average
terms. Although this complicates the notation and
mathematics of the model, the underlying concepts for
seasonal autoregressive and seasonal moving average
terms are similar to the non-seasonal autoregressive and
moving average terms.

4. The most general Box-Jenkins model includes
difference operators, autoregressive terms, moving
average terms, seasonal difference operators, seasonal
autoregressive terms, and seasonal moving average
terms. As with modeling in general, however, only
necessary terms should be included in the model. Those
interested in the mathematical details can consult Box,
Jenkins and Reisel (1994), Chatfield (1996), or
Brockwell and Davis (2002).
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Stages in
Box-
Jenkins
Modeling

There are three primary stages in building a Box-Jenkins time
series model.

1. Model Identification
2. Model Estimation
3. Model Validation

Remarks The following remarks regarding Box-Jenkins models should
be noted.

1. Box-Jenkins models are quite flexible due to the
inclusion of both autoregressive and moving average
terms.

2. Based on the Wold decomposition thereom (not
discussed in the Handbook), a stationary process can be
approximated by an ARMA model. In practice, finding
that approximation may not be easy.

3. Chatfield (1996) recommends decomposition methods
for series in which the trend and seasonal components
are dominant.

4. Building good ARIMA models generally requires more
experience than commonly used statistical methods such
as regression.

Sufficiently
Long
Series
Required

Typically, effective fitting of Box-Jenkins models requires at
least a moderately long series. Chatfield (1996) recommends
at least 50 observations. Many others would recommend at
least 100 observations.
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6.4.4.6. Box-Jenkins Model Identification

Stationarity
and Seasonality

The first step in developing a Box-Jenkins model is to
determine if the series is stationary and if there is any
significant seasonality that needs to be modeled.

Detecting
stationarity

Stationarity can be assessed from a run sequence plot.
The run sequence plot should show constant location and
scale. It can also be detected from an autocorrelation plot.
Specifically, non-stationarity is often indicated by an
autocorrelation plot with very slow decay.

Detecting
seasonality

Seasonality (or periodicity) can usually be assessed from
an autocorrelation plot, a seasonal subseries plot, or a
spectral plot.

Differencing to
achieve
stationarity

Box and Jenkins recommend the differencing approach to
achieve stationarity. However, fitting a curve and
subtracting the fitted values from the original data can
also be used in the context of Box-Jenkins models.

Seasonal
differencing

At the model identification stage, our goal is to detect
seasonality, if it exists, and to identify the order for the
seasonal autoregressive and seasonal moving average
terms. For many series, the period is known and a single
seasonality term is sufficient. For example, for monthly
data we would typically include either a seasonal AR 12
term or a seasonal MA 12 term. For Box-Jenkins models,
we do not explicitly remove seasonality before fitting the
model. Instead, we include the order of the seasonal terms
in the model specification to the ARIMA estimation
software. However, it may be helpful to apply a seasonal
difference to the data and regenerate the autocorrelation
and partial autocorrelation plots. This may help in the
model idenfitication of the non-seasonal component of
the model. In some cases, the seasonal differencing may
remove most or all of the seasonality effect.

Identify p and q Once stationarity and seasonality have been addressed,
the next step is to identify the order (i.e., the p and q) of
the autoregressive and moving average terms.

Autocorrelation The primary tools for doing this are the autocorrelation
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and Partial
Autocorrelation
Plots

plot and the partial autocorrelation plot. The sample
autocorrelation plot and the sample partial autocorrelation
plot are compared to the theoretical behavior of these
plots when the order is known.

Order of
Autoregressive
Process (p)

Specifically, for an AR(1) process, the sample
autocorrelation function should have an exponentially
decreasing appearance. However, higher-order AR
processes are often a mixture of exponentially decreasing
and damped sinusoidal components.

For higher-order autoregressive processes, the sample
autocorrelation needs to be supplemented with a partial
autocorrelation plot. The partial autocorrelation of an
AR(p) process becomes zero at lag p+1 and greater, so
we examine the sample partial autocorrelation function to
see if there is evidence of a departure from zero. This is
usually determined by placing a 95% confidence interval
on the sample partial autocorrelation plot (most software
programs that generate sample autocorrelation plots will
also plot this confidence interval). If the software
program does not generate the confidence band, it is
approximately , with N denoting the sample
size.

Order of
Moving
Average
Process (q)

The autocorrelation function of a MA(q) process becomes
zero at lag q+1 and greater, so we examine the sample
autocorrelation function to see where it essentially
becomes zero. We do this by placing the 95% confidence
interval for the sample autocorrelation function on the
sample autocorrelation plot. Most software that can
generate the autocorrelation plot can also generate this
confidence interval.

The sample partial autocorrelation function is generally
not helpful for identifying the order of the moving
average process.

Shape of
Autocorrelation
Function

The following table summarizes how we use the sample
autocorrelation function for model identification.

SHAPE INDICATED MODEL

Exponential,
decaying to
zero

Autoregressive model. Use the
partial autocorrelation plot to
identify the order of the
autoregressive model.

Alternating
positive and
negative,
decaying to
zero

Autoregressive model. Use the
partial autocorrelation plot to
help identify the order.
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6.4.4.6. Box-Jenkins Model Identification

http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc446.htm[6/27/2012 2:36:28 PM]

One or more
spikes, rest are
essentially
zero

Moving average model, order
identified by where plot becomes
zero.

Decay, starting
after a few
lags

Mixed autoregressive and
moving average model.

All zero or
close to zero

Data is essentially random.

High values at
fixed intervals

Include seasonal autoregressive
term.

No decay to
zero

Series is not stationary.

Mixed Models
Difficult to
Identify

In practice, the sample autocorrelation and partial
autocorrelation functions are random variables and will
not give the same picture as the theoretical functions.
This makes the model identification more difficult. In
particular, mixed models can be particularly difficult to
identify.

Although experience is helpful, developing good models
using these sample plots can involve much trial and error.
For this reason, in recent years information-based criteria
such as FPE (Final Prediction Error) and AIC (Aikake
Information Criterion) and others have been preferred
and used. These techniques can help automate the model
identification process. These techniques require computer
software to use. Fortunately, these techniques are
available in many commerical statistical software
programs that provide ARIMA modeling capabilities.

For additional information on these techniques, see
Brockwell and Davis (1987, 2002).

Examples We show a typical series of plots for performing the
initial model identification for

1. the southern oscillations data and
2. the CO2 monthly concentrations data.
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6.4.4.6.1. Model Identification for Southern
Oscillations Data

Example for
Southern
Oscillations

We show typical series of plots for the initial model
identification stages of Box-Jenkins modeling for two
different examples.

The first example is for the southern oscillations data set.
We start with the run sequence plot and seasonal subseries
plot to determine if we need to address stationarity and
seasonality.

Run Sequence
Plot

The run sequence plot indicates stationarity.

Seasonal
Subseries Plot
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The seasonal subseries plot indicates that there is no
significant seasonality.

Since the above plots show that this series does not
exhibit any significant non-stationarity or seasonality, we
generate the autocorrelation and partial autocorrelation
plots of the raw data.

Autocorrelation
Plot

The autocorrelation plot shows a mixture of exponentially
decaying and damped sinusoidal components. This
indicates that an autoregressive model, with order greater
than one, may be appropriate for these data. The partial
autocorrelation plot should be examined to determine the
order.

Partial
Autocorrelation
Plot
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The partial autocorrelation plot suggests that an AR(2)
model might be appropriate.

In summary, our intial attempt would be to fit an AR(2)
model with no seasonal terms and no differencing or trend
removal. Model validation should be performed before
accepting this as a final model.
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6.4.4.6.2. Model Identification for the CO2
Concentrations Data

Example for
Monthly CO2
Concentrations

The second example is for the monthly CO2
concentrations data set. As before, we start with the run
sequence plot to check for stationarity.

Run Sequence
Plot

The initial run sequence plot of the data indicates a rising
trend. A visual inspection of this plot indicates that a
simple linear fit should be sufficient to remove this
upward trend.

Linear Trend
Removed
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This plot contains the residuals from a linear fit to the
original data. After removing the linear trend, the run
sequence plot indicates that the data have a constant
location and variance, which implies stationarity.

However, the plot does show seasonality. We generate an
autocorrelation plot to help determine the period followed
by a seasonal subseries plot.

Autocorrelation
Plot

The autocorrelation plot shows an alternating pattern of
positive and negative spikes. It also shows a repeating
pattern every 12 lags, which indicates a seasonality effect.

The two connected lines on the autocorrelation plot are
95% and 99% confidence intervals for statistical
significance of the autocorrelations.

Seasonal
Subseries Plot
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A significant seasonal pattern is obvious in this plot, so
we need to include seasonal terms in fitting a Box-Jenkins
model. Since this is monthly data, we would typically
include either a lag 12 seasonal autoregressive and/or
moving average term.

To help identify the non-seasonal components, we will
take a seasonal difference of 12 and generate the
autocorrelation plot on the seasonally differenced data.

Autocorrelation
Plot for
Seasonally
Differenced
Data

This autocorrelation plot shows a mixture of exponential
decay and a damped sinusoidal pattern. This indicates that
an AR model, with order greater than one, may be
appropriate. We generate a partial autocorrelation plot to
help identify the order.

Partial
Autocorrelation
Plot of
Seasonally
Differenced
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Data

The partial autocorrelation plot suggests that an AR(2)
model might be appropriate since the partial
autocorrelation becomes zero after the second lag. The lag
12 is also significant, indicating some remaining
seasonality.

In summary, our intial attempt would be to fit an AR(2)
model with a seasonal AR(12) term on the data with a
linear trend line removed. We could try the model both
with and without seasonal differencing applied. Model
validation should be performed before accepting this as a
final model.
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6.4.4.6.3. Partial Autocorrelation Plot

Purpose:
Model
Identification
for Box-
Jenkins
Models

Partial autocorrelation plots (Box and Jenkins, pp. 64-65,
1970) are a commonly used tool for model identification in
Box-Jenkins models.

The partial autocorrelation at lag k is the autocorrelation
between Xt and Xt-k that is not accounted for by lags 1
through k-1.

There are algorithms, not discussed here, for computing the
partial autocorrelation based on the sample autocorrelations.
See (Box, Jenkins, and Reinsel 1970) or (Brockwell, 1991)
for the mathematical details.

Specifically, partial autocorrelations are useful in
identifying the order of an autoregressive model. The partial
autocorrelation of an AR(p) process is zero at lag p+1 and
greater. If the sample autocorrelation plot indicates that an
AR model may be appropriate, then the sample partial
autocorrelation plot is examined to help identify the order.
We look for the point on the plot where the partial
autocorrelations essentially become zero. Placing a 95%
confidence interval for statistical significance is helpful for
this purpose.

The approximate 95% confidence interval for the partial
autocorrelations are at .

Sample Plot

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/pmc/pmc/section7/pmc7.htm#BoxJenkins
http://www.itl.nist.gov/div898/handbook/pmc/pmc/section7/pmc7.htm#BoxJenkins


6.4.4.6.3. Partial Autocorrelation Plot

http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc4463.htm[6/27/2012 2:36:31 PM]

This partial autocorrelation plot shows clear statistical
significance for lags 1 and 2 (lag 0 is always 1). The next
few lags are at the borderline of statistical significance. If
the autocorrelation plot indicates that an AR model is
appropriate, we could start our modeling with an AR(2)
model. We might compare this with an AR(3) model.

Definition Partial autocorrelation plots are formed by

Vertical axis: Partial autocorrelation coefficient at
lag h.

Horizontal
axis:

Time lag h (h = 0, 1, 2, 3, ...).

In addition, 95% confidence interval bands are typically
included on the plot.

Questions The partial autocorrelation plot can help provide answers to
the following questions:

1. Is an AR model appropriate for the data?
2. If an AR model is appropriate, what order should we

use?

Related
Techniques

Autocorrelation Plot 
Run Sequence Plot 
Spectral Plot

Case Study The partial autocorrelation plot is demonstrated in the Negiz
data case study.

Software Partial autocorrelation plots are available in many general
purpose statistical software programs.

http://www.itl.nist.gov/div898/handbook/eda/section3/autocopl.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/runseqpl.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/spectrum.htm


6.4.4.6.3. Partial Autocorrelation Plot

http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc4463.htm[6/27/2012 2:36:31 PM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/


6.4.4.7. Box-Jenkins Model Estimation

http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc447.htm[6/27/2012 2:36:31 PM]

 

6. Process or Product Monitoring and Control 
6.4. Introduction to Time Series Analysis 
6.4.4. Univariate Time Series Models 
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Use
Software

Estimating the parameters for the Box-Jenkins models is a
quite complicated non-linear estimation problem. For this
reason, the parameter estimation should be left to a high
quality software program that fits Box-Jenkins models.
Fortunately, many commerical statistical software programs
now fit Box-Jenkins models.

Approaches The main approaches to fitting Box-Jenkins models are non-
linear least squares and maximum likelihood estimation.

Maximum likelihood estimation is generally the preferred
technique. The likelihood equations for the full Box-Jenkins
model are complicated and are not included here. See
(Brockwell and Davis, 1991) for the mathematical details.

Model
Estimation
Example

The Negiz case study shows an example of the Box-Jenkins
model-fitting.
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Assumptions
for a Stable
Univariate
Process

Model diagnostics for Box-Jenkins models is similar to
model validation for non-linear least squares fitting.

That is, the error term At is assumed to follow the
assumptions for a stationary univariate process. The residuals
should be white noise (or independent when their
distributions are normal) drawings from a fixed distribution
with a constant mean and variance. If the Box-Jenkins model
is a good model for the data, the residuals should satisfy
these assumptions.

If these assumptions are not satisfied, we need to fit a more
appropriate model. That is, we go back to the model
identification step and try to develop a better model.
Hopefully the analysis of the residuals can provide some
clues as to a more appropriate model.

4-Plot of
Residuals

As discussed in the EDA chapter, one way to assess if the
residuals from the Box-Jenkins model follow the
assumptions is to generate a 4-plot of the residuals and an
autocorrelation plot of the residuals. One could also look at
the value of the Box-Ljung (1978) statistic.

An example of analyzing the residuals from a Box-Jenkins
model is given in the Negiz data case study.
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6.4.4.9. Example of Univariate Box-Jenkins
Analysis

Series F We analyze the series F data set in Box, Jenkins, and Reinsel,
1994. A plot of the 70 raw data points is shown below.

The data do not appear to have a seasonal component or a
noticeable trend. (The stationarity of the series was verified
by fitting a straight line to the data versus time period. The
slope was not found to be significantly different from zero
(p-value = 0.2).)

Model
Identification

We compute the autocorrelation function (ACF) of the data
for the first 35 lags to determine the type of model to fit to
the data. We list the numeric results and plot the ACF (along
with 95 % confidence limits) versus the lag number.

 Lag          ACF
   0  1.000000000
   1 -0.389878319
   2  0.304394082
   3 -0.165554717
   4  0.070719321
   5 -0.097039288
   6 -0.047057692
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   7  0.035373112
   8 -0.043458199
   9 -0.004796162
  10  0.014393137
  11  0.109917200
  12 -0.068778492
  13  0.148034489
  14  0.035768581
  15 -0.006677806
  16  0.173004275
  17 -0.111342583
  18  0.019970791
  19 -0.047349722
  20  0.016136806
  21  0.022279561
  22 -0.078710582
  23 -0.009577413
  24 -0.073114034
  25 -0.019503289
  26  0.041465024
  27 -0.022134370
  28  0.088887299
  29  0.016247148
  30  0.003946351
  31  0.004584069
  32 -0.024782198
  33 -0.025905040
  34 -0.062879966
  35  0.026101117

The ACF values alternate in sign and decay quickly after lag
2, indicating that an AR(2) model is appropriate for the data.

Model
Fitting

We fit an AR(2) model to the data.

The model fitting results are shown below.

Source  Estimate  Standard Error
------  --------  --------------
φ1       -0.3198      0.1202
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φ2        0.1797      0.1202

δ = 51.1286 
Residual standard deviation = 10.9599

Test randomness of residuals:
Standardized Runs Statistic Z = 0.4887, p-value = 
0.625

Forecasting Using our AR(2) model, we forcast values six time periods
into the future.

Period  Prediction   Standard Error
  71      60.6405       10.9479
  72      43.0317       11.4941
  73      55.4274       11.9015
  74      48.2987       12.0108
  75      52.8061       12.0585
  76      50.0835       12.0751

The "historical" data and forecasted values (with 90 %
confidence limits) are shown in the graph below.
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6.4.4.10. Box-Jenkins Analysis on Seasonal Data

Series G This example illustrates a Box-Jenkins time series analysis
for seasonal data using the series G data set in Box, Jenkins,
and Reinsel, 1994. A plot of the 144 observations is shown
below.

Non-constant variance can be removed by performing a
natural log transformation.
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Next, we remove trend in the series by taking first
differences. The resulting series is shown below.

Analyzing
Autocorrelation
Plot for
Seasonality

To identify an appropriate model, we plot the ACF of the
time series.
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If very large autocorrelations are observed at lags spaced n
periods apart, for example at lags 12 and 24, then there is
evidence of periodicity. That effect should be removed, since
the objective of the identification stage is to reduce the
autocorrelation throughout. So if simple differencing is not
enough, try seasonal differencing at a selected period, such
as 4, 6, or 12. In our example, the seasonal period is 12.

A plot of Series G after taking the natural log, first
differencing, and seasonal differencing is shown below.
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The number of seasonal terms is rarely more than one. If you
know the shape of your forecast function, or you wish to
assign a particular shape to the forecast function, you can
select the appropriate number of terms for seasonal AR or
seasonal MA models.

The book by Box and Jenkins, Time Series Analysis
Forecasting and Control (the later edition is Box, Jenkins
and Reinsel, 1994) has a discussion on these forecast
functions on pages 326 - 328. Again, if you have only a faint
notion, but you do know that there was a trend upwards
before differencing, pick a seasonal MA term and see what
comes out in the diagnostics.

An ACF plot of the seasonal and first differenced natural log
of series G is shown below.
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The plot has a few spikes, but most autocorrelations are near
zero, indicating that a seasonal MA(1) model is appropriate.

Model Fitting We fit an MA(1) model to the data.

The model fitting results are shown below.

                            Seasonal
Estimate            MA(1)     MA(1)
--------          -------    -------
Parameter         -0.4018    -0.5569
Standard Error     0.0896     0.0731

Residual standard deviation = 0.0367  
Log likelihood = 244.7
AIC = -483.4

Test the randomness of the residuals up to 30 lags using the
Box-Ljung test. Recall that the degrees of freedom for the
critical region must be adjusted to account for two estimated
parameters.

H0:  The residuals are random.
Ha:  The residuals are not random.  

Test statistic:  Q = 29.4935
Significance level:  α = 0.05
Degrees of freedom:  h = 30 - 2 = 28
Critical value:  Χ 21-α,h = 41.3371 
Critical region: Reject H0 if Q > 41.3371

Since the null hypothesis of the Box-Ljung test is not
rejected we conclude that the fitted model is adequate.

Forecasting Using our seasonal MA(1) model, we forcast values 12
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periods into the future and compute 90 % confidence limits.

              Lower                   Upper
    Period    Limit      Forecast     Limit
    ------   --------    --------    --------
      145    424.0234    450.7261    478.4649
      146    396.7861    426.0042    456.7577
      147    442.5731    479.3298    518.4399
      148    451.3902    492.7365    537.1454
      149    463.3034    509.3982    559.3245
      150    527.3754    583.7383    645.2544
      151    601.9371    670.4625    745.7830
      152    595.7602    667.5274    746.9323
      153    495.7137    558.5657    628.5389
      154    439.1900    497.5430    562.8899
      155    377.7598    430.1618    489.1730
      156    417.3149    477.5643    545.7760
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If each time
series
observation
is a vector
of numbers,
you can
model them
using a
multivariate
form of the
Box-Jenkins
model

The multivariate form of the Box-Jenkins univariate models
is sometimes called the ARMAV model, for AutoRegressive
Moving Average Vector or simply vector ARMA process.

The ARMAV model for a stationary multivariate time series,
with a zero mean vector, represented by

is of the form

where

xt and at are n x 1 column vectors with at representing
multivariate white noise

are n x n matrices for autoregressive and moving
average parameters

E[at] = 0

where a is the dispersion or covariance matrix of at

As an example, for a bivariate series with n = 2, p = 2, and q
= 1, the ARMAV(2,1) model is:
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with

Estimation
of
parameters
and
covariance
matrix
difficult

The estimation of the matrix parameters and covariance
matrix is complicated and very difficult without computer
software. The estimation of the Moving Average matrices is
especially an ordeal. If we opt to ignore the MA
component(s) we are left with the ARV model given by:

where

xt is a vector of observations, x1t, x2t, ... , xnt at time t

at is a vector of white noise, a1t, a2t, ... , ant at time t

 
is a n x n matrix of autoregressive parameters

E[at] = 0

where Σa is the dispersion or covariance matrix

A model with p autoregressive matrix parameters is an
ARV(p) model or a vector AR model.

The parameter matrices may be estimated by multivariate
least squares, but there are other methods such as maximium
likelihood estimation.

Interesting
properties
of
parameter
matrices

There are a few interesting properties associated with the phi
or AR parameter matrices. Consider the following example
for a bivariate series with n =2, p = 2, and q = 0. The
ARMAV(2,0) model is:
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Without loss of generality, assume that the X series is input and the Y series
are output and that the mean vector = (0,0).

Therefore, tranform the observation by subtracting their respective averages.

Diagonal
terms of
Phi matrix

The diagonal terms of each Phi matrix are the scalar estimates for each
series, in this case:

1.11, 2.11 for the input series X, 

1.22, .2.22 for the output series Y.

Transfer
mechanism

The lower off-diagonal elements represent the influence of the input on the
output.

This is called the "transfer" mechanism or transfer-function model as
discussed by Box and Jenkins in Chapter 11. The  terms here correspond to
their  terms.

The upper off-diagonal terms represent the influence of the output on the
input.

Feedback This is called "feedback". The presence of feedback can also be seen as a
high value for a coefficient in the correlation matrix of the residuals. A "true"
transfer model exists when there is no feedback.

This can be seen by expressing the matrix form into scalar form:

Delay Finally, delay or "dead' time can be measured by studying the lower off-
diagonal elements again.

If, for example, 1.21 is non-significant, the delay is 1 time period.
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6.4.5.1. Example of Multivariate Time Series Analysis

Bivariate
Gas
Furance
Example

The gas furnace data from Box, Jenkins, and Reinsel, 1994 is used to
illustrate the analysis of a bivariate time series. Inside the gas furnace, air and
methane were combined in order to obtain a mixture of gases containing
CO2 (carbon dioxide). The input series is the methane gas feedrate described
by

Methane Gas Input Feed = 0.60 - 0.04 X(t)

the CO2 concentration was the output series, Y(t). In this experiment 296
successive pairs of observations (Xt, Yt) were collected from continuous
records at 9-second intervals. For the analysis described here, only the first
60 pairs were used. We fit an ARV(2) model as described in 6.4.5.

Plots of
input and
output
series

The plots of the input and output series are displayed below. 

http://www.itl.nist.gov/div898/handbook/index.htm


6.4.5.1. Example of Multivariate Time Series Analysis

http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc451.htm[6/27/2012 2:36:44 PM]

Model
Fitting

The scalar form of the ARV(2) model is the following.

The equation for xt corresponds to gas rate while the equation for yt
corresponds to CO2 concentration.

The parameter estimates for the equation associated with gas rate are the
following.

         Estimate  Std. Err.  t value   Pr(>|t|)  
a1t       0.003063   0.035769    0.086      0.932    
φ1.11     1.683225   0.123128   13.671    < 2e-16
φ2.11    -0.860205   0.165886   -5.186   3.44e-06
φ1.12    -0.076224   0.096947   -0.786      0.435    
φ2.12     0.044774   0.082285    0.544      0.589    

Residual standard error:  0.2654 based on 53 degrees of freedom
Multiple R-Squared:  0.9387
Adjusted R-squared:  0.9341 
F-statistic:  203.1 based on 4 and 53 degrees of freedom  
p-value:  < 2.2e-16 

The parameter estimates for the equation associated with CO2 concentration
are the following.

        Estimate  Std. Err.  t value   Pr(>|t|) 
a2t      -0.03372    0.01615   -2.088   0.041641   
φ1.22     1.22630    0.04378   28.013    < 2e-16
φ2.22    -0.40927    0.03716  -11.015   2.57e-15
φ      0.22898    0.05560    4.118   0.000134
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1.21
φ2.21    -0.80532    0.07491  -10.751   6.29e-15

Residual standard error:  0.1198 based on 53 degrees of freedom
Multiple R-Squared:  0.9985     
Adjusted R-squared:  0.9984 
F-statistic:  8978 based on 4 and 53 degrees of freedom
p-value:  < 2.2e-16 

Box-Ljung tests performed for each series to test the randomness of the first
24 residuals were not significant. The p-values for the tests using CO2
concentration residuals and gas rate residuals were 0.4 and 0.6, respectively.

Forecasting The forecasting method is an extension of the model and follows the theory
outlined in the previous section. The forecasted values of the next six
observations (61-66) and the associated 90 % confidence limits are shown
below for each series.

             90% Lower   Concentration   90% Upper
Observation    Limit       Forecast        Limit
-----------  ---------     --------      ---------
    61          51.0         51.2           51.4
    62          51.0         51.3           51.6
    63          50.6         51.0           51.4
    64          49.8         50.5           51.1
    65          48.7         50.0           51.3
    66          47.6         49.7           51.8

             90% Lower     Rate     90% Upper
Observation    Limit     Forecast     Limit
-----------  ---------   --------   ---------
    61         0.795       1.231      1.668
    62         0.439       1.295      2.150
    63         0.032       1.242      2.452
    64        -0.332       1.128      2.588
    65        -0.605       1.005      2.614
    66        -0.776       0.908      2.593
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contents

1. What do we mean by "Normal" data? 
2. What do we do when data are "Non-normal"? 
3. Elements of Matrix Algebra 

1. Numerical Examples 
2. Determinant and Eigenstructure 

4. Elements of Multivariate Analysis 
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3. Hotelling's  T2

1. Example of Hotelling's T2 Test 
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6.5.1. What do we mean by "Normal" data?

The Normal
distribution
model

"Normal" data are data that are drawn (come from) a
population that has a normal distribution. This distribution is
inarguably the most important and the most frequently used
distribution in both the theory and application of statistics. If
X is a normal random variable, then the probability
distribution of X is

Normal
probability
distribution

Parameters
of normal
distribution

The parameters of the normal distribution are the mean  and
the standard deviation  (or the variance 2). A special
notation is employed to indicate that X is normally distributed
with these parameters, namely

X ~ N( , ) or X ~ N( ,  2).

Shape is
symmetric
and unimodal

The shape of the normal distribution is symmetric and
unimodal. It is called the bell-shaped or Gaussian
distribution after its inventor, Gauss (although De Moivre
also deserves credit).

The visual appearance is given below.
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Property of
probability
distributions
is that area
under curve
equals one

A property of a special class of non-negative functions,
called probability distributions, is that the area under the
curve equals unity. One finds the area under any portion of
the curve by integrating the distribution between the specified
limits. The area under the bell-shaped curve of the normal
distribution can be shown to be equal to 1, and therefore the
normal distribution is a probability distribution.

Interpretation
of 

There is a simple interpretation of 

68.27% of the population fall between  +/- 1  
95.45% of the population fall between  +/- 2  
99.73% of the population fall between  +/- 3 

The
cumulative
normal
distribution

The cumulative normal distribution is defined as the
probability that the normal variate is less than or equal to
some value v, or

Unfortunately this integral cannot be evaluated in closed
form and one has to resort to numerical methods. But even
so, tables for all possible values of  and  would be
required. A change of variables rescues the situation. We let

Now the evaluation can be made independently of  and ;
that is,

where (.) is the cumulative distribution function of the
standard normal distribution (  = 0,  = 1).

Tables for the
cumulative
standard
normal
distribution

Tables of the cumulative standard normal distribution are
given in every statistics textbook and in the handbook. A rich
variety of approximations can be found in the literature on
numerical methods.

For example, if  = 0 and  = 1 then the area under the curve
from  - 1  to  + 1  is the area from 0 - 1 to 0 + 1, which
is 0.6827. Since most standard normal tables give area to the
left of the lookup value, they will have for z = 1 an area of
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.8413 and for z = -1 an area of .1587. By subtraction we
obtain the area between -1 and +1 to be .8413 - .1587 =
.6826.
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6.5.2. What to do when data are non-normal

Often it is
possible to
transform non-
normal data
into
approximately
normal data

Non-normality is a way of life, since no characteristic (height,
weight, etc.) will have exactly a normal distribution. One
strategy to make non-normal data resemble normal data is by
using a transformation. There is no dearth of transformations in
statistics; the issue is which one to select for the situation at
hand. Unfortunately, the choice of the "best" transformation is
generally not obvious.

This was recognized in 1964 by G.E.P. Box and D.R. Cox. They
wrote a paper in which a useful family of power transformations
was suggested. These transformations are defined only for
positive data values. This should not pose any problem because
a constant can always be added if the set of observations
contains one or more negative values.

The Box-Cox power transformations are given by

The Box-Cox
Transformation

Given the vector of data observations x = x1, x2, ...xn, one way
to select the power  is to use the  that maximizes the
logarithm of the likelihood function

The logarithm
of the
likelihood
function where

is the arithmetic mean of the transformed data.

Confidence
bound for 

In addition, a confidence bound (based on the likelihood ratio
statistic) can be constructed for  as follows: A set of  values
that represent an approximate 100(1- )% confidence bound for 

 is formed from those  that satisfy
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where  denotes the maximum likelihood estimator for  and
Χ 2

1-α, 1 is the 100(1- ) percentile of the chi-square distribution
with 1 degree of freedom.

Example of the
Box-Cox
scheme

To illustrate the procedure, we used the data from Johnson and
Wichern's textbook (Prentice Hall 1988), Example 4.14. The
observations are microwave radiation measurements.

Sample data .15 .09 .18 .10 .05 .12 .08
.05 .08 .10 .07 .02 .01 .10
.10 .10 .02 .10 .01 .40 .10
.05 .03 .05 .15 .10 .15 .09
.08 .18 .10 .20 .11 .30 .02
.20 .20 .30 .30 .40 .30 .05

Table of log-
likelihood
values for
various values
of 

The values of the log-likelihood function obtained by varying 
from -2.0 to 2.0 are given below.

LLF LLF LLF

-2.0 7.1146 -0.6 89.0587 0.7 103.0322
-1.9 14.1877 -0.5 92.7855 0.8 101.3254
-1.8 21.1356 -0.4 96.0974 0.9 99.3403
-1.7 27.9468 -0.3 98.9722 1.0 97.1030
-1.6 34.6082 -0.2 101.3923 1.1 94.6372
-1.5 41.1054 -0.1 103.3457 1.2 91.9643
-1.4 47.4229 0.0 104.8276 1.3 89.1034
-1.3 53.5432 0.1 105.8406 1.4 86.0714
1.2 59.4474 0.2 106.3947 1.5 82.8832
-1.1 65.1147 0.3 106.5069 1.6 79.5521
-0.9 75.6471 0.4 106.1994 1.7 76.0896
-0.8 80.4625 0.5 105.4985 1.8 72.5061
-0.7 84.9421 0.6 104.4330 1.9 68.8106

This table shows that  = .3 maximizes the log-likelihood
function (LLF). This becomes 0.28 if a second digit of accuracy
is calculated.

The Box-Cox transform is also discussed in Chapter 1 under the
Box Cox Linearity Plot and the Box Cox Normality Plot. The
Box-Cox normality plot discussion provides a graphical method
for choosing  to transform a data set to normality. The criterion
used to choose  for the Box-Cox linearity plot is the value of 
that maximizes the correlation between the transformed x-values
and the y-values when making a normal probability plot of the
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(transformed) data.

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/main.htm
http://www.itl.nist.gov/div898/handbook/
http://www.sematech.org/
http://www.nist.gov/


6.5.3. Elements of Matrix Algebra

http://www.itl.nist.gov/div898/handbook/pmc/section5/pmc53.htm[6/27/2012 2:36:48 PM]

 

6. Process or Product Monitoring and Control 
6.5. Tutorials 

6.5.3. Elements of Matrix Algebra

Elementary Matrix Algebra

Basic
definitions
and
operations of
matrix
algebra -
needed for
multivariate
analysis

Vectors and matrices are arrays of numbers. The algebra
for symbolic operations on them is different from the
algebra for operations on scalars, or single numbers. For
example there is no division in matrix algebra, although
there is an operation called "multiplying by an inverse". It
is possible to express the exact equivalent of matrix algebra
equations in terms of scalar algebra expressions, but the
results look rather messy.

It can be said that the matrix algebra notation is shorthand
for the corresponding scalar longhand.

Vectors A vector is a column of numbers

The scalars ai are the elements of vector a.

Transpose The transpose of a, denoted by a', is the row arrangement
of the elements of a.

Sum of two
vectors

The sum of two vectors (say, a and b) is the vector of sums
of corresponding elements.

The difference of two vectors is the vector of differences of
corresponding elements.
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Product of
a'b

The product a'b is a scalar formed by

which may be written in shortcut notation as

where ai and bi are the ith elements of vector a and b,
respectively.

Product of
ab'

The product ab' is a square matrix

Product of
scalar times a
vector

The product of a scalar k, times a vector a is k times each
element of a

A matrix is a
rectangular
table of
numbers

A matrix is a rectangular table of numbers, with p rows and
n columns. It is also referred to as an array of n column
vectors of length p. Thus

is a p by n matrix. The typical element of A is aij, denoting
the element of row i and column j.

Matrix
addition and

Matrices are added and subtracted on an element-by-
element basis. Thus
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subtraction

Matrix
multiplication

Matrix multiplication involves the computation of the sum
of the products of elements from a row of the first matrix
(the premultiplier on the left) and a column of the second
matrix (the postmultiplier on the right). This sum of
products is computed for every combination of rows and
columns. For example, if A is a 2 x 3 matrix and B is a 3 x
2 matrix, the product AB is

Thus, the product is a 2 x 2 matrix. This came about as
follows: The number of columns of A must be equal to the
number of rows of B. In this case this is 3. If they are not
equal, multiplication is impossible. If they are equal, then
the number of rows of the product AB is equal to the
number of rows of A and the number of columns is equal to
the number of columns of B.

Example of
3x2 matrix
multiplied by
a 2x3

It follows that the result of the product BA is a 3 x 3 matrix

General case
for matrix
multiplication

In general, if A is a k x p matrix and B is a p x n matrix, the
product AB is a k x n matrix. If k = n, then the product BA
can also be formed. We say that matrices conform for the
operations of addition, subtraction or multiplication when
their respective orders (numbers of row and columns) are
such as to permit the operations. Matrices that do not
conform for addition or subtraction cannot be added or
subtracted. Matrices that do not conform for multiplication
cannot be multiplied.
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6.5.3.1. Numerical Examples

Numerical
examples of
matrix
operations

Numerical examples of the matrix operations described on
the previous page are given here to clarify these operations.

Sample
matrices

If

then

Matrix
addition,
subtraction,
and
multipication

and

Multiply
matrix by a
scalar

To multiply a a matrix by a given scalar, each element of
the matrix is multiplied by that scalar

Pre-
multiplying
matrix by
transpose of
a vector

Pre-multiplying a p x n matrix by the transpose of a p-
element vector yields a n-element transpose
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Post-
multiplying
matrix by
vector

Post-multiplying a p x n matrix by an n-element vector
yields an n-element vector

Quadratic
form

It is not possible to pre-multiply a matrix by a column
vector, nor to post-multiply a matrix by a row vector. The
matrix product a'Ba yields a scalar and is called a quadratic
form. Note that B must be a square matrix if a'Ba is to
conform to multiplication. Here is an example of a quadratic
form

Inverting a
matrix

The matrix analog of division involves an operation called
inverting a matrix. Only square matrices can be inverted.
Inversion is a tedious numerical procedure and it is best
performed by computers. There are many ways to invert a
matrix, but ultimately whichever method is selected by a
program is immaterial. If you wish to try one method by
hand, a very popular numerical method is the Gauss-Jordan
method.

Identity
matrix

To augment the notion of the inverse of a matrix, A-1 (A
inverse) we notice the following relation

A-1A = A A-1 = I

I is a matrix of form

I is called the identity matrix and is a special case of a
diagonal matrix. Any matrix that has zeros in all of the off-
diagonal positions is a diagonal matrix.
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6.5.3.2. Determinant and Eigenstructure

A matrix
determinant is
difficult to
define but a
very useful
number

Unfortunately, not every square matrix has an inverse
(although most do). Associated with any square matrix is a
single number that represents a unique function of the
numbers in the matrix. This scalar function of a square
matrix is called the determinant. The determinant of a
matrix A is denoted by |A|. A formal definition for the
deteterminant of a square matrix A = (aij) is somewhat
beyond the scope of this Handbook. Consult any good
linear algebra textbook if you are interested in the
mathematical details.

Singular
matrix

As is the case of inversion of a square matrix, calculation
of the determinant is tedious and computer assistance is
needed for practical calculations. If the determinant of the
(square) matrix is exactly zero, the matrix is said to be
singular and it has no inverse.

Determinant
of variance-
covariance
matrix

Of great interest in statistics is the determinant of a square
symmetric matrix D whose diagonal elements are sample
variances and whose off-diagonal elements are sample
covariances. Symmetry means that the matrix and its
transpose are identical (i.e., A = A'). An example is

where s1 and s2 are sample standard deviations and rij is
the sample correlation.

D is the sample variance-covariance matrix for
observations of a multivariate vector of p elements. The
determinant of D, in this case, is sometimes called the
generalized variance.

Characteristic
equation

In addition to a determinant and possibly an inverse, every
square matrix has associated with it a characteristic
equation. The characteristic equation of a matrix is formed
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by subtracting some particular value, usually denoted by
the greek letter  (lambda), from each diagonal element of
the matrix, such that the determinant of the resulting
matrix is equal to zero. For example, the characteristic
equation of a second order (2 x 2) matrix A may be
written as

Definition of
the
characteristic
equation for
2x2 matrix

Eigenvalues of
a matrix

For a matrix of order p, there may be as many as p
different values for  that will satisfy the equation. These
different values are called the eigenvalues of the matrix.

Eigenvectors
of a matrix

Associated with each eigenvalue is a vector, v, called the
eigenvector. The eigenvector satisfies the equation

Av = v

Eigenstructure
of a matrix

If the complete set of eigenvalues is arranged in the
diagonal positions of a diagonal matrix V, the following
relationship holds

AV = VL

This equation specifies the complete eigenstructure of A.
Eigenstructures and the associated theory figure heavily in
multivariate procedures and the numerical evaluation of L
and V is a central computing problem.
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6.5.4. Elements of Multivariate Analysis

Multivariate
analysis

Multivariate analysis is a branch of statistics concerned
with the analysis of multiple measurements, made on one or
several samples of individuals. For example, we may wish
to measure length, width and weight of a product.

Multiple
measurement,
or
observation,
as row or
column
vector

A multiple measurement or observation may be expressed
as

x = [4  2  0.6]

referring to the physical properties of length, width and
weight, respectively. It is customary to denote multivariate
quantities with bold letters. The collection of measurements
on x is called a vector. In this case it is a row vector. We
could have written x as a column vector.

Matrix to
represent
more than
one multiple
measurement

If we take several such measurements, we record them in a
rectangular array of numbers. For example, the X matrix
below represents 5 observations, on each of three variables.

By
convention,
rows
typically
represent

In this case the number of rows, (n = 5), is the number of
observations, and the number of columns, (p = 3), is the
number of variables that are measured. The rectangular
array is an assembly of n row vectors of length p. This array
is called a matrix, or, more specifically, a n by p matrix. Its
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observations
and columns
represent
variables

name is X. The names of matrices are usually written in
bold, uppercase letters, as in Section 6.5.3. We could just as
well have written X as a p (variables) by n (measurements)
matrix as follows:

Definition of
Transpose

A matrix with rows and columns exchanged in this manner
is called the transpose of the original matrix.
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6.5.4.1. Mean Vector and Covariance Matrix

The first step in analyzing multivariate data is computing the
mean vector and the variance-covariance matrix.

Sample
data
matrix

Consider the following matrix:

The set of 5 observations, measuring 3 variables, can be
described by its mean vector and variance-covariance matrix.
The three variables, from left to right are length, width, and
height of a certain object, for example. Each row vector Xi is
another observation of the three variables (or components).

Definition
of mean
vector and
variance-
covariance
matrix

The mean vector consists of the means of each variable and
the variance-covariance matrix consists of the variances of the
variables along the main diagonal and the covariances between
each pair of variables in the other matrix positions.

The formula for computing the covariance of the variables X
and Y is

with  and  denoting the means of X and Y, respectively.

Mean
vector and
variance-
covariance
matrix for
sample
data
matrix

The results are:

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda351.htm#MEAN
http://www.itl.nist.gov/div898/handbook/eda/section3/eda356.htm#VARIANCE


6.5.4.1. Mean Vector and Covariance Matrix

http://www.itl.nist.gov/div898/handbook/pmc/section5/pmc541.htm[6/27/2012 2:36:52 PM]

 
where the mean vector contains the arithmetic averages of the
three variables and the (unbiased) variance-covariance matrix
S is calculated by

where n = 5 for this example.

Thus, 0.025 is the variance of the length variable, 0.0075 is the
covariance between the length and the width variables,
0.00175 is the covariance between the length and the height
variables, 0.007 is the variance of the width variable, 0.00135
is the covariance between the width and height variables and
.00043 is the variance of the height variable.

Centroid,
dispersion
matix

The mean vector is often referred to as the centroid and the
variance-covariance matrix as the dispersion or dispersion
matrix. Also, the terms variance-covariance matrix and
covariance matrix are used interchangeably.  
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6.5.4.2. The Multivariate Normal Distribution

Multivariate
normal
model

When multivariate data are analyzed, the multivariate normal model is
the most commonly used model.

The multivariate normal distribution model extends the univariate normal
distribution model to fit vector observations.

Definition
of
multivariate
normal
distribution

A p-dimensional vector of random variables

is said to have a multivariate normal distribution if its density function
f(X) is of the form

where m = (m1, ..., mp) is the vector of means and  is the variance-
covariance matrix of the multivariate normal distribution. The shortcut
notation for this density is

Univariate
normal
distribution

When p = 1, the one-dimensional vector X = X1 has the normal
distribution with mean m and variance 2

Bivariate
normal
distribution

When p = 2, X = (X1,X2) has the bivariate normal distribution with a
two-dimensional vector of means, m = (m1,m2) and covariance matrix

The correlation between the two random variables is given by
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6.5.4.3. Hotelling's T squared

Hotelling's
T2

distribution

A multivariate method that is the multivariate counterpart of
Student's-t and which also forms the basis for certain
multivariate control charts is based on Hotelling's T2

distribution, which was introduced by Hotelling (1947).

Univariate
t-test for
mean

Recall, from Section 1.3.5.2,

has a t distribution provided that X is normally distributed,
and can be used as long as X doesn't differ greatly from a
normal distribution. If we wanted to test the hypothesis that 
= 0, we would then have

so that

Generalize
to p
variables

When t2 is generalized to p variables it becomes

with

           

S-1 is the inverse of the sample variance-covariance matrix,
S, and n is the sample size upon which each i, i = 1, 2, ..., p,
is based. (The diagonal elements of S are the variances and
the off-diagonal elements are the covariances for the p
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variables. This is discussed further in Section 6.5.4.3.1.)

Distribution
of T2

It is well known that when  = 0

with F(p,n-p) representing the F distribution with p degrees of
freedom for the numerator and n - p for the denominator.
Thus, if  were specified to be 0, this could be tested by
taking a single p-variate sample of size n, then computing T2

and comparing it with

for a suitably chosen .

Result does
not apply
directly to
multivariate
Shewhart-
type charts

Although this result applies to hypothesis testing, it does not
apply directly to multivariate Shewhart-type charts (for
which there is no 0), although the result might be used as an
approximation when a large sample is used and data are in
subgroups, with the upper control limit (UCL) of a chart
based on the approximation.

Three-
sigma limits
from
univariate
control
chart

When a univariate control chart is used for Phase I (analysis
of historical data), and subsequently for Phase II (real-time
process monitoring), the general form of the control limits is
the same for each phase, although this need not be the case.
Specifically, three-sigma limits are used in the univariate
case, which skirts the relevant distribution theory for each
Phase.

Selection of
different
control
limit forms
for each
Phase

Three-sigma units are generally not used with multivariate
charts, however, which makes the selection of different
control limit forms for each Phase (based on the relevant
distribution theory), a natural choice.
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6.5.4.3.1. T2 Chart for Subgroup Averages --
Phase I

Estimate 
with 

Since  is generally unknown, it is necessary to estimate 
analogous to the way that  is estimated when an  chart is
used. Specifically, when there are rational subgroups,  is
estimated by , with

Obtaining
the i

Each i, i = 1, 2, ..., p, is obtained the same way as with an 
chart, namely, by taking k subgroups of size n and computing

.

Here  is used to denote the average for the lth subgroup of
the ith variable. That is,

with xilr denoting the rth observation (out of n) for the ith
variable in the lth subgroup.

Estimating
the
variances
and
covariances

The variances and covariances are similarly averaged over the
subgroups. Specifically, the sij elements of the variance-
covariance matrix S are obtained as

with sijl for i  j denoting the sample covariance between
variables Xi and Xj for the lth subgroup, and sij for i = j
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denotes the sample variance of Xi. The variances  (= siil)
for subgroup l and for variables i = 1, 2, ..., p are computed as

 .

Similarly, the covariances sijl between variables Xi and Xj for
subgroup l are computed as

 .

Compare
T2 against
control
values

As with an  chart (or any other chart), the k subgroups
would be tested for control by computing k values of T2 and
comparing each against the UCL. If any value falls above the
UCL (there is no lower control limit), the corresponding
subgroup would be investigated.

Formula
for plotted
T2 values

Thus, one would plot

for the jth subgroup (j = 1, 2, ..., k), with  denoting a vector
with p elements that contains the subgroup averages for each
of the p characteristics for the jth subgroup. (  is the
inverse matrix of the "pooled" variance-covariance matrix, 
, which is obtained by averaging the subgroup variance-
covariance matrices over the k subgroups.)

Formula
for the
upper
control
limit

Each of the k values of  given in the equation above would
be compared with

Lower
control
limits

A lower control limit is generally not used in multivariate
control chart applications, although some control chart
methods do utilize a LCL. Although a small value for 
might seem desirable, a value that is very small would likely
indicate a problem of some type as we would not expect
every element of  to be virtually equal to every element in

.

Delete out-
of-control
points once
cause
discovered
and

As with any Phase I control chart procedure, if there are any
points that plot above the UCL and can be identified as
corresponding to out-of-control conditions that have been
corrected, the point(s) should be deleted and the UCL
recomputed. The remaining points would then be compared
with the new UCL and the process continued as long as
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corrected necessary, remembering that points should be deleted only if
their correspondence with out-of-control conditions can be
identified and the cause(s) of the condition(s) were removed.
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6.5.4.3.2. T2 Chart for Subgroup Averages -- Phase II

Phase II
requires
recomputing
Sp and 
and
different
control
limits

Determining the UCL that is to be subsequently applied to future
subgroups entails recomputing, if necessary, Sp and , and using a
constant and an F-value that are different from the form given for the
Phase I control limits. The form is different because different
distribution theory is involved since future subgroups are assumed to be
independent of the "current" set of subgroups that is used in calculating
Sp and . (The same thing happens with  charts; the problem is simply
ignored through the use of 3-sigma limits, although a different approach
should be used when there is a small number of subgroups -- and the
necessary theory has been worked out.)

Illustration To illustrate, assume that a subgroups had been discarded (with possibly
a = 0) so that k - a subgroups are used in obtaining  and . We shall
let these two values be represented by  and  to distinguish them
from the original values,  and , before any subgroups are deleted.
Future values to be plotted on the multivariate chart would then be
obtained from

with  denoting an arbitrary vector containing the averages for
the p characteristics for a single subgroup obtained in the future. Each
of these future values would be plotted on the multivariate chart and
compared with

Phase II
control
limits

with a denoting the number of the original subgroups that are deleted
before computing  and . Notice that the equation for the control
limits for Phase II given here does not reduce to the equation for the
control limits for Phase I when a = 0, nor should we expect it to since
the Phase I UCL is used when testing for control of the entire set of
subgroups that is used in computing  and .
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6.5.4.3.3. Chart for Individual Observations --
Phase I

Multivariate
individual
control
charts

Control charts for multivariate individual observations can
be constructed, just as charts can be constructed for
univariate individual observations.

Constructing
the control
chart

Assume there are m historical multivariate observations to be
tested for control, so that Qj, j = 1, 2, ...., m are computed,
with

Control
limits

Each value of Qj is compared against control limits of

with B( ) denoting the beta distribution with parameters p/2
and (m-p-1)/2. These limits are due to Tracy, Young and
Mason (1992). Note that a LCL is stated, unlike the other
multivariate control chart procedures given in this section.
Although interest will generally be centered at the UCL, a
value of Q below the LCL should also be investigated, as
this could signal problems in data recording.

Delete
points if
special
cause(s) are
identified
and
corrected

As in the case when subgroups are used, if any points plot
outside these control limits and special cause(s) that were
subsequently removed can be identified, the point(s) would
be deleted and the control limits recomputed, making the
appropriate adjustments on the degrees of freedom, and re-
testing the remaining points against the new limits.

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/eda366h.htm


6.5.4.3.3. Chart for Individual Observations -- Phase I

http://www.itl.nist.gov/div898/handbook/pmc/section5/pmc5433.htm[6/27/2012 2:36:57 PM]

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/


6.5.4.3.4. Chart for Individual Observations -- Phase II

http://www.itl.nist.gov/div898/handbook/pmc/section5/pmc5434.htm[6/27/2012 2:36:57 PM]

 

6. Process or Product Monitoring and Control 
6.5. Tutorials 
6.5.4. Elements of Multivariate Analysis 
6.5.4.3. Hotelling's T squared 

6.5.4.3.4. Chart for Individual Observations --
Phase II

Control
limits

In Phase II, each value of Qj would be plotted against the
UCL of

with, as before, p denoting the number of characteristics.

Further
Information

The control limit expressions given in this section and the
immediately preceding sections are given in Ryan (2000,
Chapter 9).
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6.5.4.3.5. Charts for Controlling Multivariate
Variability

No
satisfactory
charts for
multivariate
variability

Unfortunately, there are no charts for controlling multivariate
variability, with either subgroups or individual observations,
that are simple, easy-to-understand and implement, and
statistically defensible. Methods based on the generalized
variance have been proposed for subgroup data, but such
methods have been criticized by Ryan (2000, Section 9.4)
and some references cited therein. For individual
observations, the multivariate analogue of a univariate
moving range chart might be considered as an estimator of
the variance-covariance matrix for Phase I, although the
distribution of the estimator is unknown.
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6.5.4.3.6. Constructing Multivariate Charts

Multivariate
control
charts not
commonly
available in
statistical
software

Although control charts were originally constructed and
maintained by hand, it would be extremely impractical to try
to do that with the chart procedures that were presented in
Sections 6.5.4.3.1-6.5.4.3.4. Unfortunately, the well-known
statistical software packages do not have capability for the
four procedures just outlined. However, Dataplot, which is
used for case studies and tutorials throughout this e-
Handbook, does have that capability.

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/dataplot.htm
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/


6.5.5. Principal Components

http://www.itl.nist.gov/div898/handbook/pmc/section5/pmc55.htm[6/27/2012 2:36:59 PM]

 

6. Process or Product Monitoring and Control 
6.5. Tutorials 

6.5.5. Principal Components

Dimension
reduction tool

A Multivariate Analysis problem could start out with a
substantial number of correlated variables. Principal
Component Analysis is a dimension-reduction tool that
can be used advantageously in such situations. Principal
component analysis aims at reducing a large set of
variables to a small set that still contains most of the
information in the large set.

Principal
factors

The technique of principal component analysis enables us
to create and use a reduced set of variables, which are
called principal factors. A reduced set is much easier to
analyze and interpret. To study a data set that results in the
estimation of roughly 500 parameters may be difficult, but
if we could reduce these to 5 it would certainly make our
day. We will show in what follows how to achieve
substantial dimension reduction.

Inverse
transformaion
not possible

While these principal factors represent or replace one or
more of the original variables, it should be noted that they
are not just a one-to-one transformation, so inverse
transformations are not possible.

Original data
matrix

To shed a light on the structure of principal components
analysis, let us consider a multivariate data matrix X, with
n rows and p columns. The p elements of each row are
scores or measurements on a subject such as height, weight
and age.

Linear
function that
maximizes
variance

Next, standardize the X matrix so that each column mean is
0 and each column variance is 1. Call this matrix Z. Each
column is a vector variable, zi, i = 1, . . . , p. The main idea
behind principal component analysis is to derive a linear
function y for each of the vector variables zi. This linear
function possesses an extremely important property;
namely, its variance is maximized.

Linear
function is
component of
z

This linear function is referred to as a component of z. To
illustrate the computation of a single element for the jth y
vector, consider the product y = z v' where v ' is a column
vector of V and V is a p x p coefficient matrix that carries
the p-element variable z into the derived n-element variable
y. V is known as the eigen vector matrix. The dimension of
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z is 1 x p, the dimension of v ' is p x 1. The scalar algebra
for the component score for the ith individual of yj, j = 1,
...p is:

yji = v'1z1i + v'2z2i + ... + v'pzpi

This becomes in matrix notation for all of the y:

Y = ZV

Mean and
dispersion
matrix of y

The mean of y is my = V'mz = 0, because mz = 0.

The dispersion matrix of y is

Dy = V'DzV = V'RV

R is
correlation
matrix

Now, it can be shown that the dispersion matrix Dz of a
standardized variable is a correlation matrix. Thus R is the
correlation matrix for z.

Number of
parameters to
estimate
increases
rapidly as p
increases

At this juncture you may be tempted to say: "so what?". To
answer this let us look at the intercorrelations among the
elements of a vector variable. The number of parameters to
be estimated for a p-element variable is

p means
p variances
(p2 - p)/2 covariances
for a total of 2p + (p2-p)/2 parameters.

So

If p = 2, there are 5 parameters
If p = 10, there are 65 parameters
If p = 30, there are 495 parameters

Uncorrelated
variables
require no
covariance
estimation

All these parameters must be estimated and interpreted.
That is a herculean task, to say the least. Now, if we could
transform the data so that we obtain a vector of
uncorrelated variables, life becomes much more bearable,
since there are no covariances.
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6.5.5.1. Properties of Principal Components

Orthogonalizing Transformations

Transformation
from z to y

The equation y = V'z represents a transformation, where y
is the transformed variable, z is the original standardized
variable and V is the premultiplier to go from z to y.

Orthogonal
transformations
simplify things

To produce a transformation vector for y for which the
elements are uncorrelated is the same as saying that we
want V such that Dy is a diagonal matrix. That is, all the
off-diagonal elements of Dy must be zero. This is called
an orthogonalizing transformation.

Infinite number
of values for V

There are an infinite number of values for V that will
produce a diagonal Dy for any correlation matrix R. Thus
the mathematical problem "find a unique V such that Dy
is diagonal" cannot be solved as it stands. A number of
famous statisticians such as Karl Pearson and Harold
Hotelling pondered this problem and suggested a
"variance maximizing" solution.

Principal
components
maximize
variance of the
transformed
elements, one
by one

Hotelling (1933) derived the "principal components"
solution. It proceeds as follows: for the first principal
component, which will be the first element of y and be
defined by the coefficients in the first column of V,
(denoted by v1), we want a solution such that the variance
of y1 will be maximized.

Constrain v to
generate a
unique solution

The constraint on the numbers in v1 is that the sum of the
squares of the coefficients equals 1. Expressed
mathematically, we wish to maximize

where
y1i = v1'  zi

and v1'v1 = 1 ( this is called "normalizing " v1).
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Computation of
first principal
component
from R and v1

Substituting the middle equation in the first yields

where R is the correlation matrix of Z, which, in turn, is
the standardized matrix of X, the original data matrix.
Therefore, we want to maximize v1'Rv1 subject to v1'v1
= 1.

The eigenstructure

Lagrange
multiplier
approach

Let

>
introducing the restriction on v1 via the Lagrange
multiplier approach. It can be shown (T.W. Anderson,
1958, page 347, theorem 8) that the vector of partial
derivatives is

and setting this equal to zero, dividing out 2 and factoring
gives

This is known as "the problem of the eigenstructure of
R".

Set of p
homogeneous
equations

The partial differentiation resulted in a set of p
homogeneous equations, which may be written in matrix
form as follows 

The characteristic equation

Characterstic
equation of R is
a polynomial of

The characteristic equation of R is a polynomial of
degree p, which is obtained by expanding the determinant
of
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degree p

and solving for the roots  j, j = 1, 2, ..., p.

Largest
eigenvalue

Specifically, the largest eigenvalue, 1, and its associated
vector, v1, are required. Solving for this eigenvalue and
vector is another mammoth numerical task that can
realistically only be performed by a computer. In general,
software is involved and the algorithms are complex.

Remainig p
eigenvalues

After obtaining the first eigenvalue, the process is
repeated until all p eigenvalues are computed.

Full
eigenstructure
of R

To succinctly define the full eigenstructure of R, we
introduce another matrix L, which is a diagonal matrix
with j in the jth position on the diagonal. Then the full
eigenstructure of R is given as

RV = VL

where

V'V = VV' = I

and

V'RV = L = D y

Principal Factors

Scale to zero
means and unit
variances

It was mentioned before that it is helpful to scale any
transformation y of a vector variable z so that its elements
have zero means and unit variances. Such a standardized
transformation is called a factoring of z, or of R, and
each linear component of the transformation is called a
factor.

Deriving unit
variances for
principal
components

Now, the principal components already have zero means,
but their variances are not 1; in fact, they are the
eigenvalues, comprising the diagonal elements of L. It is
possible to derive the principal factor with unit variance
from the principal component as follows
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or for all factors:

substituting V'z for y we have

where

B = VL -1/2

B matrix The matrix B is then the matrix of factor score
coefficients for principal factors.

How many Eigenvalues?

Dimensionality
of the set of
factor scores

The number of eigenvalues, N, used in the final set
determines the dimensionality of the set of factor scores.
For example, if the original test consisted of 8
measurements on 100 subjects, and we extract 2
eigenvalues, the set of factor scores is a matrix of 100
rows by 2 columns.

Eigenvalues
greater than
unity

Each column or principal factor should represent a
number of original variables. Kaiser (1966) suggested a
rule-of-thumb that takes as a value for N, the number of
eigenvalues larger than unity.

Factor Structure

Factor
structure
matrix S

The primary interpretative device in principal components
is the factor structure, computed as

S = VL1/2

S is a matrix whose elements are the correlations between
the principal components and the variables. If we retain,
for example, two eigenvalues, meaning that there are two
principal components, then the S matrix consists of two
columns and p (number of variables) rows.

Table showing
relation
between
variables and
principal
components

  Principal Component
Variable 1 2

1 r11 r12

2 r21 r22
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3 r31 r32

4 r41 r42

The rij are the correlation coefficients between variable i
and principal component j, where i ranges from 1 to 4
and j from 1 to 2.

The
communality

SS' is the source of the "explained" correlations among
the variables. Its diagonal is called "the communality".

Rotation

Factor analysis If this correlation matrix, i.e., the factor structure matrix,
does not help much in the interpretation, it is possible to
rotate the axis of the principal components. This may
result in the polarization of the correlation coefficients.
Some practitioners refer to rotation after generating the
factor structure as factor analysis.

Varimax
rotation

A popular scheme for rotation was suggested by Henry
Kaiser in 1958. He produced a method for orthogonal
rotation of factors, called the varimax rotation, which
cleans up the factors as follows:

for each factor, high loadings (correlations) will
result for a few variables; the rest will be near
zero.

Example The following computer output from a principal
component analysis on a 4-variable data set, followed by
varimax rotation of the factor structure, will illustrate his
point.

  Before Rotation After Rotation
Variable Factor

1
Factor

2
Factor

1
Factor

2

1 .853 -.989 .997 .058
2 .634 .762 .089 .987
3 .858 -.498 .989 .076
4 .633 .736 .103 .965

Communality

Formula for
communality
statistic

A measure of how well the selected factors (principal
components) "explain" the variance of each of the
variables is given by a statistic called communality. This
is defined by
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Explanation of
communality
statistic

That is: the square of the correlation of variable k with
factor i gives the part of the variance accounted for by
that factor. The sum of these squares for n factors is the
communality, or explained variable for that variable
(row).

Roadmap to solve the V matrix

Main steps to
obtaining
eigenstructure
for a
correlation
matrix

In summary, here are the main steps to obtain the
eigenstructure for a correlation matrix.

1. Compute R, the correlation matrix of the original
data. R is also the correlation matrix of the
standardized data.

2. Obtain the characteristic equation of R which is a
polynomial of degree p (the number of variables),
obtained from expanding the determinant of |R-  I|
= 0 and solving for the roots  i, that is:  1,  2, ...
,  p.

3. Then solve for the columns of the V matrix, (v1, v2,
..vp). The roots, , i, are called the eigenvalues (or
latent values). The columns of V are called the
eigenvectors.
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6.5.5.2. Numerical Example

Calculation
of principal
components
example

A numerical example may clarify the mechanics of principal
component analysis.

Sample data
set

Let us analyze the following 3-variate dataset with 10 observations. Each
observation consists of 3 measurements on a wafer: thickness, horizontal
displacement and vertical displacement.

Compute the
correlation
matrix

First compute the correlation matrix

Solve for the
roots of R

Next solve for the roots of R, using software

value proportion

1 1.769 .590
2 .927 .899
3 .304 1.000
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Notice that

Each eigenvalue satisfies |R-  I| = 0.
The sum of the eigenvalues = 3 = p, which is equal to the trace of
R (i.e., the sum of the main diagonal elements).
The determinant of R is the product of the eigenvalues.
The product is  1 x  2 x  3 = .499.

Compute the
first column
of the V
matrix

Substituting the first eigenvalue of 1.769 and R in the appropriate
equation we obtain

This is the matrix expression for 3 homogeneous equations with 3
unknowns and yields the first column of V: .64  .69  -.34  (again, a
computerized solution is indispensable).

Compute the
remaining
columns of
the V matrix

Repeating this procedure for the other 2 eigenvalues yields the matrix V

Notice that if you multiply V by its transpose, the result is an identity
matrix, V'V=I.

Compute the
L1/2 matrix

Now form the matrix L1/2, which is a diagonal matrix whose elements
are the square roots of the eigenvalues of R. Then obtain S, the factor
structure, using S = V L1/2

So, for example, .91 is the correlation between variable 2 and the first
principal component.

Compute the
communality

Next compute the communality, using the first two eigenvalues only
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Diagonal
elements
report how
much of the
variability is
explained

Communality consists of the diagonal elements.

var  
1 .8662
2 .8420
3 .9876

This means that the first two principal components "explain" 86.62% of
the first variable, 84.20 % of the second variable, and 98.76% of the
third.

Compute the
coefficient
matrix

The coefficient matrix, B, is formed using the reciprocals of the
diagonals of L1/2

Compute the
principal
factors

Finally, we can compute the factor scores from ZB, where Z is X
converted to standard score form. These columns are the principal
factors.

Principal
factors
control
chart

These factors can be plotted against the indices, which could be times. If
time is used, the resulting plot is an example of a principal factors
control chart.
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Detailed
Examples

The general points of the first five sections are illustrated in
this section using data from physical science and engineering
applications. Each example is presented step-by-step in the
text, and is often cross-linked with the relevant sections of the
chapter describing the analysis in general.

Contents:
Section 6

1. Lithography Process Example
2. Aerosol Particle Size Example
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6.6.1. Lithography Process

Lithography
Process

This case study illustrates the use of control charts in
analyzing a lithography process.

1. Background and Data
2. Graphical Representation of the Data
3. Subgroup Analysis
4. Shewhart Control Chart
5. Work This Example Yourself
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6.6.1.1. Background and Data

Case Study for SPC in Batch Processing Environment

Semiconductor
processing
creates
multiple
sources of
variability to
monitor

One of the assumptions in using classical Shewhart SPC charts
is that the only source of variation is from part to part (or
within subgroup variation). This is the case for most continuous
processing situations. However, many of today's processing
situations have different sources of variation. The
semiconductor industry is one of the areas where the
processing creates multiple sources of variation.

In semiconductor processing, the basic experimental unit is a
silicon wafer. Operations are performed on the wafer, but
individual wafers can be grouped multiple ways. In the
diffusion area, up to 150 wafers are processed in one time in a
diffusion tube. In the etch area, single wafers are processed
individually. In the lithography area, the light exposure is done
on sub-areas of the wafer. There are many times during the
production of a computer chip where the experimental unit
varies and thus there are different sources of variation in this
batch processing environment.

The following is a case study of a lithography process. Five
sites are measured on each wafer, three wafers are measured in
a cassette (typically a grouping of 24 - 25 wafers) and thirty
cassettes of wafers are used in the study. The width of a line is
the measurement under study. There are two line width
variables. The first is the original data and the second has been
cleaned up somewhat. This case study uses the raw data. The
entire data table is 450 rows long with six columns.

Software The analyses used in this case study can be generated using
both Dataplot code and R code.

Case study
data: wafer
line width
measurements

                              Raw             
Cleaned
                             Line                
Line
Cassette Wafer  Site        Width  Sequence     
Width
=====================================================
 1         1     Top     3.199275      1     
3.197275
 1         1     Lef     2.253081      2     
2.249081
 1         1     Cen     2.074308      3     
2.068308
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 1         1     Rgt     2.418206      4     
2.410206
 1         1     Bot     2.393732      5     
2.383732
 1         2     Top     2.654947      6     
2.642947
 1         2     Lef     2.003234      7     
1.989234
 1         2     Cen     1.861268      8     
1.845268
 1         2     Rgt     2.136102      9     
2.118102
 1         2     Bot     1.976495     10     
1.956495
 1         3     Top     2.887053     11     
2.865053
 1         3     Lef     2.061239     12     
2.037239
 1         3     Cen     1.625191     13     
1.599191
 1         3     Rgt     2.304313     14     
2.276313
 1         3     Bot     2.233187     15     
2.203187
 2         1     Top     3.160233     16     
3.128233
 2         1     Lef     2.518913     17     
2.484913
 2         1     Cen     2.072211     18     
2.036211
 2         1     Rgt     2.287210     19     
2.249210
 2         1     Bot     2.120452     20     
2.080452
 2         2     Top     2.063058     21     
2.021058
 2         2     Lef     2.217220     22     
2.173220
 2         2     Cen     1.472945     23     
1.426945
 2         2     Rgt     1.684581     24     
1.636581
 2         2     Bot     1.900688     25     
1.850688
 2         3     Top     2.346254     26     
2.294254
 2         3     Lef     2.172825     27     
2.118825
 2         3     Cen     1.536538     28     
1.480538
 2         3     Rgt     1.966630     29     
1.908630
 2         3     Bot     2.251576     30     
2.191576
 3         1     Top     2.198141     31     
2.136141
 3         1     Lef     1.728784     32     
1.664784
 3         1     Cen     1.357348     33     
1.291348
 3         1     Rgt     1.673159     34     
1.605159
 3         1     Bot     1.429586     35     
1.359586
 3         2     Top     2.231291     36     
2.159291
 3         2     Lef     1.561993     37     
1.487993
 3         2     Cen     1.520104     38     
1.444104
 3         2     Rgt     2.066068     39     
1.988068
 3         2     Bot     1.777603     40     
1.697603
 3         3     Top     2.244736     41     
2.162736
 3         3     Lef     1.745877     42     
1.661877
 3         3     Cen     1.366895     43     
1.280895
 3         3     Rgt     1.615229     44     
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1.527229
 3         3     Bot     1.540863     45     
1.450863
 4         1     Top     2.929037     46     
2.837037
 4         1     Lef     2.035900     47     
1.941900
 4         1     Cen     1.786147     48     
1.690147
 4         1     Rgt     1.980323     49     
1.882323
 4         1     Bot     2.162919     50     
2.062919
 4         2     Top     2.855798     51     
2.753798
 4         2     Lef     2.104193     52     
2.000193
 4         2     Cen     1.919507     53     
1.813507
 4         2     Rgt     2.019415     54     
1.911415
 4         2     Bot     2.228705     55     
2.118705
 4         3     Top     3.219292     56     
3.107292
 4         3     Lef     2.900430     57     
2.786430
 4         3     Cen     2.171262     58     
2.055262
 4         3     Rgt     3.041250     59     
2.923250
 4         3     Bot     3.188804     60     
3.068804
 5         1     Top     3.051234     61     
2.929234
 5         1     Lef     2.506230     62     
2.382230
 5         1     Cen     1.950486     63     
1.824486
 5         1     Rgt     2.467719     64     
2.339719
 5         1     Bot     2.581881     65     
2.451881
 5         2     Top     3.857221     66     
3.725221
 5         2     Lef     3.347343     67     
3.213343
 5         2     Cen     2.533870     68     
2.397870
 5         2     Rgt     3.190375     69     
3.052375
 5         2     Bot     3.362746     70     
3.222746
 5         3     Top     3.690306     71     
3.548306
 5         3     Lef     3.401584     72     
3.257584
 5         3     Cen     2.963117     73     
2.817117
 5         3     Rgt     2.945828     74     
2.797828
 5         3     Bot     3.466115     75     
3.316115
 6         1     Top     2.938241     76     
2.786241
 6         1     Lef     2.526568     77     
2.372568
 6         1     Cen     1.941370     78     
1.785370
 6         1     Rgt     2.765849     79     
2.607849
 6         1     Bot     2.382781     80     
2.222781
 6         2     Top     3.219665     81     
3.057665
 6         2     Lef     2.296011     82     
2.132011
 6         2     Cen     2.256196     83     
2.090196
 6         2     Rgt     2.645933     84     
2.477933
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 6         2     Bot     2.422187     85     
2.252187
 6         3     Top     3.180348     86     
3.008348
 6         3     Lef     2.849264     87     
2.675264
 6         3     Cen     1.601288     88     
1.425288
 6         3     Rgt     2.810051     89     
2.632051
 6         3     Bot     2.902980     90     
2.722980
 7         1     Top     2.169679     91     
1.987679
 7         1     Lef     2.026506     92     
1.842506
 7         1     Cen     1.671804     93     
1.485804
 7         1     Rgt     1.660760     94     
1.472760
 7         1     Bot     2.314734     95     
2.124734
 7         2     Top     2.912838     96     
2.720838
 7         2     Lef     2.323665     97     
2.129665
 7         2     Cen     1.854223     98     
1.658223
 7         2     Rgt     2.391240     99     2.19324
 7         2     Bot     2.196071     100    
1.996071
 7         3     Top     3.318517     101    
3.116517
 7         3     Lef     2.702735     102    
2.498735
 7         3     Cen     1.959008     103    
1.753008
 7         3     Rgt     2.512517     104    
2.304517
 7         3     Bot     2.827469     105    
2.617469
 8         1     Top     1.958022     106    
1.746022
 8         1     Lef     1.360106     107    
1.146106
 8         1     Cen     0.971193     108    
0.755193
 8         1     Rgt     1.947857     109    
1.729857
 8         1     Bot     1.643580     110    1.42358
 8         2     Top     2.357633     111    
2.135633
 8         2     Lef     1.757725     112    
1.533725
 8         2     Cen     1.165886     113    
0.939886
 8         2     Rgt     2.231143     114    
2.003143
 8         2     Bot     1.311626     115    
1.081626
 8         3     Top     2.421686     116    
2.189686
 8         3     Lef     1.993855     117    
1.759855
 8         3     Cen     1.402543     118    
1.166543
 8         3     Rgt     2.008543     119    
1.770543
 8         3     Bot     2.139370     120    
1.899370
 9         1     Top     2.190676     121    
1.948676
 9         1     Lef     2.287483     122    
2.043483
 9         1     Cen     1.698943     123    
1.452943
 9         1     Rgt     1.925731     124    
1.677731
 9         1     Bot     2.057440     125    
1.807440
 9         2     Top     2.353597     126    
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2.101597
 9         2     Lef     1.796236     127    
1.542236
 9         2     Cen     1.241040     128    
0.985040
 9         2     Rgt     1.677429     129    
1.419429
 9         2     Bot     1.845041     130    
1.585041
 9         3     Top     2.012669     131    
1.750669
 9         3     Lef     1.523769     132    
1.259769
 9         3     Cen     0.790789     133    
0.524789
 9         3     Rgt     2.001942     134    
1.733942
 9         3     Bot     1.350051     135    
1.080051
10         1     Top     2.825749     136    
2.553749
10         1     Lef     2.502445     137    
2.228445
10         1     Cen     1.938239     138    
1.662239
10         1     Rgt     2.349497     139    
2.071497
10         1     Bot     2.310817     140    
2.030817
10         2     Top     3.074576     141    
2.792576
10         2     Lef     2.057821     142    
1.773821
10         2     Cen     1.793617     143    
1.507617
10         2     Rgt     1.862251     144    
1.574251
10         2     Bot     1.956753     145    
1.666753
10         3     Top     3.072840     146    
2.780840
10         3     Lef     2.291035     147    
1.997035
10         3     Cen     1.873878     148    
1.577878
10         3     Rgt     2.475640     149    
2.177640
10         3     Bot     2.021472     150    
1.721472
11         1     Top     3.228835     151    
2.926835
11         1     Lef     2.719495     152    
2.415495
11         1     Cen     2.207198     153    
1.901198
11         1     Rgt     2.391608     154    
2.083608
11         1     Bot     2.525587     155    
2.215587
11         2     Top     2.891103     156    
2.579103
11         2     Lef     2.738007     157    
2.424007
11         2     Cen     1.668337     158    
1.352337
11         2     Rgt     2.496426     159    
2.178426
11         2     Bot     2.417926     160    
2.097926
11         3     Top     3.541799     161    
3.219799
11         3     Lef     3.058768     162    
2.734768
11         3     Cen     2.187061     163    
1.861061
11         3     Rgt     2.790261     164    
2.462261
11         3     Bot     3.279238     165    
2.949238
12         1     Top     2.347662     166    
2.015662
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12         1     Lef     1.383336     167    
1.049336
12         1     Cen     1.187168     168    
0.851168
12         1     Rgt     1.693292     169    
1.355292
12         1     Bot     1.664072     170    
1.324072
12         2     Top     2.385320     171    
2.043320
12         2     Lef     1.607784     172    
1.263784
12         2     Cen     1.230307     173    
0.884307
12         2     Rgt     1.945423     174    
1.597423
12         2     Bot     1.907580     175    
1.557580
12         3     Top     2.691576     176    
2.339576
12         3     Lef     1.938755     177    
1.584755
12         3     Cen     1.275409     178    
0.919409
12         3     Rgt     1.777315     179    
1.419315
12         3     Bot     2.146161     180    
1.786161
13         1     Top     3.218655     181    
2.856655
13         1     Lef     2.912180     182    
2.548180
13         1     Cen     2.336436     183    
1.970436
13         1     Rgt     2.956036     184    
2.588036
13         1     Bot     2.423235     185    
2.053235
13         2     Top     3.302224     186    
2.930224
13         2     Lef     2.808816     187    
2.434816
13         2     Cen     2.340386     188    
1.964386
13         2     Rgt     2.795120     189    
2.417120
13         2     Bot     2.865800     190    
2.485800
13         3     Top     2.992217     191    
2.610217
13         3     Lef     2.952106     192    
2.568106
13         3     Cen     2.149299     193    
1.763299
13         3     Rgt     2.448046     194    
2.060046
13         3     Bot     2.507733     195    
2.117733
14         1     Top     3.530112     196    
3.138112
14         1     Lef     2.940489     197    
2.546489
14         1     Cen     2.598357     198    
2.202357
14         1     Rgt     2.905165     199    
2.507165
14         1     Bot     2.692078     200    
2.292078
14         2     Top     3.764270     201    
3.362270
14         2     Lef     3.465960     202    
3.061960
14         2     Cen     2.458628     203    
2.052628
14         2     Rgt     3.141132     204    
2.733132
14         2     Bot     2.816526     205    
2.406526
14         3     Top     3.217614     206    
2.805614
14         3     Lef     2.758171     207    
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2.344171
14         3     Cen     2.345921     208    
1.929921
14         3     Rgt     2.773653     209    
2.355653
14         3     Bot     3.109704     210    
2.689704
15         1     Top     2.177593     211    
1.755593
15         1     Lef     1.511781     212    
1.087781
15         1     Cen     0.746546     213    
0.320546
15         1     Rgt     1.491730     214    
1.063730
15         1     Bot     1.268580     215    
0.838580
15         2     Top     2.433994     216    
2.001994
15         2     Lef     2.045667     217    
1.611667
15         2     Cen     1.612699     218    
1.176699
15         2     Rgt     2.082860     219    
1.644860
15         2     Bot     1.887341     220    
1.447341
15         3     Top     1.923003     221    
1.481003
15         3     Lef     2.124461     222    
1.680461
15         3     Cen     1.945048     223    
1.499048
15         3     Rgt     2.210698     224    
1.762698
15         3     Bot     1.985225     225    
1.535225
16         1     Top     3.131536     226    
2.679536
16         1     Lef     2.405975     227    
1.951975
16         1     Cen     2.206320     228    
1.750320
16         1     Rgt     3.012211     229    
2.554211
16         1     Bot     2.628723     230    
2.168723
16         2     Top     2.802486     231    
2.340486
16         2     Lef     2.185010     232    
1.721010
16         2     Cen     2.161802     233    
1.695802
16         2     Rgt     2.102560     234    
1.634560
16         2     Bot     1.961968     235    
1.491968
16         3     Top     3.330183     236    
2.858183
16         3     Lef     2.464046     237    
1.990046
16         3     Cen     1.687408     238    
1.211408
16         3     Rgt     2.043322     239    
1.565322
16         3     Bot     2.570657     240    
2.090657
17         1     Top     3.352633     241    
2.870633
17         1     Lef     2.691645     242    
2.207645
17         1     Cen     1.942410     243    
1.456410
17         1     Rgt     2.366055     244    
1.878055
17         1     Bot     2.500987     245    
2.010987
17         2     Top     2.886284     246    
2.394284
17         2     Lef     2.292503     247    
1.798503
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17         2     Cen     1.627562     248    
1.131562
17         2     Rgt     2.415076     249    
1.917076
17         2     Bot     2.086134     250    
1.586134
17         3     Top     2.554848     251    
2.052848
17         3     Lef     1.755843     252    
1.251843
17         3     Cen     1.510124     253    
1.004124
17         3     Rgt     2.257347     254    
1.749347
17         3     Bot     1.958592     255    
1.448592
18         1     Top     2.622733     256    
2.110733
18         1     Lef     2.321079     257    
1.807079
18         1     Cen     1.169269     258    
0.653269
18         1     Rgt     1.921457     259    
1.403457
18         1     Bot     2.176377     260    
1.656377
18         2     Top     3.313367     261    
2.791367
18         2     Lef     2.559725     262    
2.035725
18         2     Cen     2.404662     263    
1.878662
18         2     Rgt     2.405249     264    
1.877249
18         2     Bot     2.535618     265    
2.005618
18         3     Top     3.067851     266    
2.535851
18         3     Lef     2.490359     267    
1.956359
18         3     Cen     2.079477     268    
1.543477
18         3     Rgt     2.669512     269    
2.131512
18         3     Bot     2.105103     270    
1.565103
19         1     Top     4.293889     271    
3.751889
19         1     Lef     3.888826     272    
3.344826
19         1     Cen     2.960655     273    
2.414655
19         1     Rgt     3.618864     274    
3.070864
19         1     Bot     3.562480     275    
3.012480
19         2     Top     3.451872     276    
2.899872
19         2     Lef     3.285934     277    
2.731934
19         2     Cen     2.638294     278    
2.082294
19         2     Rgt     2.918810     279    
2.360810
19         2     Bot     3.076231     280    
2.516231
19         3     Top     3.879683     281    
3.317683
19         3     Lef     3.342026     282    
2.778026
19         3     Cen     3.382833     283    
2.816833
19         3     Rgt     3.491666     284    
2.923666
19         3     Bot     3.617621     285    
3.047621
20         1     Top     2.329987     286    
1.757987
20         1     Lef     2.400277     287    
1.826277
20         1     Cen     2.033941     288    
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1.457941
20         1     Rgt     2.544367     289    
1.966367
20         1     Bot     2.493079     290    
1.913079
20         2     Top     2.862084     291    
2.280084
20         2     Lef     2.404703     292    
1.820703
20         2     Cen     1.648662     293    
1.062662
20         2     Rgt     2.115465     294    
1.527465
20         2     Bot     2.633930     295    
2.043930
20         3     Top     3.305211     296    
2.713211
20         3     Lef     2.194991     297    
1.600991
20         3     Cen     1.620963     298    
1.024963
20         3     Rgt     2.322678     299    
1.724678
20         3     Bot     2.818449     300    
2.218449
21         1     Top     2.712915     301    
2.110915
21         1     Lef     2.389121     302    
1.785121
21         1     Cen     1.575833     303    
0.969833
21         1     Rgt     1.870484     304    
1.262484
21         1     Bot     2.203262     305    
1.593262
21         2     Top     2.607972     306    
1.995972
21         2     Lef     2.177747     307    
1.563747
21         2     Cen     1.246016     308    
0.630016
21         2     Rgt     1.663096     309    
1.045096
21         2     Bot     1.843187     310    
1.223187
21         3     Top     2.277813     311    
1.655813
21         3     Lef     1.764940     312    
1.140940
21         3     Cen     1.358137     313    
0.732137
21         3     Rgt     2.065713     314    
1.437713
21         3     Bot     1.885897     315    
1.255897
22         1     Top     3.126184     316    
2.494184
22         1     Lef     2.843505     317    
2.209505
22         1     Cen     2.041466     318    
1.405466
22         1     Rgt     2.816967     319    
2.178967
22         1     Bot     2.635127     320    
1.995127
22         2     Top     3.049442     321    
2.407442
22         2     Lef     2.446904     322    
1.802904
22         2     Cen     1.793442     323    
1.147442
22         2     Rgt     2.676519     324    
2.028519
22         2     Bot     2.187865     325    
1.537865
22         3     Top     2.758416     326    
2.106416
22         3     Lef     2.405744     327    
1.751744
22         3     Cen     1.580387     328    
0.924387
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22         3     Rgt     2.508542     329    
1.850542
22         3     Bot     2.574564     330    
1.914564
23         1     Top     3.294288     331    
2.632288
23         1     Lef     2.641762     332    
1.977762
23         1     Cen     2.105774     333    
1.439774
23         1     Rgt     2.655097     334    
1.987097
23         1     Bot     2.622482     335    
1.952482
23         2     Top     4.066631     336    
3.394631
23         2     Lef     3.389733     337    
2.715733
23         2     Cen     2.993666     338    
2.317666
23         2     Rgt     3.613128     339    
2.935128
23         2     Bot     3.213809     340    
2.533809
23         3     Top     3.369665     341    
2.687665
23         3     Lef     2.566891     342    
1.882891
23         3     Cen     2.289899     343    
1.603899
23         3     Rgt     2.517418     344    
1.829418
23         3     Bot     2.862723     345    
2.172723
24         1     Top     4.212664     346    
3.520664
24         1     Lef     3.068342     347    
2.374342
24         1     Cen     2.872188     348    
2.176188
24         1     Rgt     3.040890     349    
2.342890
24         1     Bot     3.376318     350    
2.676318
24         2     Top     3.223384     351    
2.521384
24         2     Lef     2.552726     352    
1.848726
24         2     Cen     2.447344     353    
1.741344
24         2     Rgt     3.011574     354    
2.303574
24         2     Bot     2.711774     355    
2.001774
24         3     Top     3.359505     356    
2.647505
24         3     Lef     2.800742     357    
2.086742
24         3     Cen     2.043396     358    
1.327396
24         3     Rgt     2.929792     359    
2.211792
24         3     Bot     2.935356     360    
2.215356
25         1     Top     2.724871     361    
2.002871
25         1     Lef     2.239013     362    
1.515013
25         1     Cen     2.341512     363    
1.615512
25         1     Rgt     2.263617     364    
1.535617
25         1     Bot     2.062748     365    
1.332748
25         2     Top     3.658082     366    
2.926082
25         2     Lef     3.093268     367    
2.359268
25         2     Cen     2.429341     368    
1.693341
25         2     Rgt     2.538365     369    
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1.800365
25         2     Bot     3.161795     370    
2.421795
25         3     Top     3.178246     371    
2.436246
25         3     Lef     2.498102     372    
1.754102
25         3     Cen     2.445810     373    
1.699810
25         3     Rgt     2.231248     374    
1.483248
25         3     Bot     2.302298     375    
1.552298
26         1     Top     3.320688     376    
2.568688
26         1     Lef     2.861800     377    
2.107800
26         1     Cen     2.238258     378    
1.482258
26         1     Rgt     3.122050     379    
2.364050
26         1     Bot     3.160876     380    
2.400876
26         2     Top     3.873888     381    
3.111888
26         2     Lef     3.166345     382    
2.402345
26         2     Cen     2.645267     383    
1.879267
26         2     Rgt     3.309867     384    
2.541867
26         2     Bot     3.542882     385    
2.772882
26         3     Top     2.586453     386    
1.814453
26         3     Lef     2.120604     387    
1.346604
26         3     Cen     2.180847     388    
1.404847
26         3     Rgt     2.480888     389    
1.702888
26         3     Bot     1.938037     390    
1.158037
27         1     Top     4.710718     391    
3.928718
27         1     Lef     4.082083     392    
3.298083
27         1     Cen     3.533026     393    
2.747026
27         1     Rgt     4.269929     394    
3.481929
27         1     Bot     4.038166     395    
3.248166
27         2     Top     4.237233     396    
3.445233
27         2     Lef     4.171702     397    
3.377702
27         2     Cen     3.04394      398    
2.247940
27         2     Rgt     3.91296      399    
3.114960
27         2     Bot     3.714229     400    
2.914229
27         3     Top     5.168668     401    
4.366668
27         3     Lef     4.823275     402    
4.019275
27         3     Cen     3.764272     403    
2.958272
27         3     Rgt     4.396897     404    
3.588897
27         3     Bot     4.442094     405    
3.632094
28         1     Top     3.972279     406    
3.160279
28         1     Lef     3.883295     407    
3.069295
28         1     Cen     3.045145     408    
2.229145
28         1     Rgt     3.51459      409    
2.696590
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28         1     Bot     3.575446     410    
2.755446
28         2     Top     3.024903     411    
2.202903
28         2     Lef     3.099192     412    
2.275192
28         2     Cen     2.048139     413    
1.222139
28         2     Rgt     2.927978     414    
2.099978
28         2     Bot     3.15257      415    
2.322570
28         3     Top     3.55806      416    
2.726060
28         3     Lef     3.176292     417    
2.342292
28         3     Cen     2.852873     418    
2.016873
28         3     Rgt     3.026064     419    
2.188064
28         3     Bot     3.071975     420    
2.231975
29         1     Top     3.496634     421    
2.654634
29         1     Lef     3.087091     422    
2.243091
29         1     Cen     2.517673     423    
1.671673
29         1     Rgt     2.547344     424    
1.699344
29         1     Bot     2.971948     425    
2.121948
29         2     Top     3.371306     426    
2.519306
29         2     Lef     2.175046     427    
1.321046
29         2     Cen     1.940111     428    
1.084111
29         2     Rgt     2.932408     429    
2.074408
29         2     Bot     2.428069     430    
1.568069
29         3     Top     2.941041     431    
2.079041
29         3     Lef     2.294009     432    
1.430009
29         3     Cen     2.025674     433    
1.159674
29         3     Rgt     2.21154      434    
1.343540
29         3     Bot     2.459684     435    
1.589684
30         1     Top     2.86467      436    
1.992670
30         1     Lef     2.695163     437    
1.821163
30         1     Cen     2.229518     438    
1.353518
30         1     Rgt     1.940917     439    
1.062917
30         1     Bot     2.547318     440    
1.667318
30         2     Top     3.537562     441    
2.655562
30         2     Lef     3.311361     442    
2.427361
30         2     Cen     2.767771     443    
1.881771
30         2     Rgt     3.388622     444    
2.500622
30         2     Bot     3.542701     445    
2.652701
30         3     Top     3.184652     446    
2.292652
30         3     Lef     2.620947     447    
1.726947
30         3     Cen     2.697619     448    
1.801619
30         3     Rgt     2.860684     449    
1.962684
30         3     Bot     2.758571     450    
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6.6.1.2. Graphical Representation of the Data

The first step in analyzing the data is to generate some
simple plots of the response and then of the response versus
the various factors.

4-Plot of
Data

Interpretation This 4-plot shows the following.

1. The run sequence plot (upper left) indicates that the
location and scale are not constant over time. This
indicates that the three factors do in fact have an
effect of some kind.

2. The lag plot (upper right) indicates that there is some
mild autocorrelation in the data. This is not
unexpected as the data are grouped in a logical order
of the three factors (i.e., not randomly) and the run
sequence plot indicates that there are factor effects.

3. The histogram (lower left) shows that most of the
data fall between 1 and 5, with the center of the data
at about 2.2.

4. Due to the non-constant location and scale and
autocorrelation in the data, distributional inferences
from the normal probability plot (lower right) are not
meaningful.

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/4plot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/runseqpl.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/lagplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/histogra.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/normprpl.htm
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The run sequence plot is shown at full size to show greater
detail. In addition, a numerical summary of the data is
generated.

Run
Sequence
Plot of Data

Numerical
Summary       Sample size     = 450

      Mean            =   2.53228  
      Median          =   2.45334  
      Minimum         =   0.74655
      Maximum         =   5.16867
      Range           =   4.42212
      Stan. Dev.      =   0.69376  
      Autocorrelation =   0.60726  

We are primarily interested in the mean and standard
deviation. From the summary, we see that the mean is 2.53
and the standard deviation is 0.69.

Plot response
against
individual
factors

The next step is to plot the response against each individual
factor. For comparison, we generate both a scatter plot and
a box plot of the data. The scatter plot shows more detail.
However, comparisons are usually easier to see with the
box plot, particularly as the number of data points and
groups become larger.

Scatter plot
of width
versus
cassette

http://www.itl.nist.gov/div898/handbook/eda/section3/scatterp.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/boxplot.htm
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Box plot of
width versus
cassette

Interpretation We can make the following conclusions based on the above
scatter and box plots.

1. There is considerable variation in the location for the
various cassettes. The medians vary from about 1.7 to
4.

2. There is also some variation in the scale.
3. There are a number of outliers.

Scatter plot
of width
versus wafer
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Box plot of
width versus
wafer

Interpretation We can make the following conclusions based on the above
scatter and box plots.

1. The locations for the three wafers are relatively
constant.

2. The scales for the three wafers are relatively constant.
3. There are a few outliers on the high side.
4. It is reasonable to treat the wafer factor as

homogeneous.

Scatter plot
of width
versus site
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Box plot of
width versus
site

Interpretation We can make the following conclusions based on the above
scatter and box plots.

1. There is some variation in location based on site. The
center site in particular has a lower median.

2. The scales are relatively constant across sites.
3. There are a few outliers.

DOE mean
and sd plots

We can use the DOE mean plot and the DOE standard
deviation plot to show the factor means and standard
deviations together for better comparison.

DOE mean
plot

http://www.itl.nist.gov/div898/handbook/eda/section3/dexmeanp.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/dexsdplo.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/dexsdplo.htm
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DOE sd plot

Summary The above graphs show that there are differences between
the lots and the sites.

There are various ways we can create subgroups of this
dataset: each lot could be a subgroup, each wafer could be
a subgroup, or each site measured could be a subgroup
(with only one data value in each subgroup).

Recall that for a classical Shewhart means chart, the
average within subgroup standard deviation is used to
calculate the control limits for the means chart. However,
with a means chart you are monitoring the subgroup mean-
to-mean variation. There is no problem if you are in a
continuous processing situation - this becomes an issue if
you are operating in a batch processing environment.

We will look at various control charts based on different
subgroupings in 6.6.1.3.
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6.6.1.3. Subgroup Analysis

Control
charts for
subgroups

The resulting classical Shewhart control charts for each
possible subgroup are shown below.

Site as
subgroup

The first pair of control charts use the site as the subgroup.
However, since site has a subgroup size of one we use the
control charts for individual measurements. A moving
average and a moving range chart are shown.

Moving
average
control chart

Moving
range control
chart

http://www.itl.nist.gov/div898/handbook/index.htm
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Wafer as
subgroup

The next pair of control charts use the wafer as the
subgroup. In this case, the subgroup size is five. A mean
and a standard deviation control chart are shown.

Mean control
chart

SD control
chart

There is no LCL for the standard deviation chart because of
the small subgroup size.

Cassette as
subgroup

The next pair of control charts use the cassette as the
subgroup. In this case, the subgroup size is 15. A mean and
a standard deviation control chart are shown.

Mean control
chart
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SD control
chart

Interpretation Which of these subgroupings of the data is correct? As you
can see, each sugrouping produces a different chart. Part of
the answer lies in the manufacturing requirements for this
process. Another aspect that can be statistically determined
is the magnitude of each of the sources of variation. In
order to understand our data structure and how much
variation each of our sources contribute, we need to
perform a variance component analysis. The variance
component analysis for this data set is shown below.

Component

Variance
Component

Estimate

Cassette 0.2645
Wafer 0.0500
Site 0.1755
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Variance
Component
Estimation

If your software does not generate the variance components
directly, they can be computed from a standard analysis of
variance output by equating mean squares (MS) to expected
mean squares (EMS).

The sum of squares and mean squares for a nested, random
effects model are shown below.

                      Degrees of    Sum of
Source                 Freedom      Squares   
Mean Squares
--------------------  ----------  ---------   --
----------
Cassette                  29      127.40293      
4.3932 
Wafer(Cassette)           60       25.52089      
0.4253
Site(Cassette, Wafer)    360       63.17865      
0.1755

The expected mean squares for cassette, wafer within
cassette, and site within cassette and wafer, along with their
associated mean squares, are the following.

4.3932 = (3*5)*Var(cassettes) + 5*Var(wafer) + 
Var(site)
0.4253 = 5*Var(wafer) + Var(site)
0.1755 = Var(site)

Solving these equations, we obtain the variance component
estimates 0.2645, 0.04997, and 0.1755 for cassettes, wafers,
and sites, respectively.

All of the analyses in this section can be completed using R
code.

http://www.itl.nist.gov/div898/handbook/prc/section4/prc44.htm
http://www.itl.nist.gov/div898/handbook/prc/section4/prc44.htm
http://www.itl.nist.gov/div898/handbook/pmc/section6/pmc613.r
http://www.itl.nist.gov/div898/handbook/pmc/section6/pmc613.r
http://www.itl.nist.gov/div898/handbook/search.htm
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http://www.nist.gov/
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6.6.1.4. Shewhart Control Chart

Choosing
the right
control
charts to
monitor
the
process

The largest source of variation in this data is the lot-to-lot
variation. So, using classical Shewhart methods, if we specify
our subgroup to be anything other than lot, we will be ignoring
the known lot-to-lot variation and could get out-of-control
points that already have a known, assignable cause - the data
comes from different lots. However, in the lithography
processing area the measurements of most interest are the site
level measurements, not the lot means. How can we get
around this seeming contradiction?

Chart
sources of
variation
separately

One solution is to chart the important sources of variation
separately. We would then be able to monitor the variation of
our process and truly understand where the variation is coming
from and if it changes. For this dataset, this approach would
require having two sets of control charts, one for the
individual site measurements and the other for the lot means.
This would double the number of charts necessary for this
process (we would have 4 charts for line width instead of 2).

Chart only
most
important
source of
variation

Another solution would be to have one chart on the largest
source of variation. This would mean we would have one set
of charts that monitor the lot-to-lot variation. From a
manufacturing standpoint, this would be unacceptable.

Use
boxplot
type chart

We could create a non-standard chart that would plot all the
individual data values and group them together in a boxplot
type format by lot. The control limits could be generated to
monitor the individual data values while the lot-to-lot variation
would be monitored by the patterns of the groupings. This
would take special programming and management intervention
to implement non-standard charts in most floor shop control
systems.

Alternate
form for
mean
control
chart

A commonly applied solution is the first option; have multiple
charts on this process. When creating the control limits for the
lot means, care must be taken to use the lot-to-lot variation
instead of the within lot variation. The resulting control charts
are: the standard individuals/moving range charts (as seen
previously), and a control chart on the lot means that is
different from the previous lot means chart. This new chart

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/boxplot.htm
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uses the lot-to-lot variation to calculate control limits instead
of the average within-lot standard deviation. The
accompanying standard deviation chart is the same as seen
previously.

Mean
control
chart
using lot-
to-lot
variation

The control limits labeled with "UCL" and "LCL" are the
standard control limits. The control limits labeled with "UCL:
LL" and "LCL: LL" are based on the lot-to-lot variation.

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
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6.6.1.5. Work This Example Yourself

View
Dataplot
Macro for
this Case
Study

This page allows you to repeat the analysis outlined in the
case study description on the previous page using Dataplot . It
is required that you have already downloaded and installed
Dataplot and configured your browser. to run Dataplot. Output
from each analysis step below will be displayed in one or
more of the Dataplot windows. The four main windows are the
Output Window, the Graphics window, the Command History
window, and the data sheet window. Across the top of the
main windows there are menus for executing Dataplot
commands. Across the bottom is a command entry window
where commands can be typed in.

Data Analysis Steps Results and
Conclusions

Click on the links below to start Dataplot and
run this case study yourself. Each step may use
results from previous steps, so please be patient.
Wait until the software verifies that the current
step is complete before clicking on the next step.

The links in this column
will connect you with
more detailed
information about each
analysis step from the
case study description.

1. Invoke Dataplot and read data.

  1. Read in the data.   1. You have read 5 
columns of numbers
     into Dataplot, 
variables CASSETTE,
     WAFER, SITE, 
WIDTH, and RUNSEQ.

2. Plot of the response variable

  1. Numerical summary of WIDTH.

  2. 4-Plot of WIDTH.

  3. Run sequence plot of WIDTH.

 1. The summary shows 
the mean line width
    is 2.53 and the 
standard deviation
    of the line 
width is 0.69.

 2. The 4-plot shows 
non-constant
    location and 
scale and moderate

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/pmc/section6/lithogra/lithogra.htm
http://www.itl.nist.gov/div898/handbook/pmc/section6/lithogra/lithogra.htm
http://www.itl.nist.gov/div898/handbook/pmc/section6/lithogra/lithogra.htm
http://www.itl.nist.gov/div898/handbook/pmc/section6/lithogra/lithogra.htm
http://www.itl.nist.gov/div898/handbook/pmc/section6/lithogra/lithogra.htm
http://www.itl.nist.gov/div898/handbook/dataplot.htm
http://www.itl.nist.gov/div898/software/dataplot/ftp/homepage.htm
http://www.itl.nist.gov/div898/handbook/dpbrows.htm
http://www.itl.nist.gov/div898/handbook/pmc/section6/lithogra/dpmacros/data.dp
http://www.itl.nist.gov/div898/handbook/pmc/section6/lithogra/dpmacros/summary.dp
http://www.itl.nist.gov/div898/handbook/pmc/section6/lithogra/dpmacros/4plot.dp
http://www.itl.nist.gov/div898/handbook/pmc/section6/lithogra/dpmacros/runseqpl.dp
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    autocorrelation.

 3. The run sequence 
plot shows
    non-constant 
location and scale.

3. Generate scatter and box plots 
against
   individual factors.

  1. Scatter plot of WIDTH versus
     CASSETTE.

  2. Box plot of WIDTH versus
     CASSETTE.

  3. Scatter plot of WIDTH versus
     WAFER.

  4. Box plot of WIDTH versus
     WAFER.

  5. Scatter plot of WIDTH versus
     SITE.

  6. Box plot of WIDTH versus
     SITE.

  7. DOE mean plot of WIDTH versus
     CASSETTE, WAFER, and SITE.

  8. DOE sd plot of WIDTH versus
     CASSETTE, WAFER, and SITE.

 1. The scatter plot 
shows considerable
    variation in 
location.

 2. The box plot 
shows considerable
    variation in 
location and scale
    and the prescence 
of some outliers.

 3. The scatter plot 
shows minimal
    variation in 
location and scale.

 4. The box plot 
shows minimal
    variation in 
location and scale.
    It also show 
some outliers.

 5. The scatter plot 
shows some
    variation in 
location.

 6. The box plot 
shows some
    variation in 
location.  Scale
    seems relatively 
constant.
    Some outliers.

 7. The DOE mean 
plot shows effects
    for CASSETTE and 
SITE, no effect
    for WAFER.

 8. The DOE sd plot 
shows effects
    for CASSETTE and 
SITE, no effect
    for WAFER.

4. Subgroup analysis.

  1. Generate a moving mean control
     chart.

  2. Generate a moving range control
     chart.

  3. Generate a mean control chart
     for WAFER.

 1. The moving mean 
plot shows
    a large number of 
out-of-
    control points.

 2. The moving range 
plot shows
    a large number of 
out-of-

http://www.itl.nist.gov/div898/handbook/pmc/section6/lithogra/dpmacros/scatcass.dp
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  4. Generate a sd control chart
     for WAFER.

  5. Generate a mean control chart
     for CASSETTE.

  6. Generate a sd control chart
     for CASSETTE.

  7. Generate an analysis of
     variance.  This is not
     currently implemented in
     DATAPLOT for nested
     datasets.

  8. Generate a mean control chart
     using lot-to-lot variation.

    control points.

 3. The mean control 
chart shows
    a large number of 
out-of-
    control points.

 4. The sd control 
chart shows
    no out-of-control 
points.

 5. The mean control 
chart shows
    a large number of 
out-of-
    control points.

 6. The sd control 
chart shows
    no out-of-control 
points.

 7. The analysis of 
variance and
    components of 
variance
    calculations show 
that
    cassette to 
cassette
    variation is 54% 
of the total
    and site to site 
variation
    is 36% of the 
total.

8. The mean control 
chart shows one
   point that is on 
the boundary of
   being out of 
control.

http://www.itl.nist.gov/div898/handbook/pmc/section6/lithogra/dpmacros/wafesd.dp
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Box-
Jenkins
Modeling
of Aerosol
Particle
Size

This case study illustrates the use of Box-Jenkins modeling
with aerosol particle size data.

1. Background and Data
2. Model Identification
3. Model Estimation
4. Model Validation
5. Work This Example Yourself
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6.6.2.1. Background and Data

Data Source The source of the data for this case study is Antuan Negiz
who analyzed these data while he was a post-doc in the
NIST Statistical Engineering Division from the Illinois
Institute of Technology.

Data
Collection

These data were collected from an aerosol mini-spray dryer
device. The purpose of this device is to convert a slurry
stream into deposited particles in a drying chamber. The
device injects the slurry at high speed. The slurry is
pulverized as it enters the drying chamber when it comes into
contact with a hot gas stream at low humidity. The liquid
contained in the pulverized slurry particles is vaporized, then
transferred to the hot gas stream leaving behind dried small-
sized particles.

The response variable is particle size, which is collected
equidistant in time. There are a variety of associated
variables that may affect the injection process itself and
hence the size and quality of the deposited particles. For this
case study, we restrict our analysis to the response variable.

Applications Such deposition process operations have many applications
from powdered laundry detergents at one extreme to ceramic
molding at an important other extreme. In ceramic molding,
the distribution and homogeneity of the particle sizes are
particularly important because after the molds are baked and
cured, the properties of the final molded ceramic product is
strongly affected by the intermediate uniformity of the base
ceramic particles, which in turn is directly reflective of the
quality of the initial atomization process in the aerosol
injection device.

Aerosol
Particle
Size
Dynamic
Modeling
and Control

The data set consists of particle sizes collected over time.
The basic distributional properties of this process are of
interest in terms of distributional shape, constancy of size,
and variation in size. In addition, this time series may be
examined for autocorrelation structure to determine a
prediction model of particle size as a function of time--such
a model is frequently autoregressive in nature. Such a high-
quality prediction equation would be essential as a first step
in developing a predictor-corrective recursive feedback

http://www.itl.nist.gov/div898/handbook/index.htm
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mechanism which would serve as the core in developing and
implementing real-time dynamic corrective algorithms. The
net effect of such algorthms is, of course, a particle size
distribution that is much less variable, much more stable in
nature, and of much higher quality. All of this results in final
ceramic mold products that are more uniform and predictable
across a wide range of important performance
characteristics. 

For the purposes of this case study, we restrict the analysis to
determining an appropriate Box-Jenkins model of the particle
size.

Software The analyses used in this case study can be generated using
both Dataplot code and R code.

Case study
data

115.36539
114.63150
114.63150
116.09940
116.34400
116.09940
116.34400
116.83331
116.34400
116.83331
117.32260
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118.30130
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117.81200
117.32260
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116.83331
116.58870
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113.40820
113.40820
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6.6.2.2. Model Identification

Check for
Stationarity,
Outliers,
Seasonality

The first step in the analysis is to generate a run sequence
plot of the response variable. A run sequence plot can
indicate stationarity (i.e., constant location and scale), the
presence of outliers, and seasonal patterns.

Non-stationarity can often be removed by differencing the
data or fitting some type of trend curve. We would then
attempt to fit a Box-Jenkins model to the differenced data or
to the residuals after fitting a trend curve.

Although Box-Jenkins models can estimate seasonal
components, the analyst needs to specify the seasonal period
(for example, 12 for monthly data). Seasonal components are
common for economic time series. They are less common for
engineering and scientific data.

 Run Sequence
Plot

Interpretation
of the Run
Sequence Plot

We can make the following conclusions from the run
sequence plot.

1. The data show strong and positive autocorrelation.

2. There does not seem to be a significant trend or any
obvious seasonal pattern in the data.

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/runseqpl.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/runseqpl.htm
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The next step is to examine the sample autocorrelations using
the autocorrelation plot.

Autocorrelation
Plot

Interpretation
of the
Autocorrelation
Plot

The autocorrelation plot has a 95% confidence band, which
is constructed based on the assumption that the process is a
moving average process. The autocorrelation plot shows that
the sample autocorrelations are very strong and positive and
decay very slowly.

The autocorrelation plot indicates that the process is non-
stationary and suggests an ARIMA model. The next step is to
difference the data.

 Run Sequence
Plot of
Differenced
Data

Interpretation
of the Run
Sequence Plot

The run sequence plot of the differenced data shows that the
mean of the differenced data is around zero, with the
differenced data less autocorrelated than the original data.

The next step is to examine the sample autocorrelations of

http://www.itl.nist.gov/div898/handbook/eda/section3/autocopl.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/autocopl.htm
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the differenced data.

Autocorrelation
Plot of the
Differenced
Data

Interpretation
of the
Autocorrelation
Plot of the
Differenced
Data

The autocorrelation plot of the differenced data with a 95%
confidence band shows that only the autocorrelation at lag 1
is significant. The autocorrelation plot together with run
sequence of the differenced data suggest that the differenced
data are stationary. Based on the autocorrelation plot, an
MA(1) model is suggested for the differenced data.

To examine other possible models, we produce the partial
autocorrelation plot of the differenced data.

Partial
Autocorrelation
Plot of the
Differenced
Data

Interpretation
of the Partial
Autocorrelation
Plot of the
Differenced
Data

The partial autocorrelation plot of the differenced data with
95% confidence bands shows that only the partial
autocorrelations of the first and second lag are significant.
This suggests an AR(2) model for the differenced data.
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Akaike
Information
Criterion (AIC
and AICC)

Information-based criteria, such as the AIC or AICC (see
Brockwell and Davis (2002), pp. 171-174), can be used to
automate the choice of an appropriate model. Many software
programs for time series analysis will generate the AIC or
AICC for a broad range of models.

Whatever method is used for model identification, model
diagnostics should be performed on the selected model.
Based on the plots in this section, we will examine the
ARIMA(2,1,0) and ARIMA(0,1,1) models in detail.

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
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6.6.2.3. Model Estimation

AR(2)
Model
Parameter
Estimates

The following parameter estimates were computed for the AR(2) model based on the
differenced data.

  
             Parameter  Standard    95 % Confidence
Source        Estimate    Error         Interval
------       ---------  --------   ----------------
Intercept     -0.0050     0.0119 
AR1           -0.4064     0.0419   (-0.4884, -0.3243)
AR2           -0.1649     0.0419   (-0.2469, -0.0829)
 
Number of Observations:                 558
Degrees of Freedom:           558 - 3 = 555  
Residual Standard Deviation:         0.4423

Both AR parameters are significant since the confidence intervals do not contain zero.

The model for the differenced data, Yt, is an AR(2) model:

with  = 0.4423.

It is often more convenient to express the model in terms of the original data, Xt, rather
than the differenced data. From the definition of the difference, Yt = Xt - Xt-1, we can
make the appropriate substitutions into the above equation:

to arrive at the model in terms of the original series:

MA(1)
Model
Parameter
Estimates

Alternatively, the parameter estimates for an MA(1) model based on the differenced data
are the following.

             Parameter  Standard    95 % Confidence
Source        Estimate    Error         Interval
------       ---------  --------   ----------------
Intercept     -0.0051     0.0114 
MA1           -0.3921     0.0366   (-0.4638, -0.3205)
 
Number of Observations:                 558
Degrees of Freedom:           558 - 2 = 556  
Residual Standard Deviation:         0.4434

http://www.itl.nist.gov/div898/handbook/index.htm
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The model for the differenced data, Yt, is an ARIMA(0,1,1) model:

with  = 0.4434.

It is often more convenient to express the model in terms of the original data, Xt, rather
than the differenced data. Making the appropriate substitutions into the above equation:

we arrive at the model in terms of the original series:

http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/


6.6.2.4. Model Validation

http://www.itl.nist.gov/div898/handbook/pmc/section6/pmc624.htm[6/27/2012 2:37:17 PM]

 

6. Process or Product Monitoring and Control 
6.6. Case Studies in Process Monitoring 
6.6.2. Aerosol Particle Size 

6.6.2.4. Model Validation

Residuals After fitting the model, we should check whether the model
is appropriate.

As with standard non-linear least squares fitting, the primary
tool for model diagnostic checking is residual analysis.

 4-Plot of
Residuals from
ARIMA(2,1,0)
Model

The 4-plot is a convenient graphical technique for model
validation in that it tests the assumptions for the residuals on
a single graph.

Interpretation
of the 4-Plot

We can make the following conclusions based on the above
4-plot.

1. The run sequence plot shows that the residuals do not
violate the assumption of constant location and scale. It
also shows that most of the residuals are in the range (-
1, 1).

2. The lag plot indicates that the residuals are not
autocorrelated at lag 1.

3. The histogram and normal probability plot indicate that
the normal distribution provides an adequate fit for this
model.

http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/pmd/section1/pmd142.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/4plot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/runseqpl.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/lagplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/histogra.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/normprpl.htm
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Autocorrelation
Plot of
Residuals from
ARIMA(2,1,0)
Model

In addition, the autocorrelation plot of the residuals from the
ARIMA(2,1,0) model was generated.

Interpretation
of the
Autocorrelation
Plot

The autocorrelation plot shows that for the first 25 lags, all
sample autocorrelations except those at lags 7 and 18 fall
inside the 95 % confidence bounds indicating the residuals
appear to be random.

Test the
Randomness of
Residuals From
the
ARIMA(2,1,0)
Model Fit

We apply the Box-Ljung test to the residuals from the
ARIMA(2,1,0) model fit to determine whether residuals are
random. In this example, the Box-Ljung test shows that the
first 24 lag autocorrelations among the residuals are zero (p-
value = 0.080), indicating that the residuals are random and
that the model provides an adequate fit to the data.

 4-Plot of
Residuals from
ARIMA(0,1,1)
Model

The 4-plot is a convenient graphical technique for model
validation in that it tests the assumptions for the residuals on
a single graph.

http://www.itl.nist.gov/div898/handbook/eda/section3/autocopl.htm
http://www.itl.nist.gov/div898/handbook/pmc/section4/pmc4481.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/4plot.htm
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Interpretation
of the 4-Plot
from the
ARIMA(0,1,1)
Model

We can make the following conclusions based on the above
4-plot.

1. The run sequence plot shows that the residuals do not
violate the assumption of constant location and scale. It
also shows that most of the residuals are in the range (-
1, 1).

2. The lag plot indicates that the residuals are not
autocorrelated at lag 1.

3. The histogram and normal probability plot indicate that
the normal distribution provides an adequate fit for this
model.

This 4-plot of the residuals indicates that the fitted model is
adequate for the data.

Autocorrelation
Plot of
Residuals from
ARIMA(0,1,1)
Model

The autocorrelation plot of the residuals from ARIMA(0,1,1)
was generated.
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Interpretation
of the
Autocorrelation
Plot

Similar to the result for the ARIMA(2,1,0) model, it shows
that for the first 25 lags, all sample autocorrelations expect
those at lags 7 and 18 fall inside the 95% confidence bounds
indicating the residuals appear to be random.

Test the
Randomness of
Residuals From
the
ARIMA(0,1,1)
Model Fit

The Box-Ljung test is also applied to the residuals from the
ARIMA(0,1,1) model. The test indicates that there is at least
one non-zero autocorrelation amont the first 24 lags. We
conclude that there is not enough evidence to claim that the
residuals are random (p-value = 0.026).

Summary Overall, the ARIMA(0,1,1) is an adequate model. However,
the ARIMA(2,1,0) is a little better than the ARIMA(0,1,1).
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6.6. Case Studies in Process Monitoring 
6.6.2. Aerosol Particle Size 

6.6.2.5. Work This Example Yourself

View
Dataplot
Macro for
this Case
Study

This page allows you to repeat the analysis outlined in the
case study description on the previous page using Dataplot . It
is required that you have already downloaded and installed
Dataplot and configured your browser. to run Dataplot. Output
from each analysis step below will be displayed in one or
more of the Dataplot windows. The four main windows are the
Output Window, the Graphics window, the Command History
window, and the data sheet window. Across the top of the
main windows there are menus for executing Dataplot
commands. Across the bottom is a command entry window
where commands can be typed in.

Data Analysis Steps Results and
Conclusions

Click on the links below to start Dataplot and
run this case study yourself. Each step may use
results from previous steps, so please be patient.
Wait until the software verifies that the current
step is complete before clicking on the next step. 

The links in this column
will connect you with
more detailed
information about each
analysis step from the
case study description. 

1. Invoke Dataplot and read data.

   1. Read in the data.   1. You have read 
one column of numbers
     into Dataplot, 
variable Y.

2. Model identification plots

  1. Run sequence plot of Y.

  2. Autocorrelation plot of Y.

  3. Run sequence plot of the
     differenced data of Y.

 1. The run sequence 
plot shows that the
    data show strong 
and positive
    autocorrelation.

 2. The 
autocorrelation plot 
indicates
    significant 
autocorrelation 
    and that the 
data are not
    stationary.
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  4. Autocorrelation plot of the
     differenced data of Y.

  5. Partial autocorrelation plot
     of the differenced data of Y.

 3. The run sequence 
plot shows that the
    differenced data 
appear to be 
stationary
    and do not 
exhibit seasonality.

 4. The 
autocorrelation plot 
of the
    differenced data 
suggests an
    ARIMA(0,1,1) 
model may be
    appropriate.

 5. The partial 
autocorrelation plot
    suggests an 
ARIMA(2,1,0) model 
may
    be appropriate.

3. Estimate the model.

  1. ARIMA(2,1,0) fit of Y.

  2. ARIMA(0,1,1) fit of Y.

 1. The ARMA fit 
generates parameter
    estimates for the 
ARIMA(2,1,0)
    model.

 2. The ARMA fit 
generates parameter
    estimates for the 
ARIMA(0,1,1)
    model.

4. Model validation.

  1. Generate a 4-plot of the
     residuals from the ARIMA(2,1,0)
     model.

  2. Generate an autocorrelation plot
     of the residuals from the
     ARIMA(2,1,0) model.

  3. Perform a Ljung-Box test of
     randomness for the residuals from
     the ARIMA(2,1,0) model.

  4. Generate a 4-plot of the
     residuals from the ARIMA(0,1,1)
     model.

  5. Generate an autocorrelation plot
     of the residuals from the
     ARIMA(0,1,1) model.

  6. Perform a Ljung-Box test of
     randomness for the residuals from
     the ARIMA(0,1,1) model.

 1. The 4-plot shows 
that the
    assumptions for 
the residuals
    are satisfied.

 2. The 
autocorrelation plot 
of the
    residuals 
indicates that the
    residuals are 
random.

 3. The Ljung-Box 
test indicates
    that the 
residuals are
    random.

 4. The 4-plot shows 
that the
    assumptions for 
the residuals
    are satisfied.

 5. The 
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autocorrelation plot 
of the
    residuals 
indicates that the
    residuals are 
random.

 6. The Ljung-Box 
test indicates
    that the 
residuals are not
    random at the 95% 
level, but
    are random at the 
99% level.
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