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Abstract:
The presentation will briefly describe results on optimal designs
for binary regression designs when there is a single design
or control variable and the design space is a finite or infinite interval.
Results hinge on a parameter dependent transformation to a weighted
linear design problem and can be illustrated pictorially.
Applications in the social sciences will be cited, including
contingent valuation studies, which aim to assess a population's
willingness to pay for some service or amenity, and in educational
testing. These lead naturally to consideration of multinomial
regression models. Extensions to problems with more than one
design variable will be indicated too.


1 Introduction

Suppose that a survey or investigation is to be conducted in which some variable,

on a continuous scale, denoted by X, is of interest; but that we cannot measure it very precisely on the sample members. We record only to which of a finite number of categories they belong,

possibly determining this by a process of elimination.

Examples  arise in Adaptive Testing in Education, in Market Research Studies and in Contingent Valuation Studies. One might record such categorical information in a market research investigation if respondents are likely to be reluctant to be very specific or to have poor memory recall; for example in surveying general practitioners in respect of what percentage of patients they assign to a specific drug. In contingent valuation studies the primary aim is to assess a population’s willingness to pay for some non-market good or service or towards an increase in charges e.g. for a fishing permit, or for access to a country park, or for new medical facilities.

Since respondents may never have considered such questions it is unrealistic to expect them to state a specific ‘willingness to pay value’.  In a simple dichotomous choice question they are offered a single ‘bid’ question; e.g. ‘are you willing to pay $20.?’  In a double bounded approach they would then be offered a second bid, lower, e.g. $10, if their response to the first ‘bid’ is NO

and  higher, e.g. $30, otherwise. We would then know into which of the four ranges, below $10, between $10 and $20, between $20 and $30, above $30, a respondent’s willingness to pay falls.

See Alberini (1995), Kaninen (1993) and Torsney & Gunduz (1999).

A similar approach is used in adaptive testing with a view to assessing academic attainment. Students are given, say a  moderate test initially, followed by an easier or harder test depending on their performance in the moderate test. A fundamental question is: what bid values should be offered to respondents? 

2 The Formal problem
Suppose that we know that  X є X = [C,D], so that this is a sample space (which might be the real line).  Suppose that we wish to place responses into one of k categories determined by cut-points x1, x2,……..xk-1 ,  chosen in advance, satisfying   C = x0 < x1 < x2 < ………< xk-1 < xk = D.

What sets of values should be chosen for these cut-points?  This defines a non-linear regression design problem, in which the design variable is the vector  x = (x1,x2,……,xk-1).  The solution should depend on the underlying distribution of X in the population of interest.  

We make the simple but widely used assumption that X (or it could be some function h(X), e.g. ln(X) when X is positive, as in the case of ‘Willingness to Pay‘) has distribution function:

                              P(X ( x) = F((x - ()/()             ,           x ( X  ,

where ( and ( are unknown location and scale parameters respectively, and F(z) is a standardised distribution function.  Equivalently

                                   P(X ( x) = F(( + (x)                  ,           x ( X  ,

where ( = -((/(), ( = 1/(. This is a Generalised linear model in the parameters (, (. Let ( = ((,()T.

We have a two parameter model and our objective is good estimation of some aspects of these parameters. Often ( is of particular interest. 

3 Some Design Objectives

We wish to choose a design which will ensure good estimation of some aspects of our model.

We could be interested in efficient estimation of either both parameters, or , in this context, possibly only of (. For the latter we then wish to minimise Var(
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) for c = ((/(( ( -(1,()T/(. This is an example of the c-optimal criterion. Alternatively good estimation of ( = 1/( corresponds to c = -(0,1)T/(2. 

If we want good estimation of both parameters then we wish to make C = Cov(
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) ‘small’. Possible targets are to minimise either:  det(C ) (D-optimality); tr(C ) (A-optimality); or the maximum eigenvalue of C (E-optimality). We will return to construction of these.  

For the moment we note that for non-linear models optimal designs typically depend on the unknown parameters of such models. They are called locally optimal designs. Provisional estimates of parameters are needed for these to be of practical value. We will focus on the construction of such designs. We can characterise this parameter dependence through a parameter dependent transformation to a standardised problem.

           Let  Z = (X - ()/( = ( + (X,  z = (x - ()/( = ( + (x, 

                   A = (C - ()/( = ( + (C,  B = (D - ()/( = ( + (D,

Then   

                  P(X ( x) = P(Z ( z) = F(z)       ,      z ( Z = [A,B].

We have in Z a transformed standardised version of X. We can focus on determining cut-points 

z1, z2,………,zk-1 satisfying  A = z0 < z1 < z2 <………< zk-1 < zk = B. We have a design problem  

with design vector z = (z1, z2,………,zk-1).  Of course zj = (xj - ()/( = ( + (xj , j = 0,1,2…,k.

Ford, Torsney and Wu (1992) used this approach for the two-category case which we now review.

4 Case of k = 2 Categories

This is simple in that x = x1 is scalar. Let x1 = x ( X = [C,D].

We focus on construction of design measures (. That is we seek a distribution (X on X which will identify the optimal proportions of observations to take at each point in X.

(Note that we are assuming that we are free to take x to be any value in X = [C,D].

 This can be permissible. However we could be restricted to a subset of X, say [c,d].

 We will return to this later.) 

Then Cov(
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) ( M-1((X), where M((X) is the expected information matrix per observation. 

If (X assigns weight (i to a discrete set of values x1, x2,…..(i ( 0, ((i  = 1, then

                              M((X) = E(x{Ix} = ((iIx
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where Ix is the expected information matrix of a single observation at x or a one point design at x. Using properties of generalised linear models Ford, Torsney and Wu (1992) show that 

                                 Ix = w(z)(1,x)T(1,x)    ,

where w(z) = {f(z)}2/{F(z)(1-F(z))},  f(z) = F((z) and z = ( + (x.

Now  under this z-transformation (1,z)T = B(1,x)T where B is the matrix

                                              B =  
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Hence

                                    Ix =  B-1Iz(B-1)T     ,

where 

                                    Iz = w(z)(1 z)T(1 z).

Further 

                                 M((X) = B-1M((Z)(B-1)T  ,

where (Z is the distribution induced on Z = [A,B] by (X on X = [C,D] so that 

                   M((Z) = E(z{Iz} = ((iIz
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      ,    zi = ( + (xi .       
Also

                             det(M((X)) ( det(M((Z))    ,

             cTM-1((x)c  =   cBT M-1((x)cB     ,    cB = Bc .

Thus D-optimal and c-optimal criteria, as functions of  (X, transform to other D-optimal and c-optimal criteria as functions of (Z. 

Hence we focus on finding the design (Z which either maximises det(M((Z) (D-optimality) or minimises cBT M-1((Z)cB (c-optimality). Note that if c = -(1,()T/(, 

cB ( (1,0)T, and if c = -(0,1)T/(2, cB ( (0,1)T. Denote these by e1-optimality and

e2-optimality respectively.

Ford, Torsney and Wu (1992) exploited the fact that these (non-linear) design problems are equivalent to corresponding weighted linear design problems with weight function w(z). Tools for constructing designs for linear models can be invoked. For example there are geometrical characterisations of D-optimality and c-optimality relating to the design locus:

                  G = {(g1,g2) : g1 = (w(z) , g2 = z(w(z) , z ( Z = [A,B] }   .

They established, that, for several choices of F(z), D-optimal designs need to take observations at only two distinct points (support points) in Z, in which case optimal weights are ½, ½ . (Note that two distinct points are needed to ensure estimation of both parameters.) Optimal designs are then of the form:

                                  z         z1       z2

                                                   (z        ½       ½ 

For the logistic and normal/probit choices of F(z) (for which Z = (), z1 = - z, z2 = z, with z = 1.543 and 1.138 respectively. These two values are well established in the literature.

For two others (for which Z = (), three support points are needed, in which case optimal weights are not uniform. Torsney & Musrati (1993) report the following optimal designs:

Double Exponential                                        Double Reciprocal

z    -1.594     0     1.594                                   z     -(2         0       (2

(z   0.282  0.436  0.282                                   (z   0.262  0.476  0.262

In the case of c-optimality either one or two support points are needed. If only one is needed it is the value z such that  cB ( (w(z)(1,z)T.  If two are needed these are fixed for all cB and there is an explicit solution for the optimal weights which do vary with cB. Thus optimal designs are of the form:

                                                      z         z1       z2

                                                                                 (z        (z
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For the logistic and normal/probit choices of F(z)  (for which Z = (),  z1 = - z, z2 = z, with z = 2.399 and 1.157 respectively. These are the support points for e2-optimality

each  having equal weighting. For e1-optimality there is one support point; namely z = 0.

We now turn to the k-category case. First we note that Iz has the expansion

                         Iz = (1,z)Tf(z)(1,-1)D(-1(1,-1)Tf(z)(1,z)  ,

where  D( = diag((1,(2) ,  (1 = F(z),   (2 = 1 – F(z). Similarly

          Ix = (1,x)Tf(z)(1,-1)D(-1(1,-1)Tf(z)(1,x)  ,  z = ( + (x  .

5 One Point Designs : k Categories

One key difference  from the two-category case is that with 3 or more categories it is possible to estimate all parameters using the same cut-points for all respondents; i.e. the same design point. This is a one point design.

Let the cut-points be x1, x2,………xk-1 and x0 = C, xk = D .

Let 

             (1 =  P(X ( x1) = F(( + (x1) = F(z1) ,   (k = 1 – F(zk-1) ,

               (i = P(xi-1 ( X ( xi) = F(zi) - F(zi-1)  , i = 2,3,….,k-1 .

Then the Fisher Information matrices at  x = (x1,x2,……,xk-1)T and at

 z = (z1,z2,……,zk-1)T,  zi = ( + (xi are:

                              IX = XQXT     ,              IZ = ZQZT    

where 

                          XT  =    (1k-1(x)           ,            ZT  =  (1k-1(z)

                                           1n = (1,1,……….,1)T  ( (n 

                                            Q = DfHD(-1HTDf
                                           Df = diag{f(z1),f(z2),……….. f(zk-1)}

                                           D( = diag((1,(2,…………,(k)

                                           H  =  (Ik-1(0k-1) – (0k-1(Ik-1)

                                          0n = (0,0,……….,0)T  ( (n 

                                           In = identity matrix of order n                .

Clearly

                                        Z = BX ,       IX = B-1IZ(B-1)T
We have the same relationship as in the two-category case. We can focus on determining an optimal z*. Below are results for the logistic and normal/probit choices of F(z) for k = 3,4. In view of the symmetry of these distributions we must have 

z* = (-z*,z*) for k=3, and z* = (-z*,0,z*) for k=4. We then have an univariate optimisation to perform.

The criteria considered are :

                           D-optimality  : maximise {log det (IZ)}

                           A-optimality  : maximise {-tr(IZ-1)}

                           e1-optimality  : maximise {-e1T IZ-1e1}

                           e2-optimality  : maximise {-e2T IZ-1e2}

                           E-optimality  : maximise  {-maximum eigenvalue of (IZ-1)}

We wish to to choose z to maximise ((z) = ((IZ) for ZT  =  (1k-1(z), z = (-z,z) or

 (-z,0,z), where ((.) is one of the above criteria.

RESULTS:

LOGISTIC                      k = 3                                   k = 4

CRITERION              z*          ((z*)                      z*          ((z*)       

D-optimality             1.5       -1.5574                   2.0       -1.2485

A-optimality             1.2       -5.2012                   1.7       -4.3790

e1-optimality             0.7       -3.3751                   1.1       -3.2000

e2-optimality             2.2       -1.0229                   2.2       -1.0229

E-optimality              0.7       -3.3751                   1.1       -3.2000

NORMAL/PROBIT        k = 3                                   k = 4

CRITERION              z*          ((z*)                      z*          ((z*)       

D-optimality             1.1       -0.2072                   1.4       -0.0999

A-optimality             1.0       -2.2800                   1.3       -1.9443

e1-optimality             0.6       -1.2350                   1.0       -1.1332

e2-optimality             1.5       -0.7668                   1.5       -0.7668

E-optimality              0.8       -1.2620                   1.0       -1.1332

6 Future Work

We list a number of topics to be pursued.

6.1 Arbitrary Design Intervals.

 We assumed that the design interval was the sample space of X or Z.

  In practice we may be restricted to a subset of  Z = [A,B], say [a,b].; e.g. a positive subset when the variable X is really positive (as in the case of Willingness To Pay in Contingent Valuation Studies) although we might have assumed X to have a logistic or normal distribution.

  For the two-category case Ford Torsney and Wu (1992) derived c-optimal designs for all

  possible choices of [a,b]. Again either one or two support points are needed. If two are needed 

  either one or both of a,b can be support points. 

 In the case of D-optimality two or three support points are needed. They conjectured that for

 many choices of F(z) only two would be needed and that the structure would be similar to the c-optimal solution.  Gunduz and Torsney (2002a) went on to confirm these conjectures. Also Sebastiani and Settimi (1997) focussed on the logistic case. It is likely that there will be similar solutions in the k-category case.

6.2 Determining Cut-points.

In practice the cut-points z1, z2,………,zk-1 or equivalently the cell probabilities (1, (2,….(k must be determined numerically. One possible algorithm is the multiplicative iteration:

                                          (j(r+1) = (j(r)m(dj(r))/( (i(r)m(di(r))

where m(.) is a positive increasing function and dj(r) = ((/((j (( = ((r).

This kind of algorithm was developed originally for finding optimal design weights;

see Torsney (1983, 1988), Mandal & Torsney (2000), Torsney & Mandal (2000, 2002).

6.3 Multiple Design Points
We assumed the same set of cut-points for all respondents; i.e. a one-point design. 

In practice several sets may be needed. Each is defined by a set of cell probabilities. These distributions and also the distribution defined by the set of design weights (the proportion of observations to be taken at each set) can be determined by a natural extension of the above algorithm. This has been explored in another context by Mandal & Torsney (2002)

6.4 Choice of k

How many cut-points are needed? The same number for each design point? These numbers could be determined by starting with large values of k. If zero cell probabilities emerge k has been reduced and arguably found. Alternatively we could search through increasing values of k.

6.5 Bivariate Approach

Consider a one-point design with 4 categories and 3 cut-points. When this is implemented iteratively, as in Contingent Valuation (CV) Studies (a first bid is offered and then a lower or higher bid depending on the response to the first bid), some approaches in the CV literature (see Alberini (1995)) assume a change in the distribution of X (Willingness To Pay (WTP)  in CV studies) from the first to the second bid. This points to the need for a joint distribution for X1 and X2 representing WTP at the two bids respectively. It is conventional to assume common marginal distributions, indexed by a location and scale parameter ( and ( as above, for some function h(.) of X1 and X2; 

e.g. h(X) = ln(X). Let Ui = (h(Xi) - ()/(, i = 1,2. A common marginal (standardised) cdf  F(u) for U1 and U2 is implied if we assume that 

                                        P(U1 ( u1, U2 ( u2) =  G{F(u1),F(u2)}

where  G(r,s) is a copula; i.e. a joint cumulative distribution function on 0 ( r,s ( 1, such that G(r,1) = r  and  G(1,s) = s. The approach of section 5 should readily extend to this model.

6.6 Conditional Approach

Whether or not we assume a change in distribution between bids, one approach to design construction when bids are offered iteratively, particularly when there is a time gap between offers, is to consider designing for the second or next stage by changing the cdf  F(z) to that corresponding to the conditional distribution of X (or X2) given the response to the first or previous bid. See Gunduz and Torsney (2002b). Design points could still be sets of cut-points.

6.7 Extensions to Higher Dimensions
In the two-category case we often view one of the two categories as a ‘response’ of interest.

If this equates to ‘X ( x’ then 

                                             P(response) = F(( + (x)  .

Sitter and Torsney (1995a, 1995b) consider the extension of this model to two and to more than two design variables respectively, so that 

                                            P(response) = F(( + (Tu)   ,   u ( U  (  (m

Following Ford. Torsney and Wu (1992) they consider a linear transformation from u to z such that z1 = (( + (Tu) with the remaining zj to be chosen by the experimenter. With the possible exception of z1,  z must be bounded. This will be the case if  U  is bounded. They argue that any design space Z must be equivalent to a subset of 

                             ZW = {z1 ( [A,B] , -1 ( zj ( 1 , j = 2,3,….,m}

where [A,B] is the sample space of F(z).  This is a widest or ‘largest’ possible design space.

On ZW observations need only be taken at zj = (1, j = 2,3,…,m, while z1 plays the role of z in section 4. In fact the total weight at a value of z1 can be split uniformly across the 2m-1 combinations of zj = (1 or over subsets of these forming Hadamard matrices. Hence we can focus on the marginal design on z1. Solutions have a similar structure to the one-design variable case. This includes the case of z1 restricted to a subset [a,b] of [A,B].  See Torsney and Gunduz (2000, 2002).

We could now consider the possibility of two or more cut-points for z1. In this case the matrix Z in the definition of the information matrix IZ changes. Suppose the cut-points are z1 = (z11,z12,…,z1(k-1))T. Then in the case m = 3 there are four possible forms for Z, namely:

(1k-1(z1(-1k-1(-1k-1)T ,  (1k-1(z1(-1k-1(+1k-1)T  ,  (1k-1(z1((1k-1(-1k-1)T  ,  (1k-1(z1(+1k-1(+1k-1)T  .

These correspond to the four possible combinations  (z2,z3) = ((1,(1).

Suppose we use this set of cut-points for all design points (i.e. for all respondents regardless of their z2 and z3 status). Then this implies a one-point marginal design on z1. If we wish to choose z1 to optimise any of the criteria in section 5, then the information matrix IZ must be replaced by it’s sum over the above four Z-matrices.

For the logistic and normal/probit choices of F(z) this optimisation problem again reduces to an univariate optimisation in the case k = 3,4 as z1 must be of the form (-z,z)T or (-z,0,z)T respectively.
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