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1.1. EDA Introduction

Summary What is exploratory data analysis? How did it begin? How
and where did it originate? How is it differentiated from other
data analysis approaches, such as classical and Bayesian? Is
EDA the same as statistical graphics? What role does
statistical graphics play in EDA? |s statistical graphics
identical to EDA?

These questions and related questions are dealt with in this
section. This section answers these questions and provides the
necessary frame of reference for EDA assumptions, principles,
and techniques.

Table of 1. What isEDA?

Contents 2. EDA versus Classical and Bayesian
for Section Models

1 Focus

Techniques

Rigor

Data Treatment

. Assumptions

EDA vs Summary

EDA Goals

The Role of Graphics

An EDA/Graphics Example
General Problem Categories
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1.1. EDA Introduction

1.1.1.What is EDA?

Approach Exploratory Data Analysis (EDA) is an approach/philosophy
for data analysis that employs a variety of techniques (mostly
graphical) to

maximize insight into a data set;
uncover underlying structure;
extract important variables;

detect outliers and anomalies,

test underlying assumptions;
develop parsimonious models; and
determine optimal factor settings.

Noor~wdhE

Focus The EDA approach is precisely that--an approach--not a set of
techniques, but an attitude/philosophy about how a data
analysis should be carried out.

Philosophy  EDA isnot identical to statistical graphics although the two
terms are used almost interchangeably. Statistical graphicsisa
collection of techniques--all graphically based and all
focusing on one data characterization aspect. EDA
encompasses a larger venue; EDA is an approach to data
analysis that postpones the usual assumptions about what kind
of model the data follow with the more direct approach of
allowing the data itself to reveal its underlying structure and
model. EDA is not a mere collection of techniques, EDA isa
philosophy as to how we dissect a data set; what we look for;
how we look; and how we interpret. It is true that EDA
heavily uses the collection of techniques that we call
"statistical graphics’, but it is not identical to statistical
graphics per se.

History The seminal work in EDA is Exploratory Data Analysis,
Tukey, (1977). Over the years it has benefitted from other
noteworthy publications such as Data Analysis and

ression, Mosteller and Tukey (1977), Interactive Data
Analysis, Hoaglin (1977), The ABC's of EDA, Velleman and
Hoaglin (1981) and has gained a large following as "the" way
to analyze a data set.

Techniqgues Most EDA techniques are graphical in nature with a few
guantitative techniques. The reason for the heavy reliance on
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1.1.1. What isEDA?

graphicsisthat by its very nature the main role of EDA isto
open-mindedly explore, and graphics gives the analysts
unparalleled power to do so, enticing the data to reveal its
structural secrets, and being always ready to gain some new,
often unsuspected, insight into the data. In combination with
the natural pattern-recognition capabilities that we all possess,
graphics provides, of course, unparalleled power to carry this
out.

The particular graphical techniques employed in EDA are
often quite smple, consisting of various techniques of:

1. Plotting the raw data (such as data traces, histograms,

bihistograms, probability plots, lag plots, block plots,
and Youden plots.

2. Plotting simple statistics such as mean plots, standard
deviation plots, box plots, and main effects plots of the
raw data.

3. Positioning such plots so as to maximize our natural
pattern-recognition abilities, such as using multiple
plots per page.
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1. Exploratory Data Analysis
1.1. EDA Introduction

1.1.2. How Does Exploratory Data Analysis
differ from Classical Data Analysis?

Data
Analysis
Approaches

Paradigms
for Analysis
Techniques

Method of
dealing with
underlying
model for
the data
distinguishes
the 3
approaches

EDA is a data analysis approach. What other data analysis
approaches exist and how does EDA differ from these other
approaches? Three popular data analysis approaches are:

1. Classica
2. Exploratory (EDA)
3. Bayesian

These three approaches are similar in that they all start with
a general science/engineering problem and all yield
science/engineering conclusions. The difference is the
sequence and focus of the intermediate steps.

For classical analysis, the sequence is

Problem => Data => Model => Analysis=>
Conclusions

For EDA, the sequenceis

Problem => Data => Analysis=> Model =>
Conclusions

For Bayesian, the sequenceis

Problem => Data => Model => Prior Distribution =>
Analysis=> Conclusions

Thusfor classical analysis, the data collection is followed by
the imposition of a model (normality, linearity, etc.) and the
analysis, estimation, and testing that follows are focused on
the parameters of that model. For EDA, the data collection is
not followed by a model imposition; rather it is followed
immediately by analysis with a goal of inferring what model
would be appropriate. Finally, for a Bayesian analysis, the
analyst attempts to incorporate scientific/engineering
knowledge/expertise into the analysis by imposing a data-
independent distribution on the parameters of the selected
model; the analysis thus consists of formally combining both
the prior distribution on the parameters and the collected
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1.1.2. How Does Exploratory Data Analysis differ from Classical Data Analysis?

data to jointly make inferences and/or test assumptions about
the model parameters.

In the real world, data analysts freely mix elements of all of
the above three approaches (and other approaches). The
above distinctions were made to emphasize the major
differences among the three approaches.

Further Focusing on EDA versus classical, these two approaches

discussion of  differ as follows:

the

distinction 1. Models

between the 2. Focus

classical and 3. Techniques

EDA 4. Rigor

approaches 5. Data Treatment

6. Assumptions
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1. Exploratory Data Analysis
1.1. EDA Introduction

1.1.2. How Does Exploratory Data Analysis differ from Classical Data Analysis?

1.1.2.1. Mod€

Classical The classical approach imposes models (both deterministic
and probabilistic) on the data. Deterministic models include,
for example, regression models and analysis of variance
(ANQVA) models. The most common probabilistic model
assumes that the errors about the deterministic model are
normally distributed--this assumption affects the validity of
the ANOVA F tests.

Exploratory  The Exploratory Data Analysis approach does not impose
deterministic or probabilistic models on the data. On the
contrary, the EDA approach allows the data to suggest
admissible models that best fit the data.
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1. Exploratory Data Analysis
1.1. EDA Introduction

1.1.2. How Does Exploratory Data Analysis differ from Classical Data Analysis?

1.1.2.2. Focus

Classical The two approaches differ substantially in focus. For classica
analysis, the focus is on the model--estimating parameters of
the model and generating predicted values from the model.

Exploratory  For exploratory data analysis, the focusis on the data--its
structure, outliers, and models suggested by the data.
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1. Exploratory Data Analysis
1.1. EDA Introduction

1.1.2. How Does Exploratory Data Analysis differ from Classical Data Analysis?

1.1.2.3. Techniques

Classical Classical techniques are generally quantitative in nature. They
include ANOVA, t tests, chi-squared tests, and E tests.

Exploratory  EDA techniques are generally graphical. They include scatter
plots, character plots, box plots, histograms, bihistograms,
probability plots, residual plots, and mean plots.
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1. Exploratory Data Analysis
1.1. EDA Introduction

1.1.2. How Does Exploratory Data Analysis differ from Classical Data Analysis?

1.1.2.4. Rigor

Classical

Exploratory

NIST
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Classical techniques serve as the probabilistic foundation of
science and engineering; the most important characteristic of
classical techniques is that they are rigorous, formal, and
"objective’.

EDA techniques do not share in that rigor or formality. EDA
technigues make up for that lack of rigor by being very
suggestive, indicative, and insightful about what the
appropriate model should be.

EDA techniques are subjective and depend on interpretation
which may differ from analyst to analyst, although
experienced anaysts commonly arrive at identical
conclusions.
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1. Exploratory Data Analysis
1.1. EDA Introduction

1.1.2. How Does Exploratory Data Analysis differ from Classical Data Analysis?

1.1.2.5. Data Treatment

Classical

Exploratory
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Classical estimation techniques have the characteristic of
taking all of the data and mapping the data into a few
numbers ("estimates'). This is both a virtue and a vice. The
virtue is that these few numbers focus on important
characteristics (location, variation, etc.) of the population. The
vice is that concentrating on these few characteristics can
filter out other characteristics (skewness, tail length,
autocorrelation, etc.) of the same population. In this sense
thereis aloss of information due to this "filtering" process.

The EDA approach, on the other hand, often makes use of
(and shows) al of the available data. In this sense thereis no
corresponding loss of information.
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1. Exploratory Data Analysis
1.1. EDA Introduction

1.1.2. How Does Exploratory Data Analysis differ from Classical Data Analysis?

1.1.2.6. Assumptions

Classical The "good news' of the classical approach is that tests based
on classical techniques are usually very sensitive--that is, if a
true shift in location, say, has occurred, such tests frequently
have the power to detect such a shift and to conclude that
such a shift is "statistically significant”. The "bad news" is
that classical tests depend on underlying assumptions (e.g.,
normality), and hence the validity of the test conclusions
becomes dependent on the validity of the underlying
assumptions. Worse yet, the exact underlying assumptions
may be unknown to the analyst, or if known, untested. Thus
the validity of the scientific conclusions becomes intrinsically
linked to the validity of the underlying assumptions. In
practice, if such assumptions are unknown or untested, the
validity of the scientific conclusions becomes suspect.

Exploratory Many EDA techniques make little or no assumptions--they
present and show the data--all of the data--as is, with fewer
encumbering assumptions.
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1. Exploratory Data Analysis
1.1. EDA Introduction

1.1.3. How Does Exploratory Data Analysis
Differ from Summary Analysis?

Summary

Exploratory
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A summary analysisis simply a numeric reduction of a
historical data set. It is quite passive. Itsfocusisin the past.
Quite commonly, its purpose isto simply arrive at a few key
statistics (for example, mean and standard deviation) which
may then either replace the data set or be added to the data
set in the form of a summary table.

In contrast, EDA has as its broadest goal the desire to gain
insight into the engineering/scientific process behind the data.
Whereas summary statistics are passive and historical, EDA
Is active and futuristic. In an attempt to "understand” the
process and improve it in the future, EDA uses the dataas a
"window" to peer into the heart of the process that generated
the data. There is an archival role in the research and
manufacturing world for summary statistics, but thereis an
enormoudly larger role for the EDA approach.
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1. Exploratory Data Analysis
1.1. EDA Introduction

1.1.4.What arethe EDA Goals?

Primary
and
Secondary
Goals

Insight
into the
Data

NIST
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The primary goa of EDA isto maximize the analyst's insight
into a data set and into the underlying structure of a data set,
while providing all of the specific items that an analyst would
want to extract from a data set, such as:

a good-fitting, parsimonious model

alist of outliers

a sense of robustness of conclusions

estimates for parameters

uncertainties for those estimates

aranked list of important factors

conclusions as to whether individual factors are
statistically significant

optimal settings

Nog,prwWNE

©

Insight implies detecting and uncovering underlying structure
in the data. Such underlying structure may not be encapsulated
in the list of items above; such items serve as the specific
targets of an analysis, but the real insight and "feel” for a data
set comes as the analyst judiciously probes and explores the
various subtleties of the data. The "feel" for the data comes
almost exclusively from the application of various graphical
techniques, the collection of which serves as the window into
the essence of the data. Graphics are irreplaceable--there are
no quantitative analogues that will give the same insight as
well-chosen graphics.

To get a"feel” for the data, it is not enough for the analyst to
know what isin the data; the analyst also must know what is
not in the data, and the only way to do that is to draw on our
own human pattern-recognition and comparative abilitiesin
the context of a series of judicious graphical techniques
applied to the data.
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1. Exploratory Data Analysis
1.1. EDA Introduction

1.1.5. The Role of Graphics

Quantitative/  Statistics and data analysis procedures can broadly be split
Graphical into two parts:

« Quantitative
 graphica

Quantitative  Quantitative techniques are the set of statistical procedures
that yield numeric or tabular output. Examples of
guantitative techniques include:

hypothesis testing

analysis of variance

point estimates and confidence intervals
least squares regression

These and similar techniques are all valuable and are
mainstream in terms of classical analysis.

Graphical On the other hand, thereis a large collection of statistical
tools that we generally refer to as graphical techniques.
These include:

scatter plots
histograms
probability plots
residual plots
box plots

block plots

EDA The EDA approach relies heavily on these and similar
Approach graphical techniques. Graphical procedures are not just tools
Relies that we could use in an EDA context, they are tools that we
Heavily on must use. Such graphical tools are the shortest path to
Graphical gaining insight into a data set in terms of
Techniques _ _

« testing assumptions

« model selection

« model validation

« estimator selection

« relationship identification

« factor effect determination
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1.1.5. The Role of Graphics
« outlier detection

If one is not using statistical graphics, then one isforfeiting
insight into one or more aspects of the underlying structure

of the data.
__NIST__ [HOME [TOOLS & AIDS [SEARCH [BACK NEXT]
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1. Exploratory Data Analysis
1.1. EDA Introduction

1.1.6. An EDA/Graphics Example

Anscombe A simple, classic (Anscombe) example of the central role
Example that graphics play in terms of providing insight into a data
set starts with the following data set:
X Y
Data 10.00 8.04
8.00 6.95
13.00 7.58
9.00 8.81
11.00 8.33
14.00 9.96
6.00 7.24
4.00 4.26
12.00 10.84
7.00 4.82
5.00 5.68
SUmmary If the goal of the analysis isto compute summary statistics
Satistics plus determine the best linear fit for Y as a function of X,

the results might be given as:

N=11

Mean of X=9.0

Meanof Y=7.5

Intercept = 3

Slope=0.5

Residual standard deviation = 1.237
Correlation = 0.816

The above quantitative analysis, although valuable, gives us
only limited insight into the data.

Scatter Plot In contrast, the following simple scatter plot of the data
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suggests the following:

1. The data set "behaves like" a linear curve with some
scatter;

2. thereis no justification for a more complicated model
(e.g., quadratic);

3. thereare no outliers;

4. the vertical spread of the data appearsto be of equal
height irrespective of the X-value; this indicates that
the data are equally-precise throughout and so a
"regular” (that is, equi-weighted) fit is appropriate.

Three This kind of characterization for the data serves as the core
Additional for getting insight/feel for the data. Such insight/feel does
Data Sets not come from the quantitative statistics; on the contrary,

calculations of quantitative statistics such as intercept and
slope should be subsequent to the characterization and will
make sense only if the characterization istrue. To illustrate
the loss of information that results when the graphics
insight step is skipped, consider the following three data
sets [Anscombe data sets 2, 3, and 4]:

X2 Y2 X3 Y3 X4 Y4

10.00 9.14 10.00 7.46 8.00 6.58
8.00 8.14 8.00 6.77 8.00 5.76
13.00 8.74 13.00 12.74 8.00 7.71
9.00 8.77 9.00 7.11 8.00 8.84
11.00 9.26 11.00 7.81 8.00 8.47
14.00 8.10 14.00 8.84 8.00 7.04
6.00 6.13 6.00 6.08 8.00 5.25
4.00 3.10 4.00 5.39 19.00 12.50
12.00 9.13 12.00 8.15 8.00 5.56
7.00 7.26 7.00 6.42 8.00 7.91
5.00 4.74 5.00 5.73 8.00 6.89

Quantitative A quantitative analysis on data set 2 yields

Satistics for

Data Set 2 N=11
Mean of X=9.0
Meanof Y=7.5
Intercept = 3
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Quantitative
Satistics for
Data Sets 3
and 4

Scatter Plots

Interpretation
of Scatter
Plots

Importance

Slope=0.5
Residual standard deviation = 1.237
Correlation = 0.816

which isidentical to the analysis for data set 1. One might
naively assume that the two data sets are "equivalent” since
that is what the statistics tell us; but what do the statistics
not tell us?

Remarkably, a quantitative analysis on data sets 3 and 4
also yields

N=11

Mean of X =9.0

Mean of Y=7.5

Intercept = 3

Slope=0.5

Residual standard deviation = 1.236
Correlation = 0.816 (0.817 for data set 4)

which implies that in some quantitative sense, all four of
the data sets are "equivalent”. In fact, the four data sets are
far from "equivalent” and a scatter plot of each data set,
which would be step 1 of any EDA approach, would tell us
that immediately.

DATASET 1 DATA SET 2

1 '™ 1

=1
[ ]
oo

4 568 78 91011121314 45 87 8 91011121314

B oBh o ow @
[

DATASET 2 DATA SET 4

12 12 e
11 11 g
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L J
)
L
[ ]
S - ]
[ ]
-,
.

4 58 78 91011121314 a 5 10 15 20

Conclusions from the scatter plots are:

data set 1 is clearly linear with some scatter.

data set 2 is clearly quadratic.

data set 3 clearly has an outlier.

data set 4 is obvioudly the victim of a poor
experimental design with a single point far removed
from the bulk of the data "wagging the dog".

PN PF

These points are exactly the substance that provide and
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of define "insight” and "feel" for a data set. They are the goals
Exploratory and the fruits of an open exploratory data analysis (EDA)
Analysis approach to the data. Quantitative statistics are not wrong

per se, but they are incomplete. They are incomplete
because they are numeric summaries which in the
summarization operation do a good job of focusing on a
particular aspect of the data (e.g., location, intercept, slope,
degree of relatedness, etc.) by judiciously reducing the data
to a few numbers. Doing so also filter s the data, necessarily
omitting and screening out other sometimes crucial
information in the focusing operation. Quantitative statistics
focus but also filter; and filtering is exactly what makes the
guantitative approach incomplete at best and misleading at
worst.

The estimated intercepts (= 3) and slopes (= 0.5) for data
sets 2, 3, and 4 are misleading because the estimation is
done in the context of an assumed linear model and that
linearity assumption is the fatal flaw in this analysis.

The EDA approach of deliberately postponing the model
selection until further along in the analysis has many
rewards, not the least of which is the ultimate convergence
to a much-improved model and the formulation of valid
and supportable scientific and engineering conclusions.
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1. Exploratory Data Analysis
1.1. EDA Introduction

1.1.7. General Problem Categories

Problem The following table is a convenient way to classify EDA
Classification problems.
Univariate
and Control UNIVARIATE CONTROL
Data Data:
A single column of A single column of
numbers, Y. numbers, .
Model: Model:
y = constant + error y = constant + error
Output: Output:
1. A number (the A "yes' or "no" to the
estimated constant in guestion "Is the
the model). system out of control ?
2. An estimate of "
uncertainty for the
constant. Techniques:
3. An estimate of the
distribution for the « Control Charts
error.
Techniques:
« 4-Plot
« Probability Plot
« PPCC Plot
grcl)(;nparatlve COMPARATIVE SCREENING
Screening Data: Data:
A single response A single response
variable and k variable and k
independent variables independent variables
(Y, Xq, Xop ey Xpo)s (Y, X1, Xo, vy Xg)-
primary focusis on
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1.1.7. Genera Problem Categories

Optimization
and
Regression

one (the primary Model:
factor) of these
independent variables. y = f(Xq, Xp, .y Xg) +
error
Model:
Output:
y = f(Xq, X2, .oy Xg) +
error 1. A ranked list (from
most important to
Output: least important) of
factors.
A "yes' or "no" to the 2. Best settings for the
guestion "Is the factors.
primary factor 3. A good
significant?". model/prediction
equation relating Y to
Techniques: the factors,
- Block Plot Techniques:
« Scatter Plot
» Box Plot  Block Plot
« Probability Plot
« Bihistogram
OPTIMIZATION REGRESSION
Data: Data:

A single response
variable and k
independent variables
(Y, Xq, Xoy ey Xg)-

Model:
y = f(Xq, X2, .0y Xg) +
error

Output:

Best settings for the
factor variables.

Techniques:

« Block Plot
» Least Squares Fitting

« Contour Plot

A single response
variable and k
independent variables
(Y, X1, Xo, vy Xg)-
The independent
variables can be

continuous.
Model:
y = f(Xq, X9, .ty Xi) +
error
Output:
A good
model/prediction
equation relating Y to
the factors.
Techniques:
 Least Squares Fitting
« Scatter Plot
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H 6-Plot

;}Z‘ese”&‘ TIME SERIES MULTIVARIATE
Multivariate Data: Data:
A column of k factor variables (X4, Xo, ...
time dependent %)
numbers, Y. In
addition, timeis Model:

an indpendent
variable. The
time variable
can be either
explicit or
implied. If the
data are not
equi-spaced, the
time variable
should be
explicitly
provided.

Model:

y; = f(t) + error
The model can
be either atime
domain based or
frequency
domain based.

Output:

A good
model/prediction
equation relating
Y to previous
valuesof Y.

Techniques:

Autocorrelation
Plot

Spectrum
Complex
Demodulation
Amplitude Plot

Complex
Demodulation

Phase Plot
ARIMA Models

The model is not explicit.
Output:

Identify underlying
correlation structurein the
data.

Techniques:

Star Plot
Scatter Plot Matrix

Conditioning Plot
Profile Plot

Principa Components
Clustering

Discrimination/Classification

Note that multivarate analysisis
only covered lightly in this
Handbook.
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1.2. EDA Assumptions

Summary The gamut of scientific and engineering experimentation is
virtually limitless. In this sea of diversity is there any common
basis that allows the analyst to systematically and validly
arrive at supportable, repeatable research conclusions?

Fortunately, thereis such a basisand it is rooted in the fact
that every measurement process, however complicated, has
certain underlying assumptions. This section deals with what
those assumptions are, why they are important, how to go
about testing them, and what the consequences are if the
assumptions do not hold.

Table of 1. Underlying Assumptions
Contents 2. lmportance
for Section 3. Testing Assumptions
2 4. Importance of Plots
5. Consequences
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SEMATECH [HOME [TOOLS & AIDS [SEARCH [BACK MNEXTI|

http://www.itl .nist.gov/div898/handbook/eda/section2/eda2.htm[6/27/2012 2:00:33 PM]


http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/

1.2.1. Underlying Assumptions

| P ENGINEERING STATISTICS HANDBOOK

[HOME

[TOOLS & AIDS [SEARCH [EACK "NEXT|

1. Exploratory Data Analysis
1.2. EDA Assumptions

1.2.1. Underlying Assumptions

Assumptions

Underlying a
Measurement
Process

Univariate or
Sngle
Response
Variable

Assumptions
for
Univariate
Model

Extrapolation
to a Function
of Many
Variables

Residuals

There are four assumptions that typically underlie al
measurement processes, namely, that the data from the
process at hand "behave like'":

1. random drawings;

2. from afixed distribution;

3. with the distribution having fixed location; and
4. with the distribution having fixed variation.

The "fixed location" referred to in item 3 above differs for
different problem types. The smplest problem typeis
univariate; that is, a single variable. For the univariate
problem, the general model

response = deterministic component + random
component

becomes

response = constant + error

For this case, the "fixed location" is simply the unknown
constant. We can thus imagine the process at hand to be
operating under constant conditions that produce a single
column of data with the properties that

« the data are uncorrelated with one another;

« the random component has a fixed distribution;

« the deterministic component consists of only a
constant; and

« the random component has fixed variation.

The universal power and importance of the univariate model
isthat it can easily be extended to the more general case
where the deterministic component is not just a constant,
but isin fact a function of many variables, and the
engineering objective isto characterize and model the
function.

The key point is that regardless of how many factors there
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Will Behave are, and regardless of how complicated the function is, if

Accordingto  the engineer succeedsin choosing a good model, then the

Univariate differences (residuals) between the raw response data and

Assumptions  the predicted values from the fitted model should
themselves behave like a univariate process. Furthermore,
the residuals from this univariate process fit will behave
like:

« random drawings;

« from afixed distribution;

 with fixed location (namely, 0 in this case); and
« with fixed variation.

Validation of  Thusif the residuas from the fitted model do in fact behave

Model like the ideal, then testing of underlying assumptions
becomes a tool for the validation and quality of fit of the
chosen model. On the other hand, if the residuals from the
chosen fitted model violate one or more of the above
univariate assumptions, then the chosen fitted model is
inadequate and an opportunity exists for arriving at an
improved model.
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1.2.2. Importance

Predictability
and
Satistical
Control

Validity of
Engineering
Conclusions
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Predictability is an all-important goal in science and
engineering. If the four underlying assumptions hold, then
we have achieved probabilistic predictability--the ability to
make probability statements not only about the processin
the past, but also about the processin the future. In short,
such processes are said to be "in statistical control”.

Moreover, if the four assumptions are valid, then the
process is amenable to the generation of valid scientific and
engineering conclusions. If the four assumptions are not
valid, then the process is drifting (with respect to location,
variation, or distribution), unpredictable, and out of control.
A simple characterization of such processes by a location
estimate, a variation estimate, or a distribution "estimate"
inevitably leads to engineering conclusions that are not
valid, are not supportable (scientifically or legally), and
which are not repeatable in the laboratory.
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1.2.3. Techniques for Testing Assumptions

Testing
Underlying
Assumptions
Helps Assure the
Validity of
Scientific and
Engineering
Conclusions

Four Techniques
to Test
Underlying
Assumptions

Plot ona Sngle
Page for a
Quick
Characterization
of the Data

Sample Plot:
Assumptions
Hold

Because the validity of the final scientific/engineering
conclusions is inextricably linked to the validity of the
underlying univariate assumptions, it naturally follows that
thereis a real necessity that each and every one of the
above four assumptions be routinely tested.

The following EDA techniques are simple, efficient, and
powerful for the routine testing of underlying
assumptions:

run sequence plot (Y; versusi)
lag plot (Y; versusY;.q)
histogram (counts versus subgroups of Y)

normal probability plot (ordered Y versus theoretical
ordered Y)

AL DR

The four EDA plots can be juxtaposed for a quick look at
the characteristics of the data. The plots below are ordered
as follows:

1. Run sequence plot - upper left

2. Lagplot - upper right

3. Histogram - lower left

4. Normal probability plot - lower right
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Mormal Random Numbers: 4-Plot
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This 4-plot reveals a process that has fixed location, fixed
variation, is random, apparently has a fixed approximately
normal distribution, and has no outliers.

Sample Plot: If one or more of the four underlying assumptions do not
AssumptionsDo  hold, then it will show up in the various plots as
Not Hold demonstrated in the following example.

Beam Deflections: 4-Plot
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a0 200
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This 4-plot reveals a process that has fixed location, fixed
variation, is non-random (oscillatory), has a non-normal,
U-shaped distribution, and has several outliers.
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Interpretation
of EDA
Plots:

Flat and
Equi-Banded,
Random,
Bell- Shaped,
and Linear

Plots Utilized
to Test the
Assumptions

The four EDA plots discussed on the previous page are
used to test the underlying assumptions:

1. Fixed Location:

If the fixed location assumption holds, then the run
sequence plot will be flat and non-drifting.

. Fixed Variation:

If the fixed variation assumption holds, then the
vertical spread in the run sequence plot will be the
approximately the same over the entire horizontal
axis.

. Randomness:

If the randomness assumption holds, then the lag plot
will be structureless and random.

. Fixed Distribution:

If the fixed distribution assumption holds, in
particular if the fixed normal distribution holds, then
1. the histogram will be bell-shaped, and
2. the normal probability plot will be linear.

Conversely, the underlying assumptions are tested using the
EDA plots:

« Run Sequence Plot:

If the run sequence plot is flat and non-drifting, the
fixed-location assumption holds. If the run sequence
plot has a vertical spread that is about the same over
the entire plot, then the fixed-variation assumption
holds.

Lag Plot:
If the lag plot is structureless, then the randomness
assumption holds.

Histogram:

If the histogram is bell-shaped, the underlying
distribution is symmetric and perhaps approximately
normal.
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Normal Probability Plot:
If the normal probability plot is linear, the underlying
distribution is approximately normal.

If al four of the assumptions hold, then the processis said
definitionally to be "in statistical control".
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1.2.5. Consequences

What If If some of the underlying assumptions do not hold, what

Assumptions  can be done about it? What corrective actions can be

Do Not Hold? taken? The positive way of approaching this isto view the
testing of underlying assumptions as a framework for
learning about the process. Assumption-testing promotes
insight into important aspects of the process that may not
have surfaced otherwise.

Primary Goal The primary goa isto have correct, validated, and

is Correct compl ete scientific/engineering conclusions flowing from
and Valid the analysis. This usually includes intermediate goals such
Sientific as the derivation of a good-fitting model and the

Conclusions computation of realistic parameter estimates. It should
always include the ultimate goal of an understanding and a
"feel" for "what makes the processtick". There is no more
powerful catalyst for discovery than the bringing together
of an experienced/expert scientist/engineer and a data set
ripe with intriguing "anomalies' and characteristics.

Consequences  The following sections discuss in more detail the
of Invalid consequences of invalid assumptions:
Assumptions
1. Consequences of non-randomness
2. Consequences of non-fixed location parameter
3. Consequences of non-fixed variation
4. Caonsequences related to distributional assumptions
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1.2.5.1. Consequences of Non-Randomness

Randomness
Assumption

Consequeces of
Non-
Randomness

Non-
Randomness
Dueto
Autocorrelation

There are four underlying assumptions:

1. randomness,

2. fixed location;

3. fixed variation; and
4. fixed distribution.

The randomness assumption is the most critical but the
least tested.

If the randomness assumption does not hold, then

1. All of the usua statistical tests are invalid.

2. The calculated uncertainties for commonly used
statistics become meaningless.

3. The calculated minimal sample size required for a
pre-specified tolerance becomes meaningless.

4. The ssimple model: y = constant + error becomes
invalid.

5. The parameter estimates become suspect and non-
supportable.

One specific and common type of non-randomness is
autocorrelation. Autocorrelation is the correlation
between Y; and Y;_,, where k is an integer that defines the

lag for the autocorrelation. That is, autocorrelation is a
time dependent non-randomness. This means that the
value of the current point is highly dependent on the
previous point if k = 1 (or k points ago if k is not 1).
Autocorrelation is typically detected via an
autocorrelation plot or a lag plot.

If the data are not random due to autocorrelation, then

1. Adjacent data values may be related.

2. There may not be n independent snapshots of the
phenomenon under study.

3. There may be undetected "junk"-outliers.

4. There may be undetected "information-rich"-
outliers.
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1.2.5.2. Consequences of Non-Fixed L ocation

Location
Estimate

Consequences
of Non-Fixed

Location
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Parameter

The usual estimate of location is the mean

_ 1 M
Y = — Y.
TR

from N measurements Yy, Yo, ..., Y-

If the run sequence plot does not support the assumption of
fixed location, then

1

2.

[HOME

The location may be drifting.

The single location estimate may be meaningless (if
the processis drifting).

The choice of location estimator (e.g., the sample
mean) may be sub-optimal.

. The usua formula for the uncertainty of the mean:

(¥) = ;Jim—w

N(N-1) =1

may be invalid and the numerical value optimistically
small.

The location estimate may be poor.

The location estimate may be biased.
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1.2.5.3. Consequences of Non-Fixed Variation
Parameter

Variation The usual estimate of variation is the standard deviation
Estimate

from N measurements Yy, Yo, ..., Y-

Consequences If the run sequence plot does not support the assumption of
of Non-Fixed  fixed variation, then

Variation
1. Thevariation may be drifting.
2. Thesingle variation estimate may be meaningless (if
the process variation is drifting).
3. The variation estimate may be poor.
4. The variation estimate may be biased.
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1.2.5.4. Consequences Related to Distributional
Assumptions

Distributional ~ Scientists and engineers routinely use the mean (average) to

Analysis estimate the "middle" of a distribution. It is not so well
known that the variability and the noisiness of the mean as
alocation estimator are intrinsically linked with the
underlying distribution of the data. For certain distributions,
the mean is a poor choice. For any given distribution, there
exists an optimal choice-- that is, the estimator with
minimum variability/noisiness. This optimal choice may be,
for example, the median, the midrange, the midmean, the
mean, or something else. The implication of thisisto
"estimate” the distribution first, and then--based on the
distribution--choose the optimal estimator. The resulting
engineering parameter estimators will have less variability
than if this approach is not followed.

Case Sudies  The airplane glass failure case study gives an example of
determining an appropriate distribution and estimating the
parameters of that distribution. The uniform random
numbers case study gives an example of determining a
more appropriate centrality parameter for a non-normal
distribution.

Other consequences that flow from problems with
distributional assumptions are:
Distribution 1. Thedistribution may be changing.
2. The single distribution estimate may be meaningless
(if the process distribution is changing).
3. Thedistribution may be markedly non-normal.
4. The distribution may be unknown.
5. Thetrue probability distribution for the error may
remain unknown.

Model 1. The model may be changing.
2. The single model estimate may be meaningless.
3. The default model
Y = constant + error
may be invalid.
4. 1If the default model is insufficient, information about
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a better model may remain undetected.
5. A poor deterministic model may be fit.
6. Information about an improved model may go

undetected.
Process 1. The process may be out-of-control.
2. The process may be unpredictable.
3. The process may be un-modelable.
MNIST : :
TEMATEER HOME [TOOLS & AIDS [SEARCH [BACK NEXT

http://www.itl .nist.gov/div898/handbook/eda/section2/eda254.htm[6/27/2012 2:00:39 PM]


http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/

1.3. EDA Techniques

| P ENGINEERING STATISTICS HANDBOOK

HOME TOOLS & AIDS SEARCH BACK MNEXT

1. Exploratory Data Analysis

1.3. EDA Techniques

SUmmary After you have collected a set of data, how do you do an
exploratory data analysis? What techniques do you employ?
What do the various technigues focus on? What conclusions
can you expect to reach?

This section provides answers to these kinds of questions via a
gallery of EDA techniques and a detailed description of each
technigue. The techniques are divided into graphical and
guantitative techniques. For exploratory data analysis, the
emphasisis primarily on the graphical techniques.

Table of 1. Introduction

Contents 2. Analysis Questions

for Section 3. Graphical Techniques: Alphabetical

3 4. Graphical Techniques: By Problem Category
5. Quantitative Techniques: Alphabetical
6. Probability Distributions
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Graphical
and
Quantitative
Techniques

Use of
Techniques
Shown in
Case
Sudies

Availability
in Software
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This section describes many techniques that are commonly
used in exploratory and classical dataanalysis. Thislist is by
no means meant to be exhaustive. Additional techniques
(both graphical and quantitative) are discussed in the other
chapters. Specifically, the product comparisons chapter has a
much more detailed description of many classical statistical
techniques.

EDA emphasizes graphical techniques while classical
technigques emphasize quantitative techniques. In practice, an
analyst typically uses a mixture of graphical and quantitative
technigues. In this section, we have divided the descriptions
into graphical and quantitative techniques. Thisisfor
organizational clarity and is not meant to discourage the use
of both graphical and quantitiative techniques when
analyzing data.

This section emphasizes the techniques themselves; how the
graph or test is defined, published references, and sample
output. The use of the techniques to answer engineering
guestions is demonstrated in the case studies section. The
case studies do not demonstrate all of the techniques.

The sample plots and output in this section were generated
with the Dataplot software program. Other general purpose
statistical data analysis programs can generate most of the
plots, intervals, and tests discussed here, or macros can be
written to acheive the same result.
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EDA
Questions

Analyst
Should

| dentify
Relevant
Questions
for his
Engineering
Problem

EDA
Approach
Emphasizes
Graphics

Some common questions that exploratory data analysisis
used to answer are:

What is a typical value?

What is the uncertainty for a typical value?

What is a good distributional fit for a set of numbers?

What is a percentile?

Does an engineering modification have an effect?

Does a factor have an effect?

What are the most important factors?

Are measurements coming from different |aboratories

equivalent?

Wheat is the best function for relating a response

variable to a set of factor variables?

10. What are the best settings for factors?

11. Can we separate signal from noise in time dependent
data?

12. Can we extract any structure from multivariate data?

13. Doesthe data have outliers?

ONoOA~LNE

©

A critical early step in any analysisisto identify (for the
engineering problem at hand) which of the above questions
are relevant. That is, we need to identify which questions we
want answered and which questions have no bearing on the
problem at hand. After collecting such a set of questions, an
equally important step, which isinvaluable for maintaining
focus, isto prioritize those questions in decreasing order of
importance. EDA techniques are tied in with each of the
questions. There are some EDA techniques (e.g., the scatter
plot) that are broad-brushed and apply almost universally. On
the other hand, there are a large number of EDA techniques
that are specific and whose specificity istied in with one of
the above questions. Clearly if one chooses not to explicitly
identify relevant questions, then one cannot take advantage of
these question-specific EDA techngiues.

Most of these questions can be addressed by techniques
discussed in this chapter. The process modeling and process
improvement chapters also address many of the questions
above. These questions are also relevant for the classical
approach to statistics. What distinguishes the EDA approach
is an emphasis on graphical techniques to gain insight as
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opposed to the classical approach of quantitative tests. Most
data analysts will use a mix of graphical and classica
quantitative techniques to address these problems.
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This section provides a gallery of some useful graphical
technigues. The techniques are ordered alphabetically, so this
section is not intended to be read in a sequentia fashion. The
use of most of these graphical techniques is demonstrated in
the case studies in this chapter. A few of these graphical

techniques are demonstrated in later chapters.
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1.3.3.1. Autocorreation Plot

Purpose:
Check
Randomness

Sample Plot:
Autocorrelations
should be near -
zero for
randomness.
Such is not the
casein this
example and
thus the
randomness
assumption fails

Definition:
r(h) versus h

Autocorrelation plots (Box and Jenkins, pp. 28-32) are a
commonly-used tool for checking randomness in a data
set. This randomness is ascertained by computing
autocorrelations for data values at varying time lags. If
random, such autocorrelations should be near zero for any
and all time-lag separations. If non-random, then one or
more of the autocorrelations will be significantly non-
zero.

In addition, autocorrelation plots are used in the model

identification stage for Box-Jenkins autoregressive,
moving average time series models.

Autocormelation Plot

Aulocarrelation
-}
1

0.5

T T T T T T T T | : |
0 a0 100 150 200 250
Lag

FLIGKER DAT

This sample autocorrelation plot shows that the time series
is not random, but rather has a high degree of
autocorrelation between adjacent and near-adjacent
observations.

Autocorrelation plots are formed by
« Vertical axis: Autocorrelation coefficient
Rh — Cthu

where C, is the autocovariance function
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N—f

Ch=5 2 (% ~¥)(¥n — ¥)

t=1

and C isthe variance function

_ Efil (YE — 17)2

s N

Note--Ry, is between -1 and +1.

Note--Some sources may use the following formula
for the autocovariance function

1 N—*Fh _

O — Y, — Y)Y, —Y
B N_htzl{* J¥ern —Y)

Although this definition has less bias, the (1/N)
formulation has some desirable statistical properties
and is the form most commonly used in the
statistics literature. See pages 20 and 49-50 in
Chatfield for details.

« Horizonta axis: Timelagh(h=1,2,3,...)

« Theabove line also contains several horizonta
reference lines. The middle lineis at zero. The other
four lines are 95 % and 99 % confidence bands.
Note that there are two distinct formulas for
generating the confidence bands.

1. If the autocorrelation plot is being used to test
for randomness (i.e., thereis no time
dependence in the data), the following
formula is recommended:

+ Z)_xj2

VN

where N isthe sample size, zisthe
cumulative distribution function of the
standard normal distribution and ¢x is the
significance level. In this case, the confidence
bands have fixed width that depends on the
sample size. Thisis the formula that was used
to generate the confidence bands in the above
plot.

2. Autocorrelation plots are al'so used in the
model identification stage for fitting ARIMA
models. In this case, a moving average model
is assumed for the data and the following
confidence bands should be generated:
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1 %
izl_afz»J Etl + 23 v

i=l

where k isthe lag, N isthe sample size, zis
the cumulative distribution function of the
standard normal distribution and ¢x is the
significance level. In this case, the confidence
bands increase as the lag increases.

Questions The autocorrelation plot can provide answers to the
following questions:

w

No ok

©

0.

1. Arethe datarandom?
2.

Is an observation related to an adjacent
observation?

Is an observation related to an observation twice-
removed? (etc.)

I's the observed time series white noise?

I's the observed time series sinusoidal ?

Is the observed time series autoregressive?

What is an appropriate model for the observed time
series?

|'s the model

Y = constant + error

valid and sufficient?

Isthe formula sy = /+/ N valid?

I mportance: Randomness (along with fixed model, fixed variation, and

Ensure validity fixed distribution) is one of the four assumptions that

of engineering typically underlie all measurement processes. The

conclusions randomness assumption is critically important for the
following three reasons:

1. Most standard statistical tests depend on

randomness. The validity of the test conclusionsis
directly linked to the validity of the randomness
assumption.

Many commonly-used statistical formulae depend
on the randomness assumption, the most common
formula being the formula for determining the
standard deviation of the sample mean:

sy = 8/VN

where g is the standard deviation of the data.
Although heavily used, the results from using this
formula are of no value unless the randomness
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Examples

Related
Techniques

Case Sudy

Software

NIST
SEMATECH

assumption holds.
3. For univariate data, the default model is
Y = constant + error

If the data are not random, this model is incorrect
and invalid, and the estimates for the parameters
(such as the constant) become nonsensical and
invalid.

In short, if the analyst does not check for randomness,
then the validity of many of the statistical conclusions
becomes suspect. The autocorrelation plot is an excellent
way of checking for such randomness.

Examples of the autocorrelation plot for several common
situations are given in the following pages.

1. Random (= White Noise)
2. Weak autocorrelation

3. Strong autocorrelation and autoregressive model
4. Sinusoidal model

Partial Autocorrelation Plot

Lag Plot

Spectral Plot
Seasonal Subseries Plot

The autocorrelation plot is demonstrated in the beam
deflection data case study.

Autocorrelation plots are available in most general
purpose statistical software programs.
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Autocorrelation

Plot

Conclusions

Discussion

The following is a sample autocorrelation plot.

AUTOCORRBRELATION PLOT
1
E a5
i
E 0- IJ B P |||||I L |
0.5 7
A
| | T | |
a 10 20 30 40 &0
Lag
RANDOM

We can make the following conclusions from this plot.

1. There are no significant autocorrelations.
2. The data are random.

Note that with the exception of lag O, which is aways 1 by
definition, almost all of the autocorrelations fall within the
95% confidence limits. In addition, there is no apparent
pattern (such as the first twenty-five being positive and the
second twenty-five being negative). Thisis the abscence
of a pattern we expect to see if the data are in fact random.

A few lags dightly outside the 95% and 99% confidence
limits do not neccessarily indicate non-randomness. For a
95% confidence interval, we might expect about one out
of twenty lags to be statistically significant due to random
fluctuations.

There is no associative ability to infer from a current value
Y; as to what the next value Y;., will be. Such non-

association is the essense of randomness. In short, adjacent
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observations do not "co-relate”, so we call this the "no
autocorrelation” case.
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The following is a sample autocorrelation plot.

AUTOCORRBELATION PLOT
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We can make the following conclusions from this plot.

1. The data come from an underlying autoregressive
model with moderate positive autocorrelation.

The plot starts with a moderately high autocorrelation at
lag 1 (approximately 0.75) that gradually decreases. The
decreasing autocorrelation is generally linear, but with
significant noise. Such a pattern is the autocorrelation plot
signature of "moderate autocorrelation™, which in turn
provides moderate predictability if modeled properly.

The next step would be to estimate the parameters for the
autoregressive model:

Yi=Ag+ A +xY, + B

Such estimation can be performed by using least squares
linear regression or by fitting a Box-Jenkins autoregressive
(AR) model.

http://www.itl .nist.gov/div898/handbook/eda/section3/eda3312.htm[6/27/2012 2:00:45 PM]


http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/pmd/section1/pmd141.htm
http://www.itl.nist.gov/div898/handbook/pmd/section1/pmd141.htm

1.3.3.1.2. Autocorrelation Plot: Moderate Autocorrelation

The randomness assumption for least squares fitting
applies to the residuals of the model. That is, even though
the original data exhibit non-randomness, the residuals
after fitting Y; against Y;_; should result in random

residuals. Assessing whether or not the proposed model in
fact sufficiently removed the randomness is discussed in
detail in the Process Modeling chapter.

Theresidua standard deviation for this autoregressive
modd will be much smaller than the residual standard
deviation for the default model

Y= Ap + B
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The following is a sample autocorrelation plot.
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We can make the following conclusions from the above
plot.

1. The data come from an underlying autoregressive
model with strong positive autocorrelation.

The plot starts with a high autocorrelation at lag 1 (only
dightly lessthan 1) that slowly declines. It continues
decreasing until it becomes negative and starts showing an
Incresing negative autocorrelation. The decreasing
autocorrelation is generally linear with little noise. Such a
pattern is the autocorrelation plot signature of "strong
autocorrelation”, which in turn provides high
predictability if modeled properly.

The next step would be to estimate the parameters for the
autoregressive model:
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1.3.3.1.3. Autocorrelation Plot: Strong Autocorrelation and Autoregressive Model
Yi=Ag+ A xY + B

Such estimation can be performed by using least squares
linear regression or by fitting a Box-Jenkins
autoregressive (AR) model.

The randomness assumption for least squares fitting
applies to the residuals of the model. That is, even though
the original data exhibit non-randomness, the residuals
after fitting Y; against Y;_; should result in random

residuals. Assessing whether or not the proposed model in
fact sufficiently removed the randomness is discussed in
detail in the Process Modeling chapter.

Theresidua standard deviation for this autoregressive
modd will be much smaller than the residual standard
deviation for the default model

Y= A+ B
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The following is a sample autocorrelation plot.

We can make the following conclusions from the above
plot.

1. The data come from an underlying sinusoidal
model.

The plot exhibits an alternating sequence of positive and
negative spikes. These spikes are not decaying to zero.
Such a pattern is the autocorrelation plot signature of a
sinusoidal model.

The beam deflection case study gives an example of
modeling a sinusoidal model.
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1.3.3.2. Bihistogram
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Purpose:
Check for a
changein
location,
variation, or
distribution

Sample Plot:

This
bihistogram
reveals that
thereisa
significant
differencein
ceramic
breaking
strength
between
batch 1
(above) and
batch 2
(below)

The bihistogram is an EDA tool for assessing whether a
before-versus-after engineering modification has caused a
change in

« |location;
« Variation; or
« distribution.

It isa graphical alternative to the two-sample t-test. The
bihistogram can be more powerful than the t-test in that all
of the distributional features (location, scale, skewness,
outliers) are evident on a single plot. It is also based on the
common and well-understood histogram.

Bihistogram
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From the above bihistogram, we can see that batch 1 is
centered at a ceramic strength value of approximately 725
while batch 2 is centered at a ceramic strength value of
approximately 625. That indicates that these batches are
displaced by about 100 strength units. Thus the batch factor
has a significant effect on the location (typical value) for
strength and hence batch is said to be "significant” or to
"have an effect”. We thus see graphically and convincingly
what a t-test or analysis of variance would indicate
quantitatively.
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1.3.3.2. Bihistogram

Definition:
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Related
Techniques

Case Sudy

Software

With respect to variation, note that the spread (variation) of
the above-axis batch 1 histogram does not appear to be that
much different from the below-axis batch 2 histogram. With
respect to distributional shape, note that the batch 1
histogram is skewed |eft while the batch 2 histogram is more
symmetric with even a hint of a slight skewness to the right.

Thus the bihistogram reveals that there is a clear difference
between the batches with respect to location and
distribution, but not in regard to variation. Comparing batch
1 and batch 2, we aso note that batch 1 is the "better batch™
due to its 100-unit higher average strength (around 725).

Bihistograms are formed by vertically juxtaposing two
histograms:

« Above the axis. Histogram of the response variable
for condition 1

« Below the axis: Histogram of the response variable for
condition 2

The bihistogram can provide answers to the following
guestions:

Isa(2-level) factor significant?

Does a (2-level) factor have an effect?

Does the location change between the 2 subgroups?
Does the variation change between the 2 subgroups?
Does the distributional shape change between
subgroups?

Arethere any outliers?

agrwdE

o

The bihistogram is an important EDA tool for determining if
afactor "has an effect”. Since the bihistogram provides
insight into the validity of three (location, variation, and
distribution) out of the four (missing only randomness)
underlying assumptions in a measurement process, it is an
especially valuable tool. Because of the dua (above/below)
nature of the plot, the bihistogram is restricted to assessing
factors that have only two levels. However, thisis very
common in the before-versus-after character of many
scientific and engineering experiments.

t test (for shift in location)

E test (for shift in variation)

Kolmogorov-Smirnov test (for shift in distribution)
Quantile-quantile plot (for shift in location and distribution)

The bihistogram is demonstrated in the ceramic strength
data case study.

The bihistogram is not widely available in general purpose
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statistical software programs. Bihistograms can be generated
using Dataplot and R software.
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1.3.3.3. Block Plot
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1.3.3.3. Block Plot

Purpose:
Check to
determine if
a factor of
interest has
an effect
robust over
all other
factors

Sample
Plot:

Weld
method 2 is
lower
(better)
than weld
method 1in
10 of 12
cases

Definition

The block plot (Eilliben 1993) is an EDA tool for assessing
whether the factor of interest (the primary factor) has a
statistically significant effect on the response, and whether
that conclusion about the primary factor effect isvalid
robustly over all other nuisance or secondary factorsin the
experiment.

It replaces the analysis of variance test with a less
assumption-dependent binomial test and should be routinely
used whenever we are trying to robustly decide whether a
primary factor has an effect.

Block Plot
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This block plot reveals that in 10 of the 12 cases (bars), weld
method 2 is lower (better) than weld method 1. From a
binomia point of view, weld method is statistically
significant.

Block Plots are formed as follows:

« Vertical axis: Response variable Y

« Horizontal axis: All combinations of al levels of all
nuisance (secondary) factors X1, X2, ...

 Plot Character: Levels of the primary factor XP
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Discussion:
Primary
factor is
denoted by
plot
character:
within-bar
plot
character.

Ordering

along the
horizontal
axis

Setting 2is

better than

setting 1in

10 out of 12
cases

An event

Average number of defective lead wires per hour from a
study with four factors,

1. weld strength (2 levels)
2. plant (2 levels)
3. speed (2 levels)
4. shift (3 levels)

are shown in the plot above. Weld strength is the primary
factor and the other three factors are nuisance factors. The 12
distinct positions along the horizontal axis correspond to all
possible combinations of the three nuisance factors, i.e., 12 =
2 plants x 2 speeds x 3 shifts. These 12 conditions provide the
framework for ng whether any conclusions about the 2
levels of the primary factor (weld method) can truly be

called "general conclusions'. If we find that one weld method
setting does better (smaller average defects per hour) than the
other weld method setting for all or most of these 12 nuisance
factor combinations, then the conclusion isin fact general

and robust.

In the above chart, the ordering along the horizontal axisis as
follows:

« Theleft 6 bars are from plant 1 and the right 6 bars are
from plant 2.

« Thefirst 3 bars are from speed 1, the next 3 bars are
from speed 2, the next 3 bars are from speed 1, and the
last 3 bars are from speed 2.

« Bars 1, 4,7, and 10 are from the first shift, bars 2, 5, 8,
and 11 are from the second shift, and bars 3, 6, 9, and
12 are from the third shift.

In the block plot for the first bar (plant 1, speed 1, shift 1),
weld method 1 yields about 28 defects per hour while weld
method 2 yields about 22 defects per hour--hence the
difference for this combination is about 6 defects per hour
and weld method 2 is seen to be better (smaller number of
defects per hour).

Is "weld method 2 is better than weld method 1" a general
conclusion?

For the second bar (plant 1, speed 1, shift 2), weld method 1
is about 37 while weld method 2 is only about 18. Thus weld
method 2 is again seen to be better than weld method 1.
Similarly for bar 3 (plant 1, speed 1, shift 3), we see weld
method 2 is smaller than weld method 1. Scanning over all of
the 12 bars, we see that weld method 2 is smaller than weld
method 1 in 10 of the 12 cases, which is highly suggestive of
a robust weld method effect.

What is the chance of 10 out of 12 happening by chance?
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Thisis probabilistically equivalent to testing whether a coin
isfair by flipping it and getting 10 heads in 12 tosses. The
chance (from the binomial distribution) of getting 10 (or
more extreme: 11, 12) heads in 12 flips of a fair coin is about
2%. Such low-probability events are usually rejected as
untenable and in practice we would conclude that thereis a
difference in weld methods.

The advantages of the block plot are as follows:

« A quantitative procedure (analysis of variance) is
replaced by a graphical procedure.

« An F-test (analysis of variance) is replaced with a
binomial test, which requires fewer assumptions.

The block plot can provide answers to the following
guestions:

1. Isthe factor of interest significant?

2. Doesthe factor of interest have an effect?

3. Does the location change between levels of the primary
factor?

4. Has the processimproved?

5. What is the best setting (= level) of the primary factor?

6. How much of an average improvement can we expect
with this best setting of the primary factor?

7. Isthere an interaction between the primary factor and
one or more nuisance factors?

8. Doesthe effect of the primary factor change depending
on the setting of some nuisance factor?

9. Arethere any outliers?

The block plot is a graphical technique that pointedly focuses
on whether or not the primary factor conclusions are in fact
robustly general. This question is fundamentally different
from the generic multi-factor experiment question where the
analyst asks, "What factors are important and what factors
are not" (a screening problem)? Global data analysis
techniques, such as analysis of variance, can potentialy be
improved by local, focused data analysis techniques that take
advantage of this difference.

t test (for shift in location for exactly 2 levels)

ANOVA (for shift in location for 2 or more levels)
Bihistogram (for shift in location, variation, and distribution
for exactly 2 levels).

The block plot is demonstrated in the ceramic strength data
case study.

Block plots are not currently available in most general
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1.3.3.3. Block Plot

purpose statistical software programs. However they can be
generated using Dataplot and, with some programming, R

software.
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1.3.3.4. Bootstrap Plot
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1.3.3.4. Bootstrap Plot

Purpose:
Estimate
uncertainty

Generate
subsamples
with
replacement

Sample
Plot:

The bootstrap (Efron and Gong) plot is used to estimate the
uncertainty of a statistic.

To generate a bootstrap uncertainty estimate for a given
statistic from a set of data, a subsample of a size less than or
equal to the size of the data set is generated from the data,
and the statistic is calculated. This subsample is generated
with replacement so that any data point can be sampled
multiple times or not sampled at al. This processis repeated
for many subsamples, typically between 500 and 1000. The
computed values for the statistic form an estimate of the
sampling distribution of the statistic.

For example, to estimate the uncertainty of the median from
a dataset with 50 elements, we generate a subsample of 50
elements and calculate the median. This is repeated at |east
500 times so that we have at least 500 values for the median.
Although the number of bootstrap samplesto useis
somewhat arbitrary, 500 subsamplesis usually sufficient. To
calculate a 90% confidence interval for the median, the
sample medians are sorted into ascending order and the value
of the 25th median (assuming exactly 500 subsamples were
taken) is the lower confidence limit while the value of the
475th median (assuming exactly 500 subsamples were taken)
is the upper confidence limit.
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This bootstrap plot was generated from 500 uniform random
numbers. Bootstrap plots and corresponding histograms were
generated for the mean, median, and mid-range. The
histograms for the corresponding statistics clearly show that
for uniform random numbers the mid-range has the smallest
variance and is, therefore, a superior location estimator to the
mean or the median.

Definition The bootstrap plot is formed by:

« Vertical axis: Computed value of the desired statistic
for a given subsample.
« Horizontal axis: Subsample number.

The bootstrap plot is ssmply the computed value of the
statistic versus the subsample number. That is, the bootstrap
plot generates the values for the desired statistic. Thisis
usually immediately followed by a histogram or some other
distributional plot to show the location and variation of the
sampling distribution of the statistic.

Questions The bootstrap plot is used to answer the following questions:

« What does the sampling distribution for the statistic
look like?

« What is a 95% confidence interval for the statistic?

« Which statistic has a sampling distribution with the
smallest variance? That is, which statistic generates the
narrowest confidence interval ?

Importance  The most common uncertainty calculation is generating a
confidence interval for the mean. In this case, the uncertainty
formula can be derived mathematically. However, there are
many situations in which the uncertainty formulas are
mathematically intractable. The bootstrap provides a method
for calculating the uncertainty in these cases.

http://www.itl .nist.gov/div898/handbook/eda/section3/eda334.htm[6/27/2012 2:00:49 PM]



1.3.3.4. Bootstrap Plot

Cautuion on
use of the
bootstrap

Related

Techniques

Case Sudy

Software

NIST
SEMATECH

The bootstrap is not appropriate for all distributions and
statistics (Efron and Tibrashani). For example, because of
the shape of the uniform distribution, the bootstrap is not
appropriate for estimating the distribution of statistics that are
heavily dependent on the tails, such as the range.

Histogram
Jackknife

The jacknife is a technique that is closely related to the
bootstrap. The jackknife is beyond the scope of this
handbook. See the Efron and Gong article for a discussion of
the jackknife.

The bootstrap plot is demonstrated in the uniform random
numbers case study.

The bootstrap is becoming more common in general purpose
statistical software programs. However, it is still not
supported in many of these programs. Both R software and
Dataplot support a bootstrap capability.
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1.3.3.5. Box-Cox Linearity Plot

Purpose: When performing a linear fit of Y against X, an

Find the appropriate transformation of X can often significantly
transformation  improve the fit. The Box-Cox transformation (Box and
of the X Cox, 1964) is a particularly useful family of

variable that transformations. It is defined as:
maximizes the

correlation TIX) = (X* —1)/A

between a' Y

and an X where X isthe variable being transformed and A is the
variable transformation parameter. For A = 0, the natural log of the

dataistaken instead of using the above formula.

The Box-Cox linearity plot isa plot of the correlation
between Y and the transformed X for given values of A.
That is, A isthe coordinate for the horizontal axis variable
and the value of the correlation between Y and the
transformed X is the coordinate for the vertical axis of the
plot. The value of A corresponding to the maximum
correlation (or minimum for negative correlation) on the
plot is then the optimal choice for A.

Transforming X is used to improve the fit. The Box-Cox
transformation applied to Y can be used as the basis for
meeting the error assumptions. That case is not covered

here. See page 225 of (Draper and Smith, 1981) or page
77 of (Ryan, 1997) for a discussion of this case.

Sample Plot
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The plot of the original data with the predicted values from
alinear fit indicate that a quadratic fit might be preferable.
The Box-Cox linearity plot shows a value of A = 2.0. The
plot of the transformed data with the predicted values from
alinear fit with the transformed data shows a better fit
(verified by the significant reduction in the residual
standard deviation).

Box-Cox linearity plots are formed by

« Vertical axis: Correlation coefficient from the
transformed X and Y
« Horizontal axis: Vaue for A

The Box-Cox linearity plot can provide answers to the
following questions:

1. Would a suitable transformation improve my fit?
2. What is the optimal value of the transformation
parameter?

Transformations can often significantly improve afit. The
Box-Cox linearity plot provides a convenient way to find

a suitable transformation without engaging in a lot of trial

and error fitting.

Linear Regression
Box-Cox Normality Plot

The Box-Cox linearity plot is demonstrated in the Alaska
pipeline data case study.

Box-Cox linearity plots are not a standard part of most
genera purpose statistical software programs. However,
the underlying technique is based on a transformation and
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1.3.3.5. Box-Cox Linearity Plot

computing a correlation coefficient. So if a statistical
program supports these capabilities, writing a macro for a
Box-Cox linearity plot should be feasible.
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1.3.3.6. Box-Cox Normality Plot

| P ENGINEERING STATISTICS HANDBOOK

[HOME

[TOOLS & AIDS [SEARCH [EACK "NEXT|

1. Exploratory Data Analysis

1.3. EDA Techniques

1.3.3. Graphical Techniques: Alphabetic

1.3.3.6. Box-Cox Normality Plot

Purpose:

Find
transformation
to normalize
data

Sample Plot

Many statistical tests and intervals are based on the
assumption of normality. The assumption of normality
often leads to tests that are simple, mathematically
tractable, and powerful compared to tests that do not make
the normality assumption. Unfortunately, many real data
sets are in fact not approximately normal. However, an
appropriate transformation of a data set can often yield a
data set that does follow approximately a normal
distribution. This increases the applicability and usefulness
of statistical techniques based on the normality
assumption.

The Box-Cox transformation is a particulary useful family
of transformations. It is defined as:

TY) = (¥ —1)/A

where Y isthe response variable and A isthe
transformation parameter. For A = 0, the natural log of the
dataistaken instead of using the above formula.

Given a particular transformation such as the Box-Cox
transformation defined above, it is helpful to define a
measure of the normality of the resulting transformation.
One measure is to compute the correlation coefficient of a
normal probability plot. The correlation is computed
between the vertical and horizontal axis variables of the
probability plot and is a convenient measure of the
linearity of the probability plot (the more linear the
probability plot, the better a normal distribution fits the
data).

The Box-Cox normality plot is a plot of these correlation
coefficients for various values of the A parameter. The
value of A corresponding to the maximum correlation on
the plot is then the optimal choice for A.
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1.3.3.6. Box-Cox Normality Plot

Definition

Questions

I mportance:
Normalization
Improves
Validity of
Tests

Related
Techniques
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The histogram in the upper left-hand corner shows a data
set that has significant right skewness (and so does not
follow a normal distribution). The Box-Cox normality plot
shows that the maximum value of the correlation
coefficient isat A = -0.3. The histogram of the data after
applying the Box-Cox transformation with A = -0.3 shows
a data set for which the normality assumption is
reasonable. Thisis verified with a normal probability plot
of the transformed data.

Box-Cox normality plots are formed by:

« Vertica axis. Correlation coefficient from the
normal probability plot after applying Box-Cox
transformation

« Horizontal axis: Vaue for A

The Box-Cox normality plot can provide answers to the
following questions:

1. Isthereatransformation that will normalize my
data?

2. What is the optimal value of the transformation
parameter?

Normality assumptions are critical for many univariate
intervals and hypothesis tests. It isimportant to test the
normality assumption. If the data are in fact clearly not
normal, the Box-Cox normality plot can often be used to
find a transformation that will approximately normalize the
data.

Normal Probability Plot
Box-Cox Linearity Plot
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1.3.3.6. Box-Cox Normality Plot

Software Box-Cox normality plots are not a standard part of most
genera purpose statistical software programs. However,
the underlying technique is based on a normal probability
plot and computing a correlation coefficient. Soif a
statistical program supports these capabilities, writing a
macro for a Box-Cox normality plot should be feasible.
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1.3.3.7. Box Plot
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1.3.3.7. Box Plot

Purpose:
Check
location
and
variation
shifts

Sample
Plot:

This box
plot reveals
that
machine
has a
significant
effect on
energy with
respect to
location
and
possibly
variation

Definition

TOOLS & AIDS
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Box plots (Chambers 1983) are an excellent tool for
conveying location and variation information in data sets,
particularly for detecting and illustrating location and
variation changes between different groups of data.

BOX PLOT
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x
75
X
= * ;
g 70 E
5 } .
x
X
65 i F
&0 ) ) )
1 3 4
Machine
SPLETT2.DAT

This box plot, comparing four machines for energy output,
shows that machine has a significant effect on energy with
respect to both location and variation. Machine 3 has the

highest energy response (about 72.5); machine 4 has the least
variable energy response with about 50% of its readings
being within 1 energy unit.

Box plots are formed by

Vertical axis: Response variable
Horizontal axis: The factor of interest

More specifically, we
1. Calculate the median and the quartiles (the lower

quartile is the 25th percentile and the upper quartileis
the 75th percentile).
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1.3.3.7. Box Plot

Sngleor
multiple
box plots
can be
drawn

Box plots
with fences

Questions

2. Plot a symbol at the median (or draw a line) and draw
a box (hence the name--box plot) between the lower
and upper quartiles; this box represents the middle
50% of the data--the "body" of the data.

3. Draw aline from the lower quartile to the minimum
point and another line from the upper quartile to the
maximum point. Typically a symbol is drawn at these
minimum and maximum points, although this is
optional.

Thus the box plot identifies the middle 50% of the data, the
median, and the extreme points.

A single box plot can be drawn for one batch of data with no
distinct groups. Alternatively, multiple box plots can be
drawn together to compare multiple data sets or to compare
groups in a single data set. For a single box plot, the width of
the box is arbitrary. For multiple box plots, the width of the
box plot can be set proportional to the number of pointsin
the given group or sample (some software implementations
of the box plot ssimply set all the boxes to the same width).

There isa useful variation of the box plot that more
specifically identifies outliers. To create this variation:

1. Calculate the median and the lower and upper
quartiles.

2. Plot a symbol at the median and draw a box between
the lower and upper quartiles.

3. Calculate the interquartile range (the difference
between the upper and lower quartile) and call it 1Q.

4. Cdculate the following points:

L1 = lower quartile - 1.5*1Q
L2 = lower quartile - 3.0*1Q
Ul = upper quartile + 1.5*1Q
U2 = upper quartile + 3.01Q

5. Thelinefrom the lower quartile to the minimum is
now drawn from the lower quartile to the smallest
point that is greater than L1. Likewise, the line from
the upper quartile to the maximum is now drawn to the
largest point smaller than U1.

6. Points between L1 and L2 or between U1 and U2 are
drawn as small circles. Points lessthan L2 or greater
than U2 are drawn as large circles.

The box plot can provide answers to the following questions:
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1.3.3.7. Box Plot

I mportance:
Check the

significance
of a factor

Related
Techniques

Case Sudy

Software

NIST
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1. Isafactor significant?
2. Doesthe location differ between subgroups?
3. Doesthe variation differ between subgroups?
4. Arethereany outliers?

The box plot is an important EDA tool for determining if a
factor has a significant effect on the response with respect to
either location or variation.

The box plot is also an effective tool for summarizing large
quantities of information.

Mean Plot
Analysis of Variance

The box plot is demonstrated in the ceramic strength data
case study.

Box plots are available in most general purpose statistical
software programs.
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1.3.3.8. Complex Demodulation Amplitude Plot
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1.3.3.8. Complex Demodulation Amplitude Plot

Purpose:
Detect
Changing
Amplitude
in
Snusoidal
Models

Sample
Plot:

In the frequency analysis of time series models, a common
model is the sinusoidal mode!:

In this equation, « is the amplitude, ¢ is the phase shift, and
t? is the dominant frequency. In the above model, ex and ¢ are
constant, that isthey do not vary with time, t;.

The complex demodulation amplitude plot (Granger, 1964) is
used to determine if the assumption of constant amplitudeis
judtifiable. If the slope of the complex demodulation
amplitude plot is not zero, then the above model is typically
replaced with the model:

Y; = C + aqgsin (2owt; + @) + B

where ¢&; is some type of linear model fit with standard least
sguares. The most common case is a linear fit, that is the
model becomes

Y; =C + (Bo + By + ;) sin (2mwi; + §) + E;

Quadratic models are sometimes used. Higher order models
are relatively rare.
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1.3.3.8. Complex Demodulation Amplitude Plot

Definition:

Questions

I mportance:

Assumption
Checking

Complex Demodulation Amplitude Plot
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This complex demodulation amplitude plot shows that:

« the amplitudeis fixed at approximately 390;

« thereisa start-up effect; and

- thereisa change in amplitude at around x = 160 that
should be investigated for an outlier.

The complex demodulation amplitude plot is formed by:

» Vertical axis: Amplitude
« Horizontal axis: Time

The mathematical computations for determining the
amplitude are beyond the scope of the Handbook. Consult
Granger (Granger, 1964) for details.

The complex demodulation amplitude plot answers the
following questions:

1. Doesthe amplitude change over time?

2. Arethere any outliersthat need to be investigated?

3. Isthe amplitude different at the beginning of the series
(i.e., isthere a start-up effect)?

As stated previoudly, in the frequency analysis of time series
models, a common modd is the sinusoidal model!:

Y, = C + adn (2rwt; + ¢) + F;

In this equation, « is assumed to be constant, that is it does
not vary with time. It isimportant to check whether or not
this assumption is reasonable.

The complex demodulation amplitude plot can be used to
verify this assumption. If the slope of this plot is essentially
zero, then the assumption of constant amplitudeisjustified. If
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Related
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it is not, «&x should be replaced with some type of time-
varying model. The most common cases are linear (Bg +

B,*t) and quadratic (By + B;*t + B,*t2).

Spectral Plot
Complex Demodulation Phase Plot
Non-Linear Fitting

The complex demodulation amplitude plot is demonstrated in
the beam deflection data case study.

Complex demodulation amplitude plots are available in some,
but not most, general purpose statistical software programs.
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1.3.3.9. Complex Demodulation Phase Plot
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1.3.3.9. Complex Demodulation Phase Plot

Purpose: As stated previoudly, in the frequency analysis of time series
Improve models, a common model is the sinusoidal mode!:

the

estimate of Y; = C +ardin (2nwt; + ) + F;

frequency

in In this equation, e is the amplitude, ¢ is the phase shift, and c

sinusoidal is the dominant frequency. In the above model, & and ¢ are

time series  constant, that is they do not vary with time t;.

models
The complex demodulation phase plot (Granger, 1964) is used
to improve the estimate of the frequency (i.e., &) in this
model.

If the complex demodulation phase plot shows lines sloping
from left to right, then the estimate of the frequency should be
increased. If it shows lines sloping right to left, then the
frequency should be decreased. If thereis essentially zero
slope, then the frequency estimate does not need to be
modified.

Sample

Complex Demexiulation Phase Plot
Plot: me

Esliimaled Phase
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This complex demodulation phase plot shows that:
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1.3.3.9. Complex Demodulation Phase Plot

the specified demodul ation frequency is incorrect;
« the demodulation frequency should be increased.

The complex demodulation phase plot is formed by:

« Vertica axis; Phase
« Horizontal axis: Time

The mathematical computations for the phase plot are beyond
the scope of the Handbook. Consult Granger (Granger, 1964)
for details.

The complex demodulation phase plot answers the following
guestion:

I's the specified demodulation frequency correct?

The non-linear fitting for the sinusoidal model:
Y; = O +asdn (2mwt; + ¢) + B,

isusually quite sensitive to the choice of good starting values.
Theinitia estimate of the frequency, w, is obtained from a
spectral plot. The complex demodulation phase plot is used to
assess whether this estimate is adequate, and if it is not,
whether it should be increased or decreased. Using the
complex demodulation phase plot with the spectral plot can
significantly improve the quality of the non-linear fits
obtained.

Spectral Plot
Complex Demodulation Phase Plot
Non-Linear Fitting

The complex demodulation amplitude plot is demonstrated in
the beam deflection data case study.

Complex demodulation phase plots are available in some, but
not most, general purpose statistical software programs.
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1.3.3.10. Contour Plot
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1.3.3.10. Contour Plot

Purpose: A contour plot is a graphical technique for representing a 3-

Display 3-d  dimensional surface by plotting constant z dlices, called

surface on contours, on a 2-dimensional format. That is, given a value

2-d plot for z, lines are drawn for connecting the (x,y) coordinates
where that z value occurs.

The contour plot is an aternative to a 3-D surface plot.

Sample
Plot: . Contour Plot
10 - :
1 e
8]
7
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2 3 4 & 6 7 8 9 10

- —

This contour plot shows that the surface is symmetric and
peaks in the center.

Definition The contour plot is formed by:

« Vertical axis: Independent variable 2
« Horizontal axis: Independent variable 1
« Lines: iso-response values

The independent variables are usually restricted to a regular
grid. The actual techniques for determining the correct iso-
response values are rather complex and are amost always
computer generated.
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1.3.3.10. Contour Plot

Questions

I mportance:
Visualizing
3-
dimensional
data

DOE
Contour
Plot

Related
Techniques

Software

NIST
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An additional variable may be required to specify the Z
values for drawing the iso-lines. Some software packages
require explicit values. Other software packages will
determine them automatically.

If the data (or function) do not form a regular grid, you
typically need to perform a 2-D interpolation to form a
regular grid.

The contour plot is used to answer the question

How does Z change as a function of X and Y ?

For univariate data, a run sequence plot and a histogram are
considered necessary first steps in understanding the data.
For 2-dimensional data, a scatter plot is a necessary first step
in understanding the data.

In a similar manner, 3-dimensional data should be plotted.
Small data sets, such as result from designed experiments,
can typically be represented by block plots, DOE mean plots,
and the like ("DOE" stands for "Design of Experiments”).
For large data sets, a contour plot or a 3-D surface plot
should be considered a necessary first step in understanding
the data.

The DOE contour plot is a specialized contour plot used in
the design of experiments. In particular, it is useful for full
and fractional designs.

3-D Plot

Contour plots are available in most general purpose statistical
software programs. They are aso available in many general
purpose graphics and mathematics programs. These programs
vary widely in the capabilities for the contour plots they
generate. Many provide just a basic contour plot over a
rectangular grid while others permit color filled or shaded
contours.

Most statistical software programs that support design of
experiments will provide a DOE contour plot capability.
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1.3.3.10.1. DOE Contour Plot
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1.3.3.10.1. DOE Contour Plot

DOE The DOE contour plot is a specialized contour plot used in the analysis of full and fractional

Contour Plot:  experimental designs. These designs often have a low level, coded as "-1" or "-", and a high

Introduction level, coded as "+1" or "+" for each factor. In addition, there can optionally be one or more
center points. Center points are at the mid-point between the low and high level for each
factor and are coded as "0".

The DOE contour plot is generated for two factors. Typically, this would be the two most
important factors as determined by previous analyses (e.g., through the use of the DOE
mean plots and an analysis of variance). If more than two factors are important, you may
want to generate a series of DOE contour plots, each of which is drawn for two of these
factors. You can also generate a matrix of all pairwise DOE contour plots for a number of
important factors (similar to the scatter plot matrix for scatter plots).

Thetypical application of the DOE contour plot isin determining settings that will
maximize (or minimize) the response variable. It can aso be helpful in determining settings
that result in the response variable hitting a pre-determined target value. The DOE contour
plot plays a useful role in determining the settings for the next iteration of the experiment.
That is, the initial experiment is typically a fractional factorial design with a fairly large
number of factors. After the most important factors are determined, the DOE contour plot
can be used to help define settings for a full factorial or response surface design based on a
smaller number of factors.

Construction ~ The following are the primary stepsin the construction of the DOE contour plot.

of DOE

Contour Plot 1. Thex and y axes of the plot represent the values of the first and second factor
(independent) variables.

2. Thefour vertex points are drawn. The vertex points are (-1,-1), (-1,1), (1,2), (1,-1). At
each vertex point, the average of al the response values at that vertex point is printed.

3. Similarly, if there are center points, a point is drawn at (0,0) and the average of the
response values at the center points is printed.

4. Thelinear DOE contour plot assumes the model:

Y=p+5-Uh+02-Us+ B12-U - Uz

where #1 is the overall mean of the response variable. The values of 3, 35, 3,9, and ji
are estimated from the vertex points using least squares estimation.

In order to generate a single contour line, we need avaluefor Y, say Y . Next, we
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1.3.3.10.1. DOE Contour Plot

0
solve for U, in terms of U4 and, after doing the algebra, we have the equation:

:'[TEJ_.‘-"]_-@L‘UI

Us
B2+ B2 - Uy

We generate a sequence of points for U, in the range -2 to 2 and compute the
corresponding values of U,. These points constitute a single contour line
corresponding to Y = Yj,.

The user specifies the target values for which contour lines will be generated.

The above algorithm assumes a linear model for the design. DOE contour plots can also be
generated for the case in which we assume a quadratic model for the design. The algebra for
solving for U, in terms of U, becomes more complicated, but the fundamental ideais the

same. Quadratic models are needed for the case when the average for the center points does
not fall in the range defined by the vertex point (i.e., thereis curvature).

Sample DOE  Thefollowing is a DOE contour plot for the data used in the Eddy current case study. The
Contour Plot  analysisin that case study demonstrated that X1 and X2 were the most important factors.
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1.3.3.10.1. DOE Contour Plot

Interpretation
of the Sample
DOE

Contour Plot

Interaction
Sgnificance

Best Settings
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Winding Distance

From the above DOE contour plot we can derive the following information.

1. Interaction significance;
2. Best (data) setting for these two dominant factors;

Note the appearance of the contour plot. If the contour curves are linear, then that implies
that the interaction term is not significant; if the contour curves have considerable curvature,
then that implies that the interaction term is large and important. In our case, the contour
curves do not have considerable curvature, and so we conclude that the X1* X2 term is not
significant.

To determine the best factor settings for the already-run experiment, we first must define
what "best" means. For the Eddy current data set used to generate this DOE contour plot,
"best" means to maximize (rather than minimize or hit a target) the response. Hence from
the contour plot we determine the best settings for the two dominant factors by simply
scanning the four vertices and choosing the vertex with the largest value (= average
response). In this case, it is (X1 = +1, X2 = +1).
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1.3.3.10.1. DOE Contour Plot

Asfor factor X3, the contour plot provides no best setting information, and so we would
resort to other tools. the main effects plot, the interaction effects matrix, or the ordered data
to determine optimal X3 settings.

Case Sudy The Eddy current case study demonstrates the use of the DOE contour plot in the context of
the analysis of afull factorial design.

Software DOE Contour plots are available in many statistical software programs that analyze data
from designed experiments.

NIST

— [HOME [TOOLS & AIDS [SEARCH [BACK MEXT]
SEMATECH

http://www.itl.nist.gov/div898/handbook/eda/section3/eda33al.htm[6/27/2012 2:00:55 PM]


http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/

1.3.3.11. DOE Scatter Plot
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1.3.3.11. DOE Scatter Plot

Purpose:
Determine

I mportant
Factors with
Respect to
Location and
Scale

Sample Plot:
Factors4, 2,
3,and 7 are
the Important
Factors.

The DOE scatter plot shows the response values for each level of each factor (i.e.,
independent) variable. This graphically shows how the location and scale vary for both
within a factor variable and between different factor variables. This graphically shows
which are the important factors and can help provide a ranked list of important factors from
a designed experiment. The DOE scatter plot is a complement to the traditional analyis of
variance of designed experiments.

DOE scatter plots are typically used in conjunction with the DOE mean plot and the DOE
standard deviation plot. The DOE mean plot replaces the raw response values with mean
response values while the DOE standard deviation plot replaces the raw response values
with the standard deviation of the response values. There is value in generating all 3 of these
plots. The DOE mean and standard deviation plots are useful in that the summary measures
of location and spread stand out (they can sometimes get lost with the raw plot). However,
the raw data points can reveal subtleties, such as the presence of outliers, that might get lost
with the summary statistics.
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1.3.3.11. DOE Scatter Plot

Description
of the Plot

Conclusions

Definition:
Response
Values
Versus
Factor
Variables

Questions

DOE Scatter Plot
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Factor Levels

For this sample plot, there are seven factors and each factor has two levels. For each factor,
we define a distinct x coordinate for each level of the factor. For example, for factor 1, level
liscoded as 0.8 and level 2 iscoded as 1.2. They coordinate is simply the value of the
response variable. The solid horizontal lineis drawn at the overall mean of the response
variable. The vertical dotted lines are added for clarity.

Although the plot can be drawn with an arbitrary number of levels for a factor, itisreally
only useful when there are two or three levels for a factor.

This sample DOE scatter plot shows that:
1. there does not appear to be any outliers,

2. thelevels of factors 2 and 4 show distinct location differences; and
3. thelevels of factor 1 show distinct scale differences.

DOE scatter plots are formed by:
» Vertical axis: Vaue of the response variable

» Horizontal axis: Factor variable (with each level of the factor coded with a slightly
offset x coordinate)

The DOE scatter plot can be used to answer the following questions:
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1.3.3.11. DOE Scatter Plot

1. Which factors are important with respect to location and scale?
2. Arethereoutliers?

I mportance: The goal of many designed experiments is to determine which factors are important with

| dentify respect to location and scale. A ranked list of the important factors is also often of interest.

| mportant DOE scatter, mean, and standard deviation plots show this graphically. The DOE scatter plot
Factorswith  additionally shows if outliers may potentially be distorting the results.

Respect to

Locationand DOE scatter plots were designed primarily for analyzing designed experiments. However,
Scale they are useful for any type of multi-factor data (i.e., a response variable with two or more

factor variables having a small number of distinct levels) whether or not the data were
generated from a designed experiment.

Extension for  Using the concept of the scatterplot matrix, the DOE scatter plot can be extended to display

Interaction first order interaction effects.

Effects
Specifically, if there are k factors, we create a matrix of plots with k rows and k columns.
On the diagonal, the plot is ssmply a DOE scatter plot with a single factor. For the off-
diagonal plots, we multiply the values of X; and X;. For the common 2-level designs(i.e.,

each factor has two levels) the values are typically coded as -1 and 1, so the multiplied
values are also -1 and 1. We then generate a DOE scatter plot for this interaction variable.
This plot is called a DOE interaction effects plot and an example is shown below.
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Interpretation  We can first examine the diagonal elements for the main effects. These diagonal plots show
of the DOE a great deal of overlap between the levels for al three factors. This indicates that location
Interaction and scale effects will be relatively small.
Effects Plot

We can then examine the off-diagonal plots for the first order interaction effects. For

example, the plot in the first row and second column is the interaction between factors X1
and X2. Aswith the main effect plots, no clear patterns are evident.

Related DOE mean plot

Techniques DOE standard deviation plot
Block plot
Box plot
Analysis of variance
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1.3.3.11. DOE Scatter Plot

Case Sudy The DOE scatter plot is demonstrated in the ceramic strength data case study.

Software DOE scatter plots are available in some general purpose statistical software programs,
although the format may vary somewhat between these programs. They are essentialy just
scatter plots with the X variable defined in a particular way, so it should be feasible to write
macros for DOE scatter plots in most statistical software programs.
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1.3.3.12. DOE Mean Plot
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The DOE mean plot is appropriate for analyzing data from a designed

Purpose:
Detect experiment, with respect to important factors, where the factors are at two or
| mportant more levels. The plot shows mean values for the two or more levels of each
Factors factor plotted by factor. The means for a single factor are connected by a
With straight line. The DOE mean plot is a complement to the traditional analysis
Respect to of variance of designed experiments.
Location
This plot is typically generated for the mean. However, it can be generated
for other location statistics such as the median.
Sample
Plot:
Factors 4, DOE Mean Plot
2,and 1 Are
the Most .
I mportant |
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This sample DOE mean plot shows that:
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1.3.3.12. DOE Mean Plot

Definition:
Mean
Response
Versus
Factor
Variables

Questions

I mportance:

Determine
Sgnificant
Factors

Extension
for
Interaction
Effects

DOE
Interaction
Effects Plot

factor 4 is the most important;

factor 2 is the second most important;
factor 1 isthe third most important;
factor 7 isthe fourth most important;
factor 6 isthe fifth most important;
factors 3 and 5 are relatively unimportant.

ounkwnpE

In summary, factors 4, 2, and 1 seem to be clearly important, factors 3 and 5
seem to be clearly unimportant, and factors 6 and 7 are borderline factors
whose inclusion in any subsequent models will be determined by further
analyses.

DOE mean plots are formed by:

» Vertical axis: Mean of the response variable for each level of the
factor
« Horizontal axis: Factor variable

The DOE mean plot can be used to answer the following questions:

1. Which factors are important? The DOE mean plot does not provide a
definitive answer to this question, but it does help categorize factors as
"clearly important”, "clearly not important”, and "borderline
importance”.

2. What isthe ranking list of the important factors?

The goal of many designed experiments is to determine which factors are
significant. A ranked order listing of the important factors is also often of
interest. The DOE mean plot isideally suited for answering these types of
guestions and we recommend its routine use in analyzing designed
experiments.

Using the concept of the scatter plot matrix, the DOE mean plot can be
extended to display first-order interaction effects.

Specifically, if there are k factors, we create a matrix of plots with k rows
and k columns. On the diagonal, the plot is simply a DOE mean plot with a
single factor. For the off-diagonal plots, measurements at each level of the
interaction are plotted versus level, where level is X times Xj and X; isthe
code for the ith main effect level and X; is the code for the jth main effect.
For the common 2-level designs (i.e., each factor has two levels) the values
are typically coded as -1 and 1, so the multiplied values are also -1 and 1.

We then generate a DOE mean plot for this interaction variable. This plot is
called a DOE interaction effects plot and an example is shown below.
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1.3.3.12. DOE Mean Plot

Related
Techniques

Case Sudy

Software

NIST
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This plot shows that the most significant factor is X1 and the most
significant interaction is between X1 and X3.

DOE scatter plot

DOE standard deviation plot
Block plot

Box plot

Analysis of variance

The DOE mean plot and the DOE interaction effects plot are demonstrated in
the ceramic strength data case study.

DOE mean plots are available in some general purpose statistical software
programs, although the format may vary somewhat between these programs.
It may be feasible to write macros for DOE mean plots in some statistical
software programs that do not support this plot directly.
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1.3.3.13. DOE Standard Deviation Plot
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1.3.3.13. DOE Standard Deviation Plot

Purpose: The DOE standard deviation plot is appropriate for analyzing data from a
Detect designed experiment, with respect to important factors, where the factors are
| mportant at two or more levels and there are repeated values at each level. The plot
Factors shows standard deviation values for the two or more levels of each factor
With plotted by factor. The standard deviations for a single factor are connected
Respect to by a straight line. The DOE standard deviation plot is a complement to the
Scale traditional analysis of variance of designed experiments.

This plot is typically generated for the standard deviation. However, it can
also be generated for other scale statistics such as the range, the median
absolute deviation, or the average absolute deviation.

Sample Plot
DOE Standard Deviation Plot
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Definition:
Response
Sandard
Deviations
Versus
Factor
Variables

Questions

I mportance:

Assess
Variability

Related
Techniques

Case Sudy

Software

NIST
SEMATECH

1.3.3.13. DOE Standard Deviation Plot

This sample DOE standard deviation plot shows that:

1. factor 1 has the greatest difference in standard deviations between
factor levels;

2. factor 4 has a significantly lower average standard deviation than the
average standard deviations of other factors (but the level 1 standard
deviation for factor 1 is about the same as the level 1 standard
deviation for factor 4);

3. for dl factors, the level 1 standard deviation is smaller than the level 2
standard deviation.

DOE standard deviation plots are formed by:

« Vertical axis: Standard deviation of the response variable for each
level of the factor
« Horizonta axis: Factor variable

The DOE standard deviation plot can be used to answer the following
guestions:

1. How do the standard deviations vary across factors?

2. How do the standard deviations vary within a factor?

3. Which are the most important factors with respect to scale?

4. What is the ranked list of the important factors with respect to scale?

The goal with many designed experiments is to determine which factors are
significant. Thisis usually determined from the means of the factor levels
(which can be conveniently shown with a DOE mean plot). A secondary
goal isto assess the variability of the responses both within a factor and
between factors. The DOE standard deviation plot is a convenient way to do
this.

DOE scatter plot
DOE mean plot
Block plot

Box plot

Analysis of variance

The DOE standard deviation plot is demonstrated in the ceramic strength
data case study.

DOE standard deviation plots are not available in most general purpose
statistical software programs. It may be feasible to write macros for DOE
standard deviation plots in some statistical software programs that do not
support them directly.
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1.3.3.14. Histogram
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1.3.3.14. Histogram

Purpose: The purpose of a histogram (Chambers) isto graphically
Summarize  summarize the distribution of a univariate data set.

a

Univariate  The histogram graphically shows the following:

Data Set ) _
. center (i.e., the location) of the data;

1
2. spread (i.e., the scale) of the data;
3. skewness of the data;

4. presence of outliers; and

5. presence of multiple modes in the data.

These features provide strong indications of the proper
distributional model for the data. The probability plot or a
goodness-of -fit test can be used to verify the distributional
model.

The examples section shows the appearance of a number of
common features revealed by histograms.

Sample

HISTOGRAM
Plot 20

16 -

Counis

II_I_IIH : 1

299.4 299.6 2998 300 3002
Y

MICHELSO.DAT

Definition ~ The most common form of the histogram is obtained by
splitting the range of the data into equal-sized bins (called
classes). Then for each bin, the number of points from the data
set that fall into each bin are counted. That is
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1.3.3.14. Histogram

Vertical axis: Freguency (i.e., counts for each bin)
« Horizontal axis: Response variable

The classes can either be defined arbitrarily by the user or via
some systematic rule. A number of theoretically derived rules
have been proposed by Scott (Scott 1992).

The cumulative histogram is a variation of the histogramin
which the vertical axis gives not just the counts for a single
bin, but rather gives the counts for that bin plus al bins for

smaller values of the response variable.

Both the histogram and cumulative histogram have an
additional variant whereby the counts are replaced by the
normalized counts. The names for these variants are the
relative histogram and the relative cumulative histogram.

There are two common ways to normalize the counts.

1. The normalized count is the count in a class divided by
the total number of observations. In this case the relative
counts are normalized to sum to one (or 100 if a
percentage scale is used). Thisisthe intuitive case
where the height of the histogram bar represents the
proportion of the datain each class.

2. The normalized count is the count in the class divided
by the number of observations times the class width. For
this normalization, the area (or integral) under the
histogram is equal to one. From a probabilistic point of
view, this normalization resultsin a relative histogram
that is most akin to the probability density function and
a relative cumulative histogram that is most akin to the
cumulative distribution function. If you want to overlay
a probability density or cumulative distribution function
on top of the histogram, use this normalization.
Although this normalization is lessintuitive (relative
frequencies greater than 1 are quite permissible), it isthe
appropriate normalization if you are using the histogram
to model a probability density function.

Questions  The histogram can be used to answer the following questions:

1. What kind of population distribution do the data come
from?

Where are the data located?

How spread out are the data?

Are the data symmetric or skewed?

Arethere outliersin the data?

gL

Normal

. Symmetric, Non-Normal, Short-Tailed

Examples

A -
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1.3.3.14. Histogram

. Symmetric, Non-Normal, Long-Tailed
. Symmetric and Bimodal

. Bimodal Mixture of 2 Normals

. Skewed (Non-Symmetric) Right

. Skewed (Non-Symmetric) L eft

. Symmetric with Outlier

coO~NO T~ W

Related Box plot
Techniques  Probability plot

The techniques below are not discussed in the Handbook.
However, they are similar in purpose to the histogram.
Additional information on them is contained in the Chambers
and Scott references.

Frequency Plot
Stem and Leaf Plot
Density Trace

CaseSudy The histogram is demonstrated in the heat flow meter data
case study.

Software Histograms are available in most general purpose statistical
software programs. They are aso supported in most general
purpose charting, spreadsheet, and business graphics
programs.
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1.3.3.14.1. Histogram Interpretation: Normal
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1.3.3.14. Histogram

1.3.3.14.1. Histogram Interpretation: Normal

Symmetric,
Moderate-
Tailed

Histogram

Recommended
Next Sep
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Note the classical bell-shaped, symmetric histogram with
most of the frequency counts bunched in the middie and
with the counts dying off out in the tails. From a physical
science/engineering point of view, the normal distribution
is that distribution which occurs most often in nature (due
in part to the central limit theorem).

If the histogram indicates a symmetric, moderate tailed
distribution, then the recommended next step isto do a
normal probability plot to confirm approximate normality.
If the normal probability plot is linear, then the normal
distribution is a good model for the data.
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1.3.3.14.2. Histogram Interpretation: Symmetric, Non-Normal, Short-Tailed
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1.3.3.14.2. Histogram Interpretation:

Symmetric,
Short-Tailed
Histogram

Description of
What Short-
Tailed Means

Symmetric, Non-Normal, Short-
Tailed
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For a symmetric distribution, the "body" of a distribution
refers to the "center" of the distribution--commonly that
region of the distribution where most of the probability
resides--the "fat" part of the distribution. The "tail" of a
distribution refers to the extreme regions of the
distribution--both left and right. The "tail length" of a
distribution is a term that indicates how fast these extremes
approach zero.

For a short-tailed distribution, the tails approach zero very
fast. Such distributions commonly have a truncated
("sawed-off") look. The classical short-tailed distribution is
the uniform (rectangular) distribution in which the
probability is constant over a given range and then drops to
zero everywhere else--we would speak of this as having no
tails, or extremely short tails.

For a moderate-tailed distribution, the tails decline to zero
in a moderate fashion. The classical moderate-tailed
distribution is the normal (Gaussian) distribution.
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For along-tailed distribution, the tails decline to zero very
slowly--and hence one is apt to see probability a long way
from the body of the distribution. The classical long-tailed
distribution is the Cauchy distribution.

In terms of tail length, the histogram shown above would
be characteristic of a "short-tailed" distribution.

The optimal (unbiased and most precise) estimator for
location for the center of a distribution is heavily
dependent on the tail length of the distribution. The
common choice of taking N observations and using the
calculated sample mean as the best estimate for the center
of the distribution is a good choice for the normal
distribution (moderate tailed), a poor choice for the
uniform distribution (short tailed), and a horrible choice for
the Cauchy distribution (long tailed). Although for the
normal distribution the sample mean is as precise an
estimator as we can get, for the uniform and Cauchy
distributions, the sample mean is not the best estimator.

For the uniform distribution, the midrange
midrange = (smallest + largest) / 2

IS the best estimator of location. For a Cauchy distribution,
the median is the best estimator of location.

Recommended  If the histogram indicates a symmetric, short-tailed

Next Step distribution, the recommended next step is to generate a
uniform probability plot. If the uniform probability plot is
linear, then the uniform distribution is an appropriate
model for the data
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The previous example contains a discussion of the

distinction between short-tailed, moderate-tailed, and long-
tailed distributions.

In terms of tail length, the histogram shown above would
be characteristic of a "long-tailed” distribution.

If the histogram indicates a symmetric, long tailed
distribution, the recommended next step isto do a Cauchy
probability plot. If the Cauchy probability plot islinear,
then the Cauchy distribution is an appropriate model for the
data. Alternatively, a Tukey L ambda PPCC plot may
provide insight into a suitable distributional model for the
data.
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The mode of a distribution is that value which is most
frequently occurring or has the largest probability of
occurrence. The sample mode occurs at the peak of the
histogram.

For many phenomena, it is quite common for the
distribution of the response values to cluster around a
single mode (unimodal) and then distribute themselves
with lesser frequency out into the tails. The normal
distribution is the classic example of a unimodal
distribution.

The histogram shown above illustrates data from a bimodal
(2 peak) distribution. The histogram serves as a tool for
diagnosing problems such as bimodality. Questioning the
underlying reason for distributional non-unimodality
frequently leads to greater insight and improved
deterministic modeling of the phenomenon under study.
For example, for the data presented above, the bimodal
histogram is caused by sinusoidality in the data.

If the histogram indicates a symmetric, bimodal
distribution, the recommended next steps are to:
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1.3.3.14.4. Histogram Interpretation: Symmetric and Bimodal
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Do a run sequence plot or a scatter plot to check for
sinusoidality.

Do alag plot to check for sinusoidality. If the lag
plot is eliptical, then the data are sinusoidal.

If the data are sinusoidal, then a spectral plot is used
to graphically estimate the underlying sinusoidal
frequency.

If the data are not sinusoidal, then a Tukey Lambda
PPCC plot may determine the best-fit symmetric
distribution for the data.

The data may be fit with a mixture of two
distributions. A common approach to this case isto
fit a mixture of 2 normal or |lognormal distributions.
Further discussion of fitting mixtures of distributions
is beyond the scope of this Handbook.
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The histogram shown above illustrates data from a bimodal
(2 peak) distribution.

In contrast to the previous example, this example
illustrates bimodality due not to an underlying
deterministic model, but bimodality due to a mixture of
probability models. In this case, each of the modes appears
to have a rough bell-shaped component. One could easily
imagine the above histogram being generated by a process
consisting of two normal distributions with the same
standard deviation but with two different locations (one
centered at approximately 9.17 and the other centered at
approximately 9.26). If this is the case, then the research
challenge is to determine physically why there are two
similar but separate sub-processes.

If the histogram indicates that the data might be
appropriately fit with a mixture of two normal
distributions, the recommended next step is:

Fit the normal mixture model using either least squares or
maximum likelihood. The general normal mixing model is
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1.3.3.14.5. Histogram Interpretation: Bimodal Mixture of 2 Normals

M = pé; + (1 — pld2

where p is the mixing proportion (between 0 and 1) and 1
and P2 are normal probability density functions with
location and scale parameters H1, 31, 2, and T2,
respectively. That is, there are 5 parameters to estimate in
the fit.

Whether maximum likelihood or least squares is used, the
quality of the fit is sensitive to good starting values. For the
mixture of two normals, the histogram can be used to
provideinitial estimates for the location and scale
parameters of the two normal distributions.

Both Dataplot code and R code can be used to fit a
mixture of two normals.
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A symmetric distribution is one in which the 2 "halves' of
the histogram appear as mirror-images of one another. A
skewed (non-symmetric) distribution is a distribution in
which there is no such mirror-imaging.

For skewed distributions, it is quite common to have one
tail of the distribution considerably longer or drawn out
relative to the other tail. A "skewed right" distribution is
one in which the tail is on the right side. A "skewed |eft"
distribution is one in which the tail is on the left side. The
above histogram is for a distribution that is skewed right.

Skewed distributions bring a certain philosophical
complexity to the very process of estimating a "typical
value" for the distribution. To be specific, suppose that the
analyst has a collection of 100 values randomly drawn
from a distribution, and wishes to summarize these 100
observations by a "typical value". What does typical value
mean? If the distribution is symmetric, the typical valueis
unambiguous-- it is a well-defined center of the
distribution. For example, for a bell-shaped symmetric
distribution, a center point isidentical to that value at the
peak of the distribution.
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1.3.3.14.6. Histogram Interpretation: Skewed (Non-Normal) Right

Some Causes
for Skewed
Data

Recommended
Next Steps

For a skewed distribution, however, thereis no "center” in
the usual sense of the word. Be that as it may, severdl
"typical value" metrics are often used for skewed
distributions. The first metric is the mode of the
distribution. Unfortunately, for severely-skewed
distributions, the mode may be at or near the left or right
tail of the data and so it seems not to be a good
representative of the center of the distribution. As a second
choice, one could conceptually argue that the mean (the
point on the horizontal axis where the distributiuon would
balance) would serve well as the typical value. As a third
choice, others may argue that the median (that value on the
horizontal axis which has exactly 50% of the datato the
left (and also to the right) would serve as a good typical
value.

For symmetric distributions, the conceptual problem
disappears because at the population level the mode, mean,
and median are identical. For skewed distributions,
however, these 3 metrics are markedly different. In
practice, for skewed distributions the most commonly
reported typical value is the mean; the next most common
Is the median; the least common is the mode. Because each
of these 3 metrics reflects a different aspect of
"centerness’, it is recommended that the analyst report at
least 2 (mean and median), and preferably al 3 (mean,
median, and mode) in summarizing and characterizing a
data set.

Skewed data often occur due to lower or upper bounds on
the data. That is, data that have a lower bound are often
skewed right while data that have an upper bound are often
skewed left. Skewness can also result from start-up effects.
For example, in reliability applications some processes
may have a large number of initial failures that could cause
left skewness. On the other hand, a reliability process
could have a long start-up period where failures are rare
resulting in right-skewed data.

Data collected in scientific and engineering applications
often have a lower bound of zero. For example, failure data
must be non-negative. Many measurement processes
generate only positive data. Time to occurence and size are
common measurements that cannot be less than zero.

If the histogram indicates a right-skewed data set, the
recommended next steps are to:

1. Quantitatively summarize the data by computing and
reporting the sample mean, the sample median, and
the sample mode.

2. Determine the best-fit distribution (skewed-right)
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from the
o Weibull family (for the maximum)
o Gamma family

Chi-square family

Lognormal family

Power lognormal family

o

o

o

3. Consider a normalizing transformation such as the
Box-Cox transformation.
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The issues for skewed left data are similar to those for skewed
right data.
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Discussion of A symmetric distribution is one in which the 2 "halves' of

Outliers the histogram appear as mirror-images of one another. The
above example is symmetric with the exception of outlying
datanear Y = 4.5.

An outlier is a data point that comes from a distribution
different (in location, scale, or distributional form) from
the bulk of the data. In the real world, outliers have a range
of causes, from as simple as

operator blunders
equipment failures
day-to-day effects
batch-to-batch differences
anomalous input conditions
warm-up effects

SurwhE

to more subtle causes such as

1. A change in settings of factors that (knowingly or
unknowingly) affect the response.

2. Natureistrying to tell us something.

http://www.itl.nist.gov/div898/handbook/eda/section3/eda33e8.htm[6/27/2012 2:01:06 PM]


http://www.itl.nist.gov/div898/handbook/index.htm

1.3.3.14.8. Histogram Interpretation: Symmetric with Outlier

Outliers All outliers should be taken seriously and should be
Should be investigated thoroughly for explanations. Automatic
Investigated outlier-rejection schemes (such as throw out all data

beyond 4 sample standard deviations from the sample
mean) are particularly dangerous.

The classic case of automatic outlier rejection becoming
automatic information rejection was the South Pole ozone
depletion problem. Ozone depletion over the South Pole
would have been detected years earlier except for the fact
that the satellite data recording the low ozone readings had
outlier-rejection code that automatically screened out the
"outliers’ (that is, the low ozone readings) before the
analysis was conducted. Such inadvertent (and incorrect)
purging went on for years. It was not until ground-based
South Pole readings started detecting low ozone readings
that someone decided to double-check as to why the
satellite had not picked up this fact--it had, but it had
gotten thrown out!

The best attitude is that outliers are our "friends’, outliers
are trying to tell us something, and we should not stop
until we are comfortable in the explanation for each outlier.

Recommended  If the histogram shows the presence of outliers, the
Next Steps recommended next steps are:

1. Graphically check for outliers (in the commonly
encountered normal case) by generating a box plot.
In general, box plots are a much better graphical tool
for detecting outliers than are histograms.

2. Quantitatively check for outliers (in the commonly
encountered normal case) by carrying out Grubbs
test which indicates how many sample standard
deviations away from the sample mean are the data
in question. Large values indicate outliers.
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Purpose:
Check for
randomness

Sample
Plot

Definition

Questions

A lag plot checks whether a data set or time series is random
or not. Random data should not exhibit any identifiable
structure in the lag plot. Non-random structure in the lag plot
indicates that the underlying data are not random. Several
common patterns for lag plots are shown in the examples
below.

LAG PLOT
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This sample lag plot exhibits a linear pattern. This shows that
the data are strongly non-random and further suggests that an
autoregressive model might be appropriate.

A lag is afixed time displacement. For example, given a data
set Y1, Ys ..., Yy, Yoand Y7 havelag 5since 7- 2=5. Lag

plots can be generated for any arbitrary lag, athough the
most commonly used lag is 1.

A plot of lag 1isa plot of the values of Y; versusY;_;

« Vertical axis: Y, for all i
« Horizontal axis: Y;_; for al i

Lag plots can provide answers to the following questions:
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1. Arethe datarandom?

2. Isthere seria correlation in the data?
3. What is a suitable model for the data?
4. Arethereoutliersin the data?

Inasmuch as randomness is an underlying assumption for
most statistical estimation and testing techniques, the lag plot
should be a routine tool for researchers.

Random (White Noise)
« Weak autocorrelation

« Strong autocorrelation and autoregressive model
Sinusoidal model and outliers

Autocorrelation Plot

Spectrum
Runs Test

The lag plot is demonstrated in the beam deflection data case
study.

Lag plots are not directly available in most general purpose
statistical software programs. Since the lag plot is essentially
a scatter plot with the 2 variables properly lagged, it should
be feasible to write a macro for the lag plot in most statistical
programs.
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We can make the following conclusions based on the above
plot.

1. The data are random.
2. The data exhibit no autocorrel ation.
3. Thedata contain no outliers.

The lag plot shown above isfor lag = 1. Note the absence of
structure. One cannot infer, from a current value Yj_4, the

next value Y;. Thus for a known value Y;.; on the horizontal
axis (say, Yj.1 = +0.5), the Y;-th value could be virtually
anything (from Y; = -2.5to Y; = +1.5). Such non-association
is the essence of randomness.
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We can make the conclusions based on the above plot.

1. The data are from an underlying autoregressive
model with moderate positive autocorrelation
2. The data contain no outliers.

In the plot above for lag = 1, note how the points tend to
cluster (albeit noisily) along the diagonal. Such clustering
is the lag plot signature of moderate autocorrelation.

If the process were completely random, knowledge of a
current observation (say Y. = 0) would yield virtually no

knowledge about the next observation Y;. If the process has
moderate autocorrelation, as above, and if Yj_; = O, then
the range of possible values for Y; is seen to be restricted

to a smaller range (.01 to +.01). This suggests prediction is
possible using an autoregressive model.

Estimate the parameters for the autoregressive model:
Yi=Ag+ A Y, + F

SinceY andY are precisely the axes of the lag plot,
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[ i-1
such estimation is a linear regression straight from the lag
plot.

The residual standard deviation for the autoregressive
model will be much smaller than the residual standard
deviation for the default model

Yi=As + E
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We can make the following conclusions based on the
above plot.

1. The data come from an underlying autoregressive
model with strong positive autocorrel ation
2. Thedata contain no outliers.

Note the tight clustering of points along the diagonal. This
Isthe lag plot signature of a process with strong positive
autocorrelation. Such processes are highly non-random--
there is strong association between an observation and a
succeeding observation. In short, if you know Y;_; you can

make a strong guess as to what Y; will be.

If the above process were completely random, the plot
would have a shotgun pattern, and knowledge of a current
observation (say Y., = 3) would yield virtualy no
knowledge about the next observation Y; (it could here be

anywhere from -2 to +8). On the other hand, if the process
had strong autocorrelation, as seen above, and if Yj_ = 3,

then the range of possible valuesfor Y is seen to be

http://www.itl.nist.gov/div898/handbook/eda/section3/eda33f3.htm[6/27/2012 2:01:09 PM]


http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/lagplot1.htm

1.3.3.15.3. Lag Plot: Strong Autocorrelation and Autoregressive Model

i
restricted to a smaller range (2 to 4)--still wide, but an
improvement nonetheless (relative to -2 to +8) in
predictive power.

Recommended When the lag plot shows a strongly autoregressive pattern
Next Step and only successive observations appear to be correlated,
the next steps are to:

1. Extimate the parameters for the autoregressive
model:

Yi=Ag+ A Y, + B

Since Y; and Yj_; are precisely the axes of the lag

plot, such estimation is a linear regression straight
from the lag plot.

The residual standard deviation for this
autoregressive model will be much smaller than the
residual standard deviation for the default model

Y, = A+ E;

2. Reexamine the system to arrive at an explanation for
the strong autocorrelation. Is it due to the

1. phenomenon under study; or

2. drifting in the environment; or

3. contamination from the data acquisition
system?

Sometimes the source of the problem is
contamination and carry-over from the data
acquisition system where the system does not have
time to electronically recover before collecting the
next data point. If this is the case, then consider
slowing down the sampling rate to achieve
randomness.
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Conclusions We can make the following conclusions based on the
above plot.

1. The data come from an underlying single-cycle
sinusoidal model.
2. The data contain three outliers.

Discussion In the plot above for lag = 1, note the tight elliptical
clustering of points. Processes with a single-cycle
sinusoidal model will have such dlliptical lag plots.

Consequences  If one were to naively assume that the above process came

of Ignoring from the null model
Cyclical
Pattern Y= A+ B

and then estimate the constant by the sample mean, then
the analysis would suffer because

1. the sample mean would be biased and meaningless;

2. the confidence limits would be meaningless and
optimistically small.
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Unexpected
Value of EDA

Recommended
Next Sep

The proper model
Y; = C + adin (2nwt; + @) + E;

(where ex is the amplitude, t is the frequency--between 0

and .5 cycles per observation--, and Pisthe phase) can be
fit by standard non-linear least squares, to estimate the
coefficients and their uncertainties.

Thelag plot is also of value in outlier detection. Note in
the above plot that there appears to be 4 points lying off the
ellipse. However, in alag plot, each point in the original
data set Y shows up twice in the lag plot--once as Y; and

once as Y;j_1. Hence the outlier in the upper left at Y; = 300

is the same raw data value that appears on the far right at
Yi.1 = 300. Thus (-500,300) and (300,200) are due to the

same outlier, namely the 158th data point: 300. The correct
value for this 158th point should be approximately -300
and so it appears that a sign got dropped in the data
collection. The other two points lying off the ellipse, at
roughly (100,100) and at (0,-50), are caused by two faulty
data values: the third data point of -15 should be about
+125 and the fourth data point of +141 should be about -
50, respectively. Hence the 4 apparent lag plot outliers are
traceable to 3 actual outliersin the original run sequence:
at points 4 (-15), 5 (141) and 158 (300). In retrospect, only
one of these (point 158 (= 300)) is an obvious outlier in the
run sequence plot.

Frequently a technique (e.g., the lag plot) is constructed to
check one aspect (e.g., randomness) which it does well.
Along the way, the technique also highlights some other
anomaly of the data (namely, that there are 3 outliers).
Such outlier identification and removal is extremely
important for detecting irregularities in the data collection
system, and also for arriving at a "purified” data set for
modeling. The lag plot plays an important role in such
outlier identification.

When the lag plot indicates a sinusoidal model with
possible outliers, the recommended next steps are:

1. Do a spectral plot to obtain an initial estimate of the
frequency of the underlying cycle. This will be
helpful as a starting value for the subsequent non-
linear fitting.

2. Omit the outliers.

3. Carry out a non-linear fit of the model to the 197
points.

Y = C +asdn (2muwt; + ¢) + B,
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1.3.3.16. Linear Correlation Plot

Purpose:
Detect
changesin
correlation
between
groups

Sample Plot

Linear correlation plots are used to assess whether or not
correlations are consistent across groups. That is, if your
dataisin groups, you may want to know if a single
correlation can be used across all the groups or whether
separate correlations are required for each group.

Linear correlation plots are often used in conjunction with
linear slope, linear intercept, and linear residual standard
deviation plots. A linear correlation plot could be generated
intially to see if linear fitting would be a fruitful direction. If
the correlations are high, this implies it is worthwhile to
continue with the linear slope, intercept, and residual
standard deviation plots. If the correlations are weak, a
different model needs to be pursued.

In some cases, you might not have groups. Instead you may
have different data sets and you want to know if the same
correlation can be adequately applied to each of the data
sets. In this case, smply think of each distinct data set as a
group and apply the linear slope plot as for groups.

Linear Correlation Plot

1 R St St JoEE SRRV EEFoILLE RE LLLE ShCl o

HEU12.DAT

This linear correlation plot shows that the correlations are
high for all groups. Thisimplies that linear fits could
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1.3.3.16. Linear Correlation Plot

Definition:
Group
Correlations
Versus
Group ID

Questions

I mportance:
Checking
Group
Homogeneity

Related
Techniques

Case Sudy

Software

NIST
SEMATECH

provide a good model for each of these groups.

Linear correlation plots are formed by:

« Vertical axis: Group correlations
« Horizontal axis: Group identifier

A reference lineis plotted at the correlation between the full
data sets.

Thelinear correlation plot can be used to answer the
following questions.

1. Aretherelinear relationships across groups?
2. Arethe strength of the linear relationships relatively
constant across the groups?

For grouped data, it may be important to know whether the
different groups are homogeneous (i.e., similar) or
heterogeneous (i.e., different). Linear correlation plots help
answer this question in the context of linear fitting.

Linear Intercept Plot

Linear Slope Plot
Linear Residual Standard Deviation Plot

Linear Fitting

Thelinear correlation plot is demonstrated in the Alaska
pipeline data case study.

Most general purpose statistical software programs do not
support a linear correlation plot. However, if the statistical
program can generate correlations over a group, it should be
feasible to write a macro to generate this plot.
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1.3.3.17.Linear Intercept Plot

Purpose: Linear intercept plots are used to graphically assess whether
Detect or not linear fits are consistent across groups. That is, if your
changesin data have groups, you may want to know if a single fit can
linear be used across all the groups or whether separate fits are
intercepts required for each group.
between
groups Linear intercept plots are typically used in conjunction with
linear slope and linear residual standard deviation plots.
In some cases you might not have groups. Instead, you have
different data sets and you want to know if the same fit can
be adequately applied to each of the data sets. In this case,
simply think of each distinct data set as a group and apply
the linear intercept plot as for groups.
Sample Plot Linear Intercept Plot
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q 0.02 - l::.' ".I_.i; i '\.:II.
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This linear intercept plot shows that thereis a shift in
intercepts. Specifically, the first three intercepts are lower
than the intercepts for the other groups. Note that these are
small differences in the intercepts.
Definition: Linear intercept plots are formed by:
Group
| nter cepts « Vertical axis: Group intercepts from linear fits
Versus « Horizontal axis. Group identifier
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1.3.3.17. Linear Intercept Plot

Group ID o ) _ )
A reference lineis plotted at the intercept from a linear fit
using al the data.

Questions The linear intercept plot can be used to answer the following

guestions.

1. Istheintercept from linear fits relatively constant
across groups?

2. If the intercepts vary across groups, istherea
discernible pattern?

I mportance: For grouped data, it may be important to know whether the
Checking different groups are homogeneous (i.e., similar) or

Group heterogeneous (i.e., different). Linear intercept plots help
Homogeneity answer this question in the context of linear fitting.

Related Linear Correlation Plot

Techniques Linear Slope Plot
Linear Residual Standard Deviation Plot

Linear Fitting

Case Sudy The linear intercept plot is demonstrated in the Alaska
pipeline data case study.

Software Most general purpose statistical software programs do not
support a linear intercept plot. However, if the statistical
program can generate linear fits over a group, it should be
feasible to write a macro to generate this plot.
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1.3.3.18. Linear Slope Plot

Purpose: Linear slope plots are used to graphically assess whether or
Detect not linear fits are consistent across groups. That is, if your
changesin data have groups, you may want to know if a single fit can
linear slopes  be used across all the groups or whether separate fits are
between required for each group.
groups
Linear slope plots are typically used in conjunction with
linear intercept and linear residual standard deviation plots.
In some cases you might not have groups. Instead, you have
different data sets and you want to know if the same fit can
be adequately applied to each of the data sets. In this case,
simply think of each distinct data set as a group and apply
the linear slope plot as for groups.
Sample Plot Linear Skope Plot
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This linear slope plot shows that the slopes are about 0.174
(plus or minus 0.002) for al groups. There does not appear
to be a pattern in the variation of the slopes. Thisimplies
that a single fit may be adequate.
Definition: Linear slope plots are formed by:
Group
Sopes « Vertical axis: Group slopes from linear fits
Versus « Horizontal axis: Group identifier
Group ID
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1.3.3.18. Linear Slope Plot

Questions

I mportance:
Checking
Group
Homogeneity

Related
Techniques

Case Sudy

Software

NIST
SEMATECH

A reference lineis plotted at the slope from a linear fit using
al the data.

The linear slope plot can be used to answer the following
guestions.

1. Do you get the same slope across groups for linear
fits?

2. If the slopes differ, is there a discernible pattern in the
slopes?

For grouped data, it may be important to know whether the
different groups are homogeneous (i.e., similar) or
heterogeneous (i.e., different). Linear slope plots help
answer this question in the context of linear fitting.

Linear Intercept Plot
Linear Correlation Plot

Linear Residual Standard Deviation Plot
Linear Fitting

The linear slope plot is demonstrated in the Alaska pipeline
data case study.

Most general purpose statistical software programs do not
support a linear slope plot. However, if the statistical
program can generate linear fits over a group, it should be
feasible to write a macro to generate this plot.
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1.3.3.19. Linear Residual Standard Deviation Plot
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1.3.3.19. Linear Residual Standard Deviation

Purpose:
Detect
Changesin
Linear
Residual
Sandard
Deviation
Between
Groups

Sample Plot

Plot

Linear residual standard deviation (RESSD) plots are used
to graphically assess whether or not linear fits are consistent
across groups. That is, if your data have groups, you may
want to know if a single fit can be used across all the groups
or whether separate fits are required for each group.

The residual standard deviation is a goodness-of -fit
measure. That is, the smaller the residual standard deviation,
the closer is the fit to the data.

Linear RESSD plots are typically used in conjunction with
linear intercept and linear slope plots. The linear intercept
and slope plots convey whether or not the fits are consistent
across groups while the linear RESSD plot conveys whether
the adequacy of the fit is consistent across groups.

In some cases you might not have groups. Instead, you have
different data sets and you want to know if the same fit can
be adequately applied to each of the data sets. In this case,
simply think of each distinct data set as a group and apply
the linear RESSD plot as for groups.

Linear RESSD Plot
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1.3.3.19. Linear Residual Standard Deviation Plot

Definition:
Group
Residual
Sandard
Deviation
Versus
Group ID

Questions

I mportance:
Checking
Group
Homogeneity

Related
Techniques

Case Sudy

Software

NIST
SEMATECH

This linear RESSD plot shows that the residual standard
deviations from a linear fit are about 0.0025 for al the
groups.

Linear RESSD plots are formed by:

« Vertical axis: Group residual standard deviations from
linear fits
« Horizontal axis: Group identifier

A reference lineis plotted at the residual standard deviation
from alinear fit using al the data. This reference line will
typicaly be much greater than any of the individual residual
standard deviations.

The linear RESSD plot can be used to answer the following
guestions.

1. Istheresidual standard deviation from a linear fit
constant across groups?

2. If theresidual standard deviations vary, istherea
discernible pattern across the groups?

For grouped data, it may be important to know whether the
different groups are homogeneous (i.e., similar) or
heterogeneous (i.e., different). Linear RESSD plots help
answer this question in the context of linear fitting.

Linear Intercept Plot
Linear Slope Plot
Linear Correlation Plot

Linear Fitting

The linear residual standard deviation plot is demonstrated
in the Alaska pipeline data case study.

Most general purpose statistical software programs do not
support a linear residual standard deviation plot. However, if
the statistical program can generate linear fits over a group,
it should be feasible to write a macro to generate this plot.
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1.3.3.20. Mean Plot

| P ENGINEERING STATISTICS HANDBOOK

[HOME

[TOOLS & AIDS [SEARCH [EACK "NEXT|

1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.3. Graphical Techniques: Alphabetic

1.3.3.20. Mean Plot

Purpose:
Detect
changesin
location
between
groups

Sample Plot

Mean plots are used to see if the mean varies between
different groups of the data. The grouping is determined by
the analyst. In most cases, the data set contains a specific
grouping variable. For example, the groups may be the levels
of afactor variable. In the sample plot below, the months of
the year provide the grouping.

Mean plots can be used with ungrouped data to determine if
the mean is changing over time. In this case, the data are
split into an arbitrary number of equal-sized groups. For
example, a data series with 400 points can be divided into 10
groups of 40 points each. A mean plot can then be generated
with these groups to see if the mean isincreasing or
decreasing over time.

Although the mean is the most commonly used measure of
location, the same concept applies to other measures of
location. For example, instead of plotting the mean of each
group, the median or the trimmed mean might be plotted
instead. This might be done if there were significant outliers
in the data and a more robust measure of |ocation than the
mean was desired.

Mean plots are typically used in conjunction with standard
deviation plots. The mean plot checks for shiftsin location
while the standard deviation plot checks for shiftsin scale.
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1.3.3.20. Mean Plot

Definition:
Group
Means
Versus
Group ID

Questions

I mportance:
Checking
Assumptions

Related
Techniques

Software

Mean Plot

220 —:
210
200
190 7]
180
170 ]
160
150
140 7
130

Mean Rank

LI L B L L B B L LI L B BN L B
1 2 3 4 5 6 7 8 9 1011 12
Month

DRAFTE3.DAT

This sample mean plot shows a shift of location after the 6th
month.

Mean plots are formed by:

« Vertical axis: Group mean
« Horizontal axis: Group identifier

A reference lineis plotted at the overall mean.

The mean plot can be used to answer the following
guestions.

1. Arethere any shiftsin location?
2. What is the magnitude of the shiftsin location?
3. Isthere a distinct pattern in the shiftsin location?

A common assumption in 1-factor analyses is that of

constant location. That is, the location is the same for
different levels of the factor variable. The mean plot provides
a graphical check for that assumption. A common assumption
for univariate data is that the location is constant. By
grouping the data into equal intervals, the mean plot can
provide a graphical test of this assumption.

Standard Deviation Plot
DOE Mean Plot
Box Plot

Most general purpose statistical software programs do not
support a mean plot. However, if the statistical program can
generate the mean over a group, it should be feasible to write
a macro to generate this plot.
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1.3.3.20. Mean Plot
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1.3.3.21. Normal Probability Plot
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1.3.3.21. Normal Probability Plot

Purpose: The normal probability plot (Chambers 1983) isa

Check If Data  graphical technique for assessing whether or not a data set
Are is approximately normally distributed.

Approximately

Normally The data are plotted against a theoretical normal
Distributed distribution in such a way that the points should form an

approximate straight line. Departures from this straight line
indicate departures from normality.

The normal probability plot isa specia case of the
probability plot. We cover the normal probability plot
separately due to its importance in many applications.

Sample Plot Normal Probability Plot
3_ I
2 x
¥ . =
P
o-
T
5 17
] 1 of
-2 — II:’
-3 — *
AR
Mormal K0.1) Order Statistic Medians
NORMAL.DAT
The points on this plot form a nearly linear pattern, which
indicates that the normal distribution is a good model for
this data set.
Definition: The normal probability plot is formed by:
Ordered
Response « Vertical axis: Ordered response values
Values Versus « Horizonta axis: Normal order statistic medians
Normal Order _ _
Satistic The observations are plotted as a function of the
Medians corresponding normal order statistic medians which are
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1.3.3.21. Normal Probability Plot

Questions

I mportance:
Check

defined as:

N(i) = G(U(H)

where U(i) are the uniform order statistic medians (defined
below) and G is the percent point function of the normal
distribution. The percent point function is the inverse of
the cumulative distribution function (probability that X is
less than or equal to somevalue). That is, given a
probability, we want the corresponding x of the cumulative
distribution function.

The uniform order statistic medians are defined as;

Ui =1-U(n)fori=1
U(i) = (i - 0.3175)/(n + 0.365) for i = 2, 3, ..., n-1
U(i) = 054 fori=n

In addition, a straight line can be fit to the points and
added as a reference line. The further the points vary from
this line, the greater the indication of departures from
normality.

Probability plots for distributions other than the normal are
computed in exactly the same way. The normal percent
point function (the G) is ssmply replaced by the percent
point function of the desired distribution. That is, a
probability plot can easily be generated for any distribution
for which you have the percent point function.

One advantage of this method of computing probability
plots is that the intercept and slope estimates of the fitted
line are in fact estimates for the location and scale
parameters of the distribution. Although this is not too
important for the normal distribution since the location and
scale are estimated by the mean and standard deviation,
respectively, it can be useful for many other distributions.

The correlation coefficient of the points on the normal
probability plot can be compared to a table of critical
values to provide a formal test of the hypothesis that the
data come from a normal distribution.

The normal probability plot is used to answer the
following questions.

1. Arethe data normally distributed?

2. What is the nature of the departure from normality
(data skewed, shorter than expected tails, longer than
expected tails)?

The underlying assumptions for a measurement process are
that the data should behave like:
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1.3.3.21. Normal Probability Plot

Normality
Assumption

Examples

Related
Techniques

Case Sudy

Software

NIST
SEMATECH

1. random drawings;

2. from afixed distribution;
3. with fixed location;

4. with fixed scale.

Probability plots are used to assess the assumption of a
fixed distribution. In particular, most statistical models are
of the form:

response = deterministic + random

where the deterministic part is the fit and the random part
iserror. This error component in most common statistical
models is specifically assumed to be normally distributed
with fixed location and scale. Thisis the most frequent
application of normal probability plots. That is, a model is
fit and a normal probability plot is generated for the
residuals from the fitted model. If the residuas from the
fitted model are not normally distributed, then one of the
major assumptions of the model has been violated.

1. Data are normally distributed
2. Data have short tails

3. Data have fat tails
4. Data are skewed right

Histogram

Probability plots for other distributions (e.g., Weibull)
Probability plot correlation coefficient plot (PPCC plot)
Anderson-Darling Goodness-of -Fit Test

Chi - Square Goodness-of - Fit Test
Kolmogorov-Smirnov Goodness-of - Fit Test

The normal probability plot is demonstrated in the heat
flow meter data case study.

Most general purpose statistical software programs can
generate a normal probability plot.
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1.3.3.21.1. Normal Probability Plot: Normally Distributed Data
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1.3. EDA Techniques

1.3.3. Graphical Techniques: Alphabetic
1.3.3.21. Normal Probability Plot

1.3.3.21.1. Normal Probability Plot: Normally
Distributed Data

Normal The following normal probability plot is from the heat flow
Probability = meter data.
Plot
o HEAT FLOW METER DATA
9.35 -
93
E 925 -
92+ "
9.15
91 T T T T T T v T — T
3 2 4 0 1 2 3
Theoretical
CORRELATION = 0999, INTERCEPT = 9.2615, SLOPE =0 .023

Conclusions  We can make the following conclusions from the above plot.

1. The normal probability plot shows a strongly linear
pattern. There are only minor deviations from the line
fit to the points on the probability plot.

2. The normal distribution appears to be a good model for
these data.

Discussion  Visually, the probability plot shows a strongly linear pattern.
Thisis verified by the correlation coefficient of 0.9989 of the
line fit to the probability plot. The fact that the points in the
lower and upper extremes of the plot do not deviate
significantly from the straight-line pattern indicates that there
are not any significant outliers (relative to a normal
distribution).

In this case, we can quite reasonably conclude that the

normal distribution provides an excellent model for the data.
The intercept and slope of the fitted line give estimates of
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1.3.3.21.1. Normal Probability Plot: Normally Distributed Data

9.26 and 0.023 for the location and scale parameters of the
fitted normal distribution.
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1.3.3.21.2. Normal Probability Plot: Data Have Short Tails
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1.3.3.21.2. Normal Probability Plot: Data Have

Short Tails
Normal The following is a normal probability plot for 500 random
Probability = numbers generated from a Tukey-L ambda distribution with
Plot for the A parameter equal to 1.1.
Data with
Short Tails TUKEY LAMBDA RANDOM NUMBERS (LAWBDA = 1.1)
051
3 o
05
-1 - ﬂ' r—+- r - 1 - T * T °
3 2 = 0 1 2 3
Theoretical
CORRELATION = 0.977, INTERCEPT = 00222, SLOPE = 05173

Conclusions  We can make the following conclusions from the above plot.

1. The normal probability plot shows a non-linear pattern.
2. The normal distribution is not a good model for these
data.

Discussion For data with short tails relative to the normal distribution,
the non-linearity of the normal probability plot shows upin
two ways. First, the middle of the data shows an S-like
pattern. This is common for both short and long tails.
Second, the first few and the last few points show a marked
departure from the reference fitted line. In comparing this
plot to the long tail example in the next section, the
important difference is the direction of the departure from the
fitted line for the first few and last few points. For short tails,
the first few points show increasing departure from the fitted
line above the line and last few points show increasing
departure from the fitted line below the line. For long tails,
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1.3.3.21.2. Normal Probability Plot: Data Have Short Tails

this pattern is reversed.

In this case, we can reasonably conclude that the normal
distribution does not provide an adequate fit for this data set.
For probability plots that indicate short-tailed distributions,
the next step might be to generate a Tukey L ambda PPCC
plot. The Tukey Lambda PPCC plot can often be helpful in
identifying an appropriate distributional family.
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1.3.3.21.3. Normal Probability Plot: Data Have Long Tails
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1.3.3. Graphical Techniques: Alphabetic
1.3.3.21. Normal Probability Plot

1.3.3.21.3. Normal Probability Plot: Data Have

Long Tails
Normal The following is a normal probability plot of 500 numbers
Probability  generated from a double exponential distribution. The double
Plot for exponential distribution is symmetric, but relative to the
Data with normal it declines rapidly and has longer tails.
Long Tails
1g—DOUBLE EXPONENTIAL RANDOM NUMBERS
5 40
3 o
5 : o
-10 ! I ! I T T ¥ T T T T
3 2 = 0 1 2 3
Theoretical
CORRELATION =0.9693, INTERCEPT = 0.0273, SLOPE = 1.3439

Conclusions  We can make the following conclusions from the above plot.

1. The normal probability plot shows a reasonably linear
pattern in the center of the data. However, the tails,
particularly the lower tail, show departures from the
fitted line.

2. A distribution other than the normal distribution would
be a good model for these data.

Discussion For data with long tails relative to the normal distribution, the
non-linearity of the normal probability plot can show up in
two ways. First, the middle of the data may show an S-like
pattern. This is common for both short and long tails. In this
particular case, the S pattern in the middle is fairly mild.
Second, the first few and the last few points show marked
departure from the reference fitted line. In the plot above,
this is most noticeable for the first few data points. In
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1.3.3.21.3. Normal Probability Plot: Data Have Long Tails

comparing this plot to the short-tail example in the previous
section, the important difference is the direction of the
departure from the fitted line for the first few and the last few
points. For long tails, the first few points show increasing
departure from the fitted line below the line and last few
points show increasing departure from the fitted line above
the line. For short tails, this pattern is reversed.

In this case we can reasonably conclude that the normal
distribution can be improved upon as a model for these data.
For probability plots that indicate long-tailed distributions,
the next step might be to generate a Tukey L ambda PPCC
plot. The Tukey Lambda PPCC plot can often be helpful in
identifying an appropriate distributional family.

NIST

S_EMATECH HOME [TOOLS & AIDS [SEARCH [BACK MEXT

http://www.itl .nist.gov/div898/handbook/eda/section3/eda33| 3.htm[6/27/2012 2:01:16 PM]


http://www.itl.nist.gov/div898/handbook/eda/section3/normprp2.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/ppccplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/ppccplot.htm
http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/

1.3.3.21.4. Normal Probability Plot: Data are Skewed Right
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1.3.3.21. Normal Probability Plot

1.3.3.21.4. Normal Probability Plot: Data are
Skewed Right

Normal
Probability 300
Plot for
Data that
are Skewed
Right

SUNSPOT DATA

Theoretical
CORRELATION = 0.9568, INTERCEPT = 46.0243, SLOPE =36 6417

Conclusions  We can make the following conclusions from the above plot.

1. The normal probability plot shows a strongly non-
linear pattern. Specificaly, it shows a quadratic pattern
in which all the points are below a reference line
drawn between the first and last points.

2. The normal distribution is not a good model for these
data.

Discussion This quadratic pattern in the normal probability plot is the
signature of a significantly right-skewed data set. Similarly,
if al the points on the normal probability plot fell above the
reference line connecting the first and last points, that would
be the signature pattern for a significantly left-skewed data
Set.

In this case we can quite reasonably conclude that we need to

model these data with a right skewed distribution such as the
Weibull or lognormal.
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1.3.3.22. Probability Plot
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1.3.3.22. Probability Plot

Purpose: The probability plot (Chambers 1983) is a graphical

Check If technique for assessing whether or not a data set follows a
Data Follow  given distribution such as the normal or Weibull.

a Given

Distribution The data are plotted against a theoretical distribution in such
away that the points should form approximately a straight
line. Departures from this straight line indicate departures
from the specified distribution.

The correlation coefficient associated with the linear fit to
the data in the probability plot is a measure of the goodness
of the fit. Estimates of the |location and scale parameters of
the distribution are given by the intercept and slope.
Probability plots can be generated for several competing
distributions to see which provides the best fit, and the
probability plot generating the highest correlation
coefficient is the best choice since it generates the
straightest probability plot.

For distributions with shape parameters (not counting
location and scale parameters), the shape parameters must
be known in order to generate the probability plot. For
distributions with a single shape parameter, the probability
plot correlation coefficient (PPCC) plot provides an
excellent method for estimating the shape parameter.

We cover the special case of the normal probability plot

separately due to its importance in many statistical
applications.

Sample Plot
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1.3.3.22. Probability Plot

Definition:
Ordered
Response
Values
Versus Order
Satistic
Medians for
the Given
Distribution

Weibull Probability Plot
3_
25
3
% 2_
ELE_
3 ]
05
g— 7T T T T T 1
a 05 1 15 2 25 3
Weibull Order Statistic Medians

This datais a set of 500 Weibull random numbers with a
shape parameter = 2, location parameter = 0, and scale
parameter = 1. The Weibull probability plot indicates that
the Weibull distribution does in fact fit these data well.

The probability plot is formed by:

« Vertica axis: Ordered response values
« Horizontal axis: Order statistic medians for the given
distribution

The order statistic medians are defined as;
N(i) = G(U(i))

where the U(i) are the uniform order statistic medians
(defined below) and G is the percent point function for the
desired distribution. The percent point function is the
inverse of the cumulative distribution function (probability
that x islessthan or equal to somevalue). That is, given a
probability, we want the corresponding x of the cumulative
distribution function.

The uniform order statistic medians are defined as;

m(@i)=21-m(n) fori =1
m(i) = (i - 0.3175)/(n + 0.365) fori = 2,3, ..., n-1
m(i) = 0.5**(1/n) fori =n

In addition, a straight line can be fit to the points and added
as a reference line. The further the points vary from this
line, the greater the indication of a departure from the
specified distribution.

This definition implies that a probability plot can be easily
generated for any distribution for which the percent point
function can be computed.
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1.3.3.22. Probability Plot

Questions

I mportance:
Check
distributional
assumption

Related
Techniques

Case Sudy

Software

NIST
SEMATECH

One advantage of this method of computing proability plots
is that the intercept and slope estimates of the fitted line are
in fact estimates for the location and scale parameters of the
distribution. Although this is not too important for the
normal distribution (the location and scale are estimated by
the mean and standard deviation, respectively), it can be
useful for many other distributions.

The probability plot is used to answer the following
guestions:

« Does a given distribution, such as the Weibull,
provide a good fit to my data?

« What distribution best fits my data?

« What are good estimates for the location and scale
parameters of the chosen distribution?

The discussion for the normal probability plot covers the
use of probability plots for checking the fixed distribution
assumption.

Some statistical models assume data have come from a
population with a specific type of distribution. For example,
in reliability applications, the Weibull, lognormal, and
exponential are commonly used distributional models.
Probability plots can be useful for checking this
distributional assumption.

Histogram

Probability Plot Correlation Coefficient (PPCC) Plot
Hazard Plot

Quantile-Quantile Plot
Anderson-Darling Goodness of Fit

Chi - Square Goodness of Fit
Kolmogorov-Smirnov Goodness of Fit

The probability plot is demonstrated in the uniform random
numbers case study.

Most general purpose statistical software programs support
probability plots for at least a few common distributions.
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1.3.3.23. Probability Plot Correlation Coefficient Plot
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1.3.3.23. Probability Plot Correlation

Purpose:
Graphical
Technique for
Finding the
Shape
Parameter of
a
Distributional
Family that
Best Fitsa
Data Set

Compare
Distributions

Coefficient Plot

The probability plot correlation coefficient (PPCC) plot
(Eilliben 1975) is a graphical technique for identifying the
shape parameter for a distributional family that best
describes the data set. This technique is appropriate for
families, such as the Weibull, that are defined by a single
shape parameter and location and scale parameters, and it is
not appropriate for distributions, such as the normal, that
are defined only by location and scale parameters.

The PPCC plot is generated as follows. For a series of
values for the shape parameter, the correlation coefficient is
computed for the probability plot associated with a given
value of the shape parameter. These correlation coefficients
are plotted against their corresponding shape parameters.
The maximum correlation coefficient corresponds to the
optimal value of the shape parameter. For better precision,
two iterations of the PPCC plot can be generated; the first
isfor finding the right neighborhood and the second isfor
fine tuning the estimate.

The PPCC plot is used first to find a good value of the
shape parameter. The probability plot is then generated to
find estimates of the location and scale parameters and in
addition to provide a graphical assessment of the adequacy
of the distributional fit.

In addition to finding a good choice for estimating the
shape parameter of a given distribution, the PPCC plot can
be useful in deciding which distributional family is most
appropriate. For example, given a set of reliabilty data, you
might generate PPCC plots for a Weibull, lognormal,
gamma, and inverse Gaussian distributions, and possibly
others, on a single page. This one page would show the
best value for the shape parameter for several distributions
and would additionally indicate which of these
distributional families provides the best fit (as measured by
the maximum probability plot correlation coefficient). That
is, if the maximum PPCC value for the Weibull is 0.99 and
only 0.94 for the lognormal, then we could reasonably
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1.3.3.23. Probability Plot Correlation Coefficient Plot

Tukey-
Lambda
PPCC Plot
for Symmetric
Distributions

Use
Judgement
When
Selecting An
Appropriate
Distributional
Family

Sample Plot

conclude that the Weibull family is the better choice.

The Tukey L ambda PPCC plot, with shape parameter A, is
particularly useful for symmetric distributions. It indicates
whether a distribution is short or long tailed and it can

further indicate several common distributions. Specifically,

1. A= -1: distribution is approximately Cauchy
2. A= 0: distribution is exactly logistic

3. A =0.14: distribution is approximately normal
4. A=0.5: distribution is U-shaped

5. A= 1: distribution is exactly uniform

If the Tukey Lambda PPCC plot gives a maximum value
near 0.14, we can reasonably conclude that the normal
distribution is a good model for the data. If the maximum
value islessthan 0.14, a long-tailed distribution such as the
double exponential or logistic would be a better choice. If
the maximum value is near -1, this implies the selection of
very long-tailed distribution, such as the Cauchy. If the
maximum value is greater than 0.14, this implies a short-
tailed distribution such as the Beta or uniform.

The Tukey-Lambda PPCC plot is used to suggest an
appropriate distribution. Y ou should follow-up with PPCC
and probability plots of the appropriate alternatives.

When comparing distributional models, do not simply
choose the one with the maximum PPCC value. In many
cases, severa distributional fits provide comparable PPCC
values. For example, alognormal and Weibull may both fit
a given set of reliability data quite well. Typically, we
would consider the complexity of the distribution. That is, a
simpler distribution with a marginally smaller PPCC value
may be preferred over a more complex distribution.
Likewise, there may be theoretical justification in terms of
the underlying scientific model for preferring a distribution
with a marginally smaller PPCC value in some cases. In
other cases, we may not need to know if the distributional
model is optimal, only that it is adequate for our purposes.
That is, we may be able to use techniques designed for
normally distributed data even if other distributions fit the
data somewhat better.

The following is a PPCC plot of 100 normal random
numbers. The maximum value of the correlation coefficient
= 0.997 at A = 0.099.

http://www.itl .nist.gov/div898/handbook/eda/section3/eda33n.htm[6/27/2012 2:01:19 PM]



1.3.3.23. Probability Plot Correlation Coefficient Plot

Definition:

Questions

I mportance

- {Tukey) PPCC Plot
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This PPCC plot shows that:

1. the best-fit symmetric distribution is nearly normal;

2. the data are not long tailed;

3. the sample mean would be an appropriate estimator
of location.

We can follow-up this PPCC plot with a normal probability
plot to verify the normality model for the data.

The PPCC plot isformed by:

« Vertical axis: Probability plot correlation coefficient;
« Horizontal axis: Vaue of shape parameter.

The PPCC plot answers the following questions:

1. What is the best-fit member within a distributional
family?

2. Doesthe best-fit member provide a good fit (in terms
of generating a probability plot with a high
correlation coefficient)?

3. Doesthis distributional family provide a good fit
compared to other distributions?

4. How sensitive is the choice of the shape parameter?

Many statistical analyses are based on distributional
assumptions about the population from which the data have
been obtained. However, distributional families can have
radically different shapes depending on the value of the
shape parameter. Therefore, finding a reasonable choice for
the shape parameter is a necessary step in the analysis. In
many analyses, finding a good distributional model for the
dataisthe primary focus of the analysis. In both of these
cases, the PPCC plot is a valuable tool.
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1.3.3.23. Probability Plot Correlation Coefficient Plot

Related Probability Plot
Techniques Maximum Likelihood Estimation

L east Squares Estimation
Method of Moments Estimation

Software PPCC plots are currently not available in most common
genera purpose statistical software programs. However, the
underlying technique is based on probability plots and
correlation coefficients, so it should be possible to write
macros for PPCC plots in statistical programs that support
these capabilities. Dataplot supports PPCC plots.
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1.3.3.24. Quantile-Quantile Plot
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1.3.3.24. Quantile-Quantile Plot

Purpose: The quantile-quantile (g-q) plot is a graphical technique for
Check If determining if two data sets come from populations with a
Two Data common distribution.

Sets Can Be

Fit Withthe A g-gqplot isa plot of the quantiles of the first data set

Same against the quantiles of the second data set. By a quantile, we

Distribution  mean the fraction (or percent) of points below the given
value. That is, the 0.3 (or 30%) quantile is the point at which
30% percent of the datafall below and 70% fall above that
value.

A 45-degree reference line is also plotted. If the two sets
come from a population with the same distribution, the points
should fall approximately along this reference line. The
greater the departure from this reference line, the greater the
evidence for the conclusion that the two data sets have come
from populations with different distributions.

The advantages of the g-q plot are:
1. The sample sizes do not need to be equal.

2. Many distributional aspects can be simultaneously
tested. For example, shiftsin location, shiftsin scale,
changes in symmetry, and the presence of outliers can
all be detected from this plot. For example, if the two
data sets come from popul ations whose distributions
differ only by a shift in location, the points should lie
along a straight line that is displaced either up or down
from the 45-degree reference line.

The g-q plot is similar to a probability plot. For a probability

plot, the quantiles for one of the data samples are replaced
with the quantiles of a theoretical distribution.

Sample Plot
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1.3.3.24. Quantile-Quantile Plot

Definition:
Quantiles
for Data Set
1 Versus
Quantiles of
Data Set 2

Questions

I mportance:
Check for
Common

CHO Plot

500 o
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300 400 500 600 700 800 900
Batch 2
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This g-q plot shows that

1. These 2 batches do not appear to have come from
populations with a common distribution.

2. The batch 1 values are significantly higher than the
corresponding batch 2 values.

3. The differences are increasing from values 525 to 625.
Then the values for the 2 batches get closer again.

The g-q plot is formed by:

« Vertical axis: Estimated quantiles from data set 1
« Horizontal axis: Estimated quantiles from data set 2

Both axes are in units of their respective data sets. That is,
the actual quantile level is not plotted. For a given point on
the g-q plot, we know that the quantile level is the same for
both points, but not what that quantile level actually is.

If the data sets have the same size, the g-q plot is essentially
a plot of sorted data set 1 against sorted data set 2. If the data
sets are not of equal size, the quantiles are usually picked to
correspond to the sorted values from the smaller data set and
then the quantiles for the larger data set are interpolated.

The g-q plot is used to answer the following questions:

« Do two data sets come from populations with a
common distribution?

« Do two data sets have common location and scale?

« Do two data sets have similar distributional shapes?

« Do two data sets have similar tail behavior?

When there are two data samples, it is often desirable to
know if the assumption of a common distribution is justified.
If so, then location and scale estimators can pool both data
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1.3.3.24. Quantile-Quantile Plot

Distribution  sets to obtain estimates of the common location and scale. If
two samples do differ, it is also useful to gain some
understanding of the differences. The g-q plot can provide
more insight into the nature of the difference than analytical
methods such as the chi-square and Kolmogorov-Smirnov 2-

sample tests.
Related Bihistogram
Techniques T Test

F Test

2-Sample Chi-Square Test
2-Sample Kolmogorov-Smirnov Test

CaseSudy  The quantile-quantile plot is demonstrated in the ceramic
strength data case study.

Software Q-Q plots are available in some general purpose statistical
software programs. If the number of data points in the two
samples are equal, it should be relatively easy to write a
macro in statistical programs that do not support the g-q plot.
If the number of points are not equal, writing a macro for a
g-q plot may be difficult.
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1.3.3.25. Run-Sequence Plot
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1.3.3.25. Run-Sequence Plot

Purpose: Run sequence plots (Chambers 1983) are an easy way to
Check for graphically summarize a univariate data set. A common
Shiftsin assumption of univariate data sets is that they behave like:
Location

and Scale 1. random drawings;

and Outliers 2. from afixed distribution;
3. with a common location; and
4. with a common scale.

With run sequence plots, shiftsin location and scale are
typically quite evident. Also, outliers can easily be detected.

Sample
Plot: 2.0030 PLOTY
Last Third ;
of Data 3 26 I::u::
Shows a g ] . *
Shift of 2002 :
Location E *
E 20018 x :|:I:|: :|::|::l::l '
; * - - X x I X
2 m14 IIII IIIII IIIIIII X
2.0010 T T T T T T
0 10 20 30 40 50
Index

This sample run sequence plot shows that the location shifts
up for the last third of the data.

Definition: Run sequence plots are formed by:

y(i) Versusi
« Vertical axis: Response variable Y (i)
« Horizontal axis: Indexi (i=1,2,3,...)
Questions The run sequence plot can be used to answer the following

guestions
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1.3.3.25. Run-Sequence Plot

I mportance:
Check
Univariate
Assumptions

Related
Techniques

Case Sudy

Software

NIST
SEMATECH

1. Arethere any shiftsin location?
2. Arethere any shiftsin variation?
3. Arethere any outliers?

The run sequence plot can aso give the analyst an excellent
feel for the data.

For univariate data, the default model is
Y = constant + error

where the error is assumed to be random, from a fixed
distribution, and with constant location and scale. The
validity of this model depends on the validity of these
assumptions. The run sequence plot is useful for checking for
constant location and scale.

Even for more complex models, the assumptions on the error
term are still often the same. That is, a run sequence plot of
the residuals (even from very complex models) is still vital
for checking for outliers and for detecting shiftsin location
and scale.

Scatter Plot

Histogram
Autocorrelation Plot

Lag Plot

The run sequence plot is demonstrated in the Filter
transmittance data case study.

Run sequence plots are available in most general purpose
statistical software programs.
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1.3.3.26. Scatter Plot
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1.3.3.26. Scatter Plot

Purpose: A scatter plot (Chambers 1983) reveals relationships or
Check for association between two variables. Such relationships
Relationship  manifest themselves by any non-random structure in the plot.
Various common types of patterns are demonstrated in the
examples.
Sample
Plot: _ Scatter Plot
Linear 9077 x
Relationship | 807 .
Between E 70 :
VariablesY g 607 . =
and X @ 50 3 .
E 40 _- I II li
O 307 . =
= 10 x o= g’
0]
0 10 20 40 50 60 W 80 %
In-labx Crack Size Heading
BERGER1.DAT
This sample plot reveas a linear relationship between the
two variables indicating that a linear regression model might
be appropriate.
Definition: A scatter plot is a plot of the valuesof Y versusthe
Y Versus X corresponding values of X:
« Vertical axis: variable Y --usually the response variable
« Horizontal axis: variable X--usually some variable we
suspect may ber related to the response
Questions Scatter plots can provide answers to the following questions:

1. ArevariablesX and Y related?

2. Arevariables X and Y linearly related?

3. Arevariables X and Y non-linearly related?

4. Doesthe variationinY change depending on X?
5. Arethere outliers?
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1.3.3.26. Scatter Plot

Examples

Combining
Scatter
Plots

Causality Is
Not Proved
By

Association

Appearance

No relationship

Strong linear (positive correlation)

Strong linear (negative correlation)

Exact linear (positive correlation)

Quadratic relationship

Exponential relationship

Sinusoidal relationship (damped)

Variation of Y doesn't depend on X (homoscedastic)
Variation of Y does depend on X (heteroscedastic)

Outlier

Coo~NUTA~WNE

=

Scatter plots can also be combined in multiple plots per page
to help understand higher-level structurein data sets with
more than two variables.

The scatterplot matrix generates all pairwise scatter plots on
a single page. The conditioning plot, also called a co-plot or
subset plot, generates scatter plots of Y versus X dependent

on the value of athird variable.

The scatter plot uncovers relationships in data.
"Relationships’ means that there is some structured
association (linear, quadratic, etc.) between X and Y. Note,
however, that even though

causality implies association
association does NOT imply causality.

Scatter plots are a useful diagnostic tool for determining
association, but if such association exists, the plot may or
may not suggest an underlying cause-and-effect mechanism.
A scatter plot can never "prove" cause and effect--it is
ultimately only the researcher (relying on the underlying
science/engineering) who can conclude that causality actually
exists.

The most popular rendition of a scatter plot is

1. some plot character (e.g., X) at the data points, and
2. no line connecting data points.

Other scatter plot format variants include

1. an optional plot character (e.g, X) at the data points,
but
2. asolid line connecting data points.

In both cases, the resulting plot is referred to as a scatter plot,
although the former (discrete and disconnected) is the
author's personal preference since nothing makesit onto the
screen except the data--there are no interpolative artifacts to
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1.3.3.26. Scatter Plot

Related
Techniques

Case Sudy

Software

NIST
SEMATECH

bias the interpretation.

Run Sequence Plot

Box Plot
Block Plot

The scatter plot is demonstrated in the load cell calibration
data case study.

Scatter plots are a fundamental technique that should be
available in any general purpose statistical software program.
Scatter plots are also available in most graphics and
spreadsheet programs as well.
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1.3.3.26.1. Scatter Plot: No Relationship
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1.3.3.26. Scatter Plot

1.3.3.26.1. Scatter Plot: No Relationship

Scatter Plot
with No
Relationship

Discussion

NIST
SEMATECH

SCATTER PLOT
3 X
2 :I
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x =
x x
-3 .
4 X
4 .
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X

Note in the plot above how for a given value of X (say X =
0.5), the corresponding values of Y range all over the place
fromY=-2to Y= +2. Thesameistrue for other values of X.
This lack of predictablility in determining Y from a given
value of X, and the associated amorphous, non-structured
appearance of the scatter plot leads to the summary
conclusion: no relationship.
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1.3.3.26.2. Scatter Plot: Strong Linear (positive correlation) Relationship
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1.3.3.26.2. Scatter Plot: Strong Linear (positive
correlation) Relationship

Scatter SCATTER PLOT
Plot 4
Showing
Strong 35
Positive o
Linear 3 . T
Correlation e 1
> 25 L
pie
2 T '
15
1 - . . . . . . -
100 200 300 400 500
X
LEW3.DAT

Discussion  Note in the plot above how a straight line comfortably fits
through the data; hence a linear relationship exists. The
scatter about the lineis quite small, so thereis a strong linear
relationship. The slope of the lineis positive (small values of
X correspond to small values of Y; large values of X
correspond to large values of Y), so thereis a positive co-
relation (that is, a positive correlation) between X and Y.
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1.3.3.26.3. Scatter Plot: Strong Linear (negative correlation) Relationship
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1.3.3.26.3. Scatter Plot: Strong Linear (negative
correlation) Relationship

Scatter SCATTER PLOT
Plot -1
Showing a
Strong -15
Negative
Correlation 2 T
x £ *
- L
25 Y
-3 II'!-' .
35
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100 200 300 400 500
X

Discussion  Note in the plot above how a straight line comfortably fits
through the data; hence thereis a linear relationship. The
scatter about the lineis quite small, so thereis a strong linear
relationship. The slope of the lineis negative (small values of
X correspond to large values of Y; large values of X
correspond to small values of Y), so there is a negative co-
relation (that is, a negative correlation) between X and Y.
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1.3.3.26.4. Scatter Plot: Exact Linear (positive correlation) Relationship

| P ENGINEERING STATISTICS HANDBOOK

HOME

TOOLS & AIDS SEARCH BACK MNEXT

1. Exploratory Data Analysis
1.3. EDA Techniques

1.3.3. Graphical Techniques: Alphabetic
1.3.3.26. Scatter Plot

1.3.3.26.4. Scatter Plot: Exact Linear (positive

Scatter Plot
Showing an
Exact
Linear
Relationship

Discussion
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correlation) Relationship

SCATTER PLOT
4
35
x
=
3 -~
.
=25 =
x
=
P 2
x
15
100 200 300 400 51 1]
X

Note in the plot above how a straight line comfortably fits
through the data; hence thereis a linear relationship. The
scatter about the line is zero--there is perfect predictability
between X and V), so there is an exact linear relationship.
The dlope of the lineis positive (small values of X
correspond to small values of Y; large values of X correspond
to large values of Y), so thereis a positive co-relation (that
is, a positive correlation) between X and Y.
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1.3.3.26.5. Scatter Plot: Quadratic Relationship
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1.3.3.26.5. Scatter Plot: Quadratic Relationship

Scatter Plot SCATTER PLOT
Showing 40
Quadratic ny
Relationship ST
30 =
x / x
> 20 A
10 . _t.:-:-' ::|: x
0 . . : . . . .
100 200 300 400 500
X
Discussion Note in the plot above how no imaginable simple straight
line could ever adequately describe the relationship between
Xand Y--a curved (or curvilinear, or non-linear) function is
needed. The simplest such curvilinear function is a quadratic
model
Y,=A+BX;+ X2+ F;
for some A, B, and C. Many other curvilinear functions are
possible, but the data analysis principle of parsimony
suggests that we try fitting a quadratic function first.
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1.3.3.26.6. Scatter Plot: Exponential Relationship
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Note that a simple straight line is grossly inadequate in
describing the relationship between X and Y. A quadratic
model would prove lacking, especialy for large values of X.
In this example, the large values of X correspond to nearly
constant values of Y, and so a non-linear function beyond the
quadratic is needed. Among the many other non-linear
functions available, one of the smpler onesisthe

exponential model

Y, =A+Be“Mi 4 E;
for some A, B, and C. In this case, an exponential function

would, in fact, fit well, and so one is led to the summary
conclusion of an exponentia relationship.
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1.3.3.26.7. Scatter Plot: Sinusoidal Relationship (damped)
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Discussion The complex relationship between X and Y appears to be
basically oscillatory, and so one is naturally drawn to the
trigonometric sinusoidal mode!:

Y; = C +asdn (2mwt, + ¢) +

Closer inspection of the scatter plot reveals that the amount
of swing (the amplitude e in the model) does not appear to
be constant but rather is decreasing (damping) as X gets
large. We thus would be led to the conclusion: damped
sinusoidal relationship, with the ssmplest corresponding
model being

Yi =C + (Bo + By + &) sin (2mwrt; + @) + By
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1.3.3.26.8. Scatter Plot: Variation of Y Does Not Depend on X (homoscedastic)
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1.3.3.26.8. Scatter Plot: Variation of Y Does Not
Depend on X (homoscedastic)
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This scatter plot reveas a linear relationship between X
and Y: for a given value of X, the predicted value of Y will
fall onaline. The plot further reveals that the variation in
Y about the predicted value is about the same (+- 10 units),
regardless of the value of X. Statistically, this is referred to
as homoscedasticity. Such homoscedasticity is very
important as it is an underlying assumption for regression,
and its violation leads to parameter estimates with inflated
variances. If the data are homoscedastic, then the usual
regression estimates can be used. If the data are not
homoscedastic, then the estimates can be improved using
weighting procedures as shown in the next example.
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1.3.3.26.9. Scatter Plot: Variation of Y Does Depend on X (heteroscedastic)
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Discussion This scatter plot reveals an approximate linear relationship
between X and Y, but more importantly, it reveals a
statistical condition referred to as heteroscedasticity (that
is, nonconstant variation in Y over the values of X). For a
heteroscedastic data set, the variation in Y differs
depending on the value of X. In this example, small values
of Xyield small scatter in Y while large values of X result
in large scatter in .

Heteroscedasticity complicates the analysis somewhat, but
its effects can be overcome by:

1. proper weighting of the data with noisier data being
weighted less, or by

2. performing a Y variable transformation to achieve
homoscedasticity. The Box-Cox normality plot can
help determine a suitable transformation.

Impact of Fortunately, unweighted regression analyses on
Ignoring heteroscedastic data produce estimates of the coefficients
Unequal that are unbiased. However, the coefficients will not be as
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1.3.3.26.9. Scatter Plot: Variation of Y Does Depend on X (heteroscedastic)

Variability in precise as they would be with proper weighting.

the Data
Note further that if heteroscedasticity does exist, it is

frequently useful to plot and model the local variation
war{Y;|X;)asafunction of X, asin

var(Y;| X;) = g{X;) This modeling has two
advantages:

1. it provides additional insight and understanding as
to how the response Y relates to X; and

2. it provides a convenient means of forming weights
for a weighted regression by simply using

1 1
Wy = W(Y-z:|Xi) - Vm-[}{d){i) B g(x-::)

The topic of non-constant variation is discussed in some
detail in the process modeling chapter.
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1.3.3.26.10. Scatter Plot: Outlier
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1.3.3.26.10. Scatter Plot: Outlier
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The scatter plot here reveals

1. abasic linear relationship between X and Y for most of
the data, and
2. asingle outlier (at X = 375).

An outlier is defined as a data point that emanates from a
different model than do the rest of the data. The data here
appear to come from a linear model with a given slope and
variation except for the outlier which appears to have been
generated from some other model.

Outlier detection isimportant for effective modeling. Outliers
should be excluded from such model fitting. If all the data
here are included in a linear regression, then the fitted model
will be poor virtualy everywhere. If the outlier is omitted
from the fitting process, then the resulting fit will be excellent
almost everywhere (for all points except the outlying point).
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1.3.3.26.11. Scatterplot Matrix
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1.3.3.26.11. Scatter plot Matrix

Purpose: Given a set of variables Xy, Xy, ..., Xy, the scatterplot
Ch.eck. matrix contains al the pairwise scatter plots of the variables
Pairwise on a single page in a matrix format. That is, if there are k
Relationships  variables, the scatterplot matrix will have k rows and k
Between columns and the ith row and jth column of this matrix isa
Variables plot of X; versus X;.

Although the basic concept of the scatterplot matrix is
simple, there are numerous alternatives in the details of the
plots.

1. Thediagonal plot issimply a 45-degree line since we
are plotting X versus X;j. Although this has some

usefulness in terms of showing the univariate
distribution of the variable, other alternatives are
common. Some users prefer to use the diagonal to
print the variable label. Another alternative isto plot
the univariate histogram on the diagonal .
Alternatively, we could smply leave the diagonal
blank.

2. Since X; versus X; is equivalent to X; versus X; with

the axes reversed, some prefer to omit the plots below
the diagonal.

3. It can be helpful to overlay some type of fitted curve
on the scatter plot. Although a linear or quadratic fit
can be used, the most common alternative is to
overlay a lowess curve.

4. Due to the potentially large number of plots, it can be
somewhat tricky to provide the axes labels in a way
that is both informative and visually pleasing. One
aternative that seems to work well isto provide axis
labels on alternating rows and columns. That is, row
one will have tic marks and axis labels on the | eft
vertical axisfor the first plot only while row two will
have the tic marks and axis labels for the right
vertical axisfor the last plot in the row only. This
alternating pattern continues for the remaining rows.
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1.3.3.26.11. Scatterplot Matrix

A similar pattern is used for the columns and the
horizontal axes labels. Another aternative isto put
the minimum and maximum scale value in the
diagonal plot with the variable name.

5. Some analysts prefer to connect the scatter plots.
Others prefer to leave a little gap between each plot.

6. Although this plot type is most commonly used for
scatter plots, the basic concept is both simple and
powerful and extends easily to other plot formats that
involve pairwise plots such as the guantile-quantile

plot and the bihistogram.
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This sample plot was generated from pollution data
collected by NIST chemist Lloyd Currie.

There are a number of waysto view this plot. If we are
primarily interested in a particular variable, we can scan the
row and column for that variable. If we are interested in
finding the strongest relationship, we can scan al the plots
and then determine which variables are related.

Definition Given k variables, scatter plot matrices are formed by
creating k rows and k columns. Each row and column
defines a single scatter plot

Theindividua plot for row i and column j is defined as

« Vertical axis: Variable X;
« Horizontal axis: Variable Xj

Questions The scatterplot matrix can provide answers to the following
guestions:
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1.3.3.26.11. Scatterplot Matrix

1. Arethere pairwise relationships between the
variables?

2. If there are relationships, what is the nature of these
relationships?

3. Arethereoutliersin the data?

4. Isthere clustering by groups in the data?

Linking and The scatterplot matrix serves as the foundation for the
Brushing concepts of linking and brushing.

By linking, we mean showing how a point, or set of points,
behaves in each of the plots. This is accomplished by
highlighting these points in some fashion. For example, the
highlighted points could be drawn as afilled circle while
the remaining points could be drawn as unfilled circles. A
typical application of this would be to show how an outlier
shows up in each of the individua pairwise plots. Brushing
extends this concept a bit further. In brushing, the points to
be highlighted are interactively selected by a mouse and the
scatterplot matrix is dynamically updated (ideally in redl
time). That is, we can select a rectangular region of points
in one plot and see how those points are reflected in the
other plots. Brushing is discussed in detail by Becker,
Cleveland, and Wilks in the paper "Dynamic Graphics for
Data Analysis' (Cleveland and McGill, 1988).

Related Star plot
Techniques Scatter plot

Conditioning plot
Locally weighted |least squares

Software Scatterplot matrices are becoming increasingly common in
general purpose statistical software programs. If a software
program does not generate scatterplot matrices, but it does
provide multiple plots per page and scatter plots, it should
be possible to write a macro to generate a scatterplot matrix.
Brushing is available in a few of the general purpose
statistical software programs that emphasize graphical
approaches.
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1.3.3.26.12. Conditioning Plot
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1.3.3.26.12. Conditioning Plot

Purpose:
Check
pairwise
relationship
between
two
variables
conditional
on athird
variable

A conditioning plot, aso known as a coplot or subset plot, is
a plot of two variables conditional on the value of a third
variable (called the conditioning variable). The conditioning
variable may be either a variable that takes on only a few
discrete values or a continuous variable that is divided into a
limited number of subsets.

One limitation of the scatterplot matrix is that it cannot show
interaction effects with another variable. This is the strength
of the conditioning plot. It is also useful for displaying scatter
plots for groups in the data. Although these groups can aso
be plotted on a single plot with different plot symboals, it can
often be visually easier to distinguish the groups using the
conditioning plot.

Although the basic concept of the conditioning plot matrix is
simple, there are numerous alternatives in the details of the
plots.

1. It can be helpful to overlay some type of fitted curve on
the scatter plot. Although a linear or quadratic fit can
be used, the most common alternative isto overlay a
lowess curve.

2. Dueto the potentially large number of plots, it can be
somewhat tricky to provide the axis labels in a way that
is both informative and visually pleasing. One
alternative that seems to work well isto provide axis
labels on alternating rows and columns. That is, row
one will have tic marks and axis labels on the left
vertical axisfor the first plot only while row two will
have the tic marks and axis labels for the right vertical
axis for the last plot in the row only. This alternating
pattern continues for the remaining rows. A similar
pattern is used for the columns and the horizontal axis
labels. Note that this approach only works if the axes
limits are fixed to common values for all of the plots.

3. Some analysts prefer to connect the scatter plots.
Others prefer to leave a little gap between each plot.
Alternatively, each plot can have its own labeling with

http://www.itl.nist.gov/div898/handbook/eda/section3/eda33qc.htm[6/27/2012 2:01:31 PM]


http://www.itl.nist.gov/div898/handbook/index.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/scatplma.htm
http://www.itl.nist.gov/div898/handbook/pmd/section1/pmd144.htm

1.3.3.26.12. Conditioning Plot

Sample
Plot

Definition

Questions

the plots not connected.

4. Although this plot type is most commonly used for
scatter plots, the basic concept is both simple and
powerful and extends easily to other plot formats.

TIME
7 S0 A 180
TEMF =35

TEWF =25 TEMWF =45

. Yianarnn
TEMWF =55

In this case, temperature has six distinct values. We plot
torque versustime for each of these temperatures. This
example is discussed in more detail in the process modeling
chapter.

Given the variables X, Y, and Z, the conditioning plot is
formed by dividing the values of Z into k groups. There are
several ways that these groups may be formed. There may be
a natural grouping of the data, the data may be divided into
several equal sized groups, the grouping may be determined
by clustersin the data, and so on. The page will be divided
into n rows and ¢ columns where ne > k. Each row and
column defines a single scatter plot.

Theindividua plot for row i and column j is defined as

« Vertica axis; Variable Y
« Horizonta axis: Variable X

where only the points in the group corresponding to the ith
row and jth column are used.

The conditioning plot can provide answers to the following
guestions:

1. Isthere arelationship between two variables?

2. If thereis arelationship, does the nature of the
relationship depend on the value of a third variable?

3. Aregroupsin the data similar?

4. Arethere outliersin the data?
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1.3.3.26.12. Conditioning Plot

Related Scatter plot

Techniques  Scatterplot matrix
Locally weighted |least squares

Software Scatter plot matrices are becoming increasingly common in
general purpose statistical software programs, including. If a
software program does not generate conditioning plots, but it
does provide multiple plots per page and scatter plots, it
should be possible to write a macro to generate a
conditioning plot.
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1.3.3.27. Spectral Plot
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1.3.3.27. Spectral Plot

Purpose:
Examine
Cyclic

Sructure

Sample
Plot

A spectral plot (_Jenkins and Watts 1968 or Bloomfield 1976)
isa graphical technique for examining cyclic structure in the
frequency domain. It is a smoothed Fourier transform of the
autocovariance function.

The frequency is measured in cycles per unit time where unit
time is defined to be the distance between 2 points. A
frequency of O corresponds to an infinite cycle while a
frequency of 0.5 corresponds to a cycle of 2 data points. Equi-
spaced time series are inherently limited to detecting
frequencies between 0 and 0.5.

Trends should typically be removed from the time series
before applying the spectral plot. Trends can be detected from
a run sequence plot. Trends are typically removed by
differencing the series or by fitting a straight line (or some
other polynomial curve) and applying the spectral analysis to
the residuals.

Spectral plots are often used to find a starting value for the
frequency, w, in the sinusoidal model

Y; = C +adn (2nwt; + ¢) + F;

See the beam deflection case study for an example of this.

Spectrum
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1.3.3.27. Spectral Plot

Definition:
Variance
Versus
Freguency

Questions

Importance
Check

Cyclic
Behavior
of Time
Series

Examples

Related
Techniques

Case Sudy

Software

NIST
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This spectral plot shows one dominant frequency of
approximately 0.3 cycles per observation.

The spectral plot is formed by:

« Vertical axis: Smoothed variance (power)
« Horizontal axis: Frequency (cycles per observation)

The computations for generating the smoothed variances can
be involved and are not discussed further here. The details can
be found in the Jenkins and Bloomfield references and in
most texts that discuss the frequency analysis of time series.

The spectral plot can be used to answer the following
guestions:

1. How many cyclic components are there?
2. Isthere a dominant cyclic frequency?
3. If thereis a dominant cyclic frequency, what isit?

The spectral plot is the primary technique for assessing the
cyclic nature of univariate time series in the frequency
domain. It is almost always the second plot (after arun
sequence plot) generated in a frequency domain analysis of a
time series.

1. Random (= White Noise)

2. Strong autocorrelation and autoregressive model
3. Sinusoidal model

Autocorrelation Plot

Complex Demodulation Amplitude Plot
Complex Demodulation Phase Plot

The spectral plot is demonstrated in the beam deflection data
case study.

Spectral plots are a fundamental technique in the frequency
analysis of time series. They are available in many general
purpose statistical software programs.
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1.3.3.27.1. Spectral Plot: Random Data

| P ENGINEERING STATISTICS HANDBOOK

HOME TOOLS & AIDS SEARCH BACK MNEXT

1. Exploratory Data Analysis

1.3. EDA Techniques
1.3.3. Graphical Techniques: Alphabetic

1.3.3.27. Spectral Plot

1.3.3.27.1. Spectral Plot: Random Data

Soectral

Plot of 200 5 SPECTRAL PLOT
Normal ] r‘ ﬂ
Random 4 I' ﬁl |

Numbers ] l

Y

\n/
)

Speciral Power
- na
e

T " T " | T | ! | ! |
1] 01 02 03 04 05
Frequency (cycles per observation)

RANDOM

Conclusions  We can make the following conclusions from the above plot.

1. There are no dominant peaks.
2. Thereisno identifiable pattern in the spectrum.
3. The data are random.

Discussion For random data, the spectral plot should show no dominant
peaks or distinct pattern in the spectrum. For the sample plot
above, there are no clearly dominant peaks and the peaks
seem to fluctuate at random. This type of appearance of the
spectral plot indicates that there are no significant cyclic
patterns in the data.
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We can make the following conclusions from the above
plot.

1. Strong dominant peak near zero.
2. Peak decays rapidly towards zero.
3. An autoregressive model is an appropriate model.

This spectral plot starts with a dominant peak near zero
and rapidly decays to zero. Thisis the spectral plot
signature of a process with strong positive autocorrel ation.
Such processes are highly non-random in that thereis high
association between an observation and a succeeding
observation. In short, if you know Y; you can make a strong

guess as to what Yj1 will be.

The next step would be to determine the parameters for the
autoregressive model:

Yi=Ag+ A Y, + B

Such estimation can be done by linear regression or by
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1.3.3.27.2. Spectral Plot: Strong Autocorrelation and Autoregressive Model
fitting a Box-Jenkins autoregressive (AR) model.

Theresidual standard deviation for this autoregressive
modd will be much smaller than the residual standard
deviation for the default model

Yi=Ag+ B

Then the system should be reexamined to find an
explanation for the strong autocorrelation. Is it due to the

1. phenomenon under study; or

2. drifting in the environment; or

3. contamination from the data acquisition system
(DAS)?

Oftentimes the source of the problem isitem (3) above
where contamination and carry-over from the data
acquisition system result because the DAS does not have
time to electronically recover before collecting the next
data point. If this is the case, then consider slowing down
the sampling rate to re-achieve randomness.
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1.3.3.27.3. Spectral Plot: Sinusoidal Model
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We can make the following conclusions from the above
plot.

1. Thereisa single dominant peak at approximately
0.3.

2. Thereisan underlying single-cycle sinusoidal
model.

This spectral plot shows a single dominant frequency. This
indicates that a single-cycle sinusoidal model might be

appropriate.

If one were to naively assume that the data represented by
the graph could be fit by the model

Yi=Ag+ By

and then estimate the constant by the sample mean, the
analysis would be incorrect because

« the sample mean is biased,;
« the confidence interval for the mean, which is valid
only for random data, is meaningless and too small.
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1.3.3.27.3. Spectral Plot: Sinusoidal Model

On the other hand, the choice of the proper model
Y; = C + adin (2nwt; + @) + E;

where ¢x is the amplitude, w is the frequency (between 0
and .5 cycles per observation), and ¢ is the phase can be fit
by non-linear least squares. The beam deflection data case
study demonstrates fitting this type of mode.

Recommended The recommended next steps are to:
Next Sieps
1. Estimate the frequency from the spectral plot. This
will be helpful as a starting value for the subsequent
non-linear fitting. A complex demodulation phase
plot can be used to fine tune the estimate of the
frequency before performing the non-linear fit.

2. Do a complex demodulation amplitude plot to obtain
an initial estimate of the amplitude and to determine
if a constant amplitude is justified.

3. Carry out a non-linear fit of the model

Y, = O +asn (2mut; + ¢) + B,
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1.3.3.28. Standard Deviation Plot
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1.3.3.28. Standar d Deviation Plot

Purpose: Standard deviation plots are used to see if the standard

Detect deviation varies between different groups of the data. The
Changesin  grouping is determined by the analyst. In most cases, the data
Scale provide a specific grouping variable. For example, the groups
Between may be the levels of a factor variable. In the sample plot
Groups below, the months of the year provide the grouping.

Standard deviation plots can be used with ungrouped data to
determine if the standard deviation is changing over time. In
this case, the data are broken into an arbitrary number of
equal-sized groups. For example, a data series with 400
points can be divided into 10 groups of 40 points each. A
standard deviation plot can then be generated with these
groups to see if the standard deviation isincreasing or
decreasing over time.

Although the standard deviation is the most commonly used
measure of scale, the same concept applies to other measures
of scale. For example, instead of plotting the standard
deviation of each group, the median absolute deviation or the
average absolute deviation might be plotted instead. This
might be done if there were significant outliersin the data
and a more robust measure of scale than the standard
deviation was desired.

Standard deviation plots are typically used in conjunction
with mean plots. The mean plot would be used to check for

shiftsin location while the standard deviation plot would be
used to check for shiftsin scale.

Sample Plot
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1.3.3.28. Standard Deviation Plot

Definition:
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This sample standard deviation plot shows

1. thereisa shift in variation;
2. greatest variation is during the summer months.

Standard deviation plots are formed by:

« Vertical axis: Group standard deviations
« Horizontal axis: Group identifier

A reference lineis plotted at the overall standard deviation.

The standard deviation plot can be used to answer the
following questions.

1. Arethere any shiftsin variation?
2. What is the magnitude of the shiftsin variation?
3. Isthere a distinct pattern in the shiftsin variation?

A common assumption in 1-factor analyses is that of equal
variances. That is, the variance is the same for different
levels of the factor variable. The standard deviation plot
provides a graphical check for that assumption. A common
assumption for univariate data is that the variance is constant.
By grouping the data into equi-sized intervals, the standard
deviation plot can provide a graphical test of this assumption.

Mean Plot
DOE Standard Deviation Plot

Most general purpose statistical software programs do not
support a standard deviation plot. However, if the statistical
program can generate the standard deviation for a group, it
should be feasible to write a macro to generate this plot.
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1.3.3.28. Standard Deviation Plot
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1.3.3.29. Star Plot

Purpose:
Display
Multivariate
Data

Sample Plot

The star plot (Chambers 1983) is a method of displaying
multivariate data. Each star represents a single observation.
Typicaly, star plots are generated in a multi-plot format with
many stars on each page and each star representing one
observation.

Star plots are used to examine the relative values for a single
data point (e.g., point 3 islarge for variables 2 and 4, small
for variables 1, 3, 5, and 6) and to locate similar points or
dissmilar points.

The plot below contains the star plots of 16 cars. The data
file actually contains 74 cars, but we restrict the plot to what
can reasonably be shown on one page. The variable list for
the sample star plotis

1 Price

2 Mileage (MPG)

31978 Repair Record (1 = Worgt, 5 = Best)
41977 Repair Record (1 = Worst, 5 = Best)
5 Headroom

6 Rear Seat Room

7 Trunk Space

8 Weight

9 Length
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We can look at these plots individually or we can use them
to identify clusters of cars with similar features. For example,
we can look at the star plot of the Cadillac Seville and see
that it is one of the most expensive cars, gets below average
(but not among the worst) gas mileage, has an average repair
record, and has average-to-above-average roominess and
size. We can then compare the Cadillac models (the last three
plots) with the AMC models (the first three plots). This
comparison shows distinct patterns. The AMC models tend
to be inexpensive, have below average gas mileage, and are
small in both height and weight and in roominess. The
Cadillac models are expensive, have poor gas mileage, and
are large in both size and roominess.

The star plot consists of a sequence of equi-angular spokes,
caled radii, with each spoke representing one of the
variables. The data length of a spoke is proportional to the
magnitude of the variable for the data point relative to the
maximum magnitude of the variable across al data points. A
lineis drawn connecting the data values for each spoke. This
gives the plot a star-like appearance and the origin of the
name of this plot.

The star plot can be used to answer the following questions:

1. What variables are dominant for a given observation?

2. Which observations are most similar, i.e., are there
clusters of observations?

3. Arethere outliers?

Star plots are helpful for small-to-moderate-sized
multivariate data sets. Their primary weakness is that their
effectiveness is limited to data sets with less than a few
hundred points. After that, they tend to be overwhelming.

Graphical techniques suited for large data sets are discussed
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by Scott.

Related Alternative ways to plot multivariate data are discussed in
Techniqgues  Chambers, du Toit, and Everitt.

Software Star plots are available in some general purpose statistical
software progams.
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1.3.3.30. Weibull Plot

Purpose:
Graphical
Check To See
If Data Come
Froma
Population
That Would
Be Fit by a
Weibull
Distribution

Sample Plot

The Weibull plot (Nelson 1982) is a graphical technique for
determining if a data set comes from a population that
would logically be fit by a 2-parameter Weibull distribution
(the location is assumed to be zero).

The Weibull plot has special scales that are designed so that
if the data do in fact follow a Weibull distribution, the
points will be linear (or nearly linear). The least squaresfit
of this lineyields estimates for the shape and scale
parameters of the Weibull distribution (the location is
assumed to be zero).

Specifically, the shape parameter is the reciprocal of the
slope of the fitted line and the scale parameter is the
exponent of the intercept of the fitted line.

The Weibull distribution also has the property that the scale
parameter falls at the 63.2% point irrespective of the value
of the shape parameter. The plot shows a horizontal line at
this 63.2% point and a vertical line where the horizontal
line intersects the least squaresfitted line. This vertical line
shows the value of scale parameter.

Weibull Plot
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This Weibull plot shows that:

1. the assumption of a Weibull distribution is
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Cumulative
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Versus
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Questions

I mportance:
Check
Distributional
Assumptions

Related
Techniques

reasonable;
2. the scale parameter estimate is computed to be 33.32;
3. the shape parameter estimate is computed to be 5.28;
and
4. there are no outliers.

Note that the values on the x-axis ("0", "1", and "2") are the
exponents. These actually denote the value 10° = 1, 101 =
10, and 10? = 100.

The Weibull plot isformed by:

» Vertical axis: Weibull cumulative probability
expressed as a percentage

« Horizontal axis: ordered failure times (in a LOG10
scale)

The vertical scaleisIn(-In(1-p)) where p=(i-0.3)/(n+0.4)
and i isthe rank of the observation. This scaleis chosen in
order to linearize the resulting plot for Weibull data.

The Weibull plot can be used to answer the following
guestions:

1. Do the datafollow a 2-parameter Weibull
distribution?

2. What is the best estimate of the shape parameter for
the 2-parameter Weibull distribution?

3. What is the best estimate of the scale (= variation)
parameter for the 2-parameter Weibull distribution?

Many statistical analyses, particularly in the field of
reliability, are based on the assumption that the data follow
aWeibull distribution. If the analysis assumes the data
follow a Weibull distribution, it isimportant to verify this
assumption and, if verified, find good estimates of the
Weibull parameters.

Weibull Probability Plot
Weibull PPCC Plot

Weibull Hazard Plot

The Weibull probability plot (in conjunction with the
Weibull PPCC plot), the Weibull hazard plot, and the
Weibull plot are al similar techniques that can be used for
assessing the adequacy of the Weibull distribution as a
model for the data, and additionally providing estimation
for the shape, scale, or location parameters.

The Weibull hazard plot and Weibull plot are designed to
handle censored data (which the Weibull probability plot
does not).
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1.3.3.30. Weibull Plot

Case Sudy The Weibull plot is demonstrated in the fatigue life of
aluminum alloy specimens case study.

Software Weibull plots are generally available in statistical software
programs that are designed to analyze reliability data.
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1.3.3.31. Youden Plot

Purpose:
Interlab
Comparisons

Sample Plot

Definition:
Response 1
Versus
Response 2
Coded by
Lab

Y ouden plots are a graphical technique for analyzing
interlab data when each lab has made two runs on the same
product or one run on two different products.

The Y ouden plot is a ssmple but effective method for
comparing both the within-laboratory variability and the
between-laboratory variability.

Youden Plot
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This plot shows:

1. Not all labs are equivalent.

2. Lab4isbiased low.

3. Lab 3 has within-lab variability problems.
4. Lab 5 has an outlying run.

Y ouden plots are formed by:

1. Vertica axis: Response variable 1 (i.e., run 1 or
product 1 response value)

2. Horizontal axis. Response variable 2 (i.e., run 2 or
product 2 response value)

In addition, the plot symbol isthe lab id (typically an
integer from 1 to k where k is the number of |abs).
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Questions

I mportance

DOE Youden
Plot

Related
Techniques

Software
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Sometimes a 45-degree reference lineis drawn. Ideally, a
lab generating two runs of the same product should produce
reasonably similar results. Departures from this reference
line indicate inconsistency from the lab. If two different
products are being tested, then a 45-degree line may not be
appropriate. However, if the labs are consistent, the points
should lie near some fitted straight line.

The Y ouden plot can be used to answer the following
guestions:

1. Areadll labs equivalent?

2. What labs have between-lab problems
(reproducibility)?

3. What labs have within-lab problems (repeatability)?

4. What labs are outliers?

In interlaboratory studies or in comparing two runs from the
same lab, it is useful to know if consistent results are
generated. Y ouden plots should be a routine plot for
analyzing this type of data.

The DOE Y ouden plot is a specialized Y ouden plot used in
the design of experiments. In particular, it is useful for full
and fractional designs.

Scatter Plot
The Youden plot is essentially a scatter plot, so it should be

feasible to write a macro for a Y ouden plot in any general
purpose statistical program that supports scatter plots.
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1.3.3.31.1. DOE Youden Plot

DOE Youden  The DOE (Design of Experiments) Youden plot is a specialized Y ouden plot used in the

Plot: analysis of full and fractional experiment designs. In particular, it isused in conjunction

Introduction  with the Y ates algorithm. These designs may have a low level, coded as"-1" or "-", and a
high level, coded as "+1" or "+", for each factor. In addition, there can optionally be one or
more center points. Center points are at the midpoint between the low and high levels for
each factor and are coded as "0".

The Y ates agorithm and the the DOE Y ouden plot only use the "-1" and "+1" points. The
Y ates agorithm is used to estimate factor effects. The DOE Y ouden plot can be used to help
determine the approriate model to based on the effect estimates from the Y ates algorithm.

Construction ~ The following are the primary steps in the construction of the DOE Y ouden plot.

of DOE

Youden Plot 1. For agiven factor or interaction term, compute the mean of the response variable for
the low level of the factor and for the high level of the factor. Any center points are
omitted from the computation.

2. Plot the point where the y-coordinate is the mean for the high level of the factor and
the x-coordinate is the mean for the low level of the factor. The character used for the
plot point should identify the factor or interaction term (e.g., "1" for factor 1, "13" for
the interaction between factors 1 and 3).

3. Repeat steps 1 and 2 for each factor and interaction term of the data.

The high and low values of the interaction terms are obtained by multiplying the
corresponding values of the main level factors. For example, the interaction term X3 is

obtained by multiplying the values for X; with the corresponding values of X3. Since the
values for X, and X3 are either "-1" or "+1", the resulting values for X3 are also either "-1"
or "+1".

In summary, the DOE Y ouden plot is a plot of the mean of the response variable for the
high level of afactor or interaction term against the mean of the response variable for the
low level of that factor or interaction term.

For unimportant factors and interaction terms, these mean values should be nearly the same.
For important factors and interaction terms, these mean values should be quite different. So
the interpretation of the plot is that unimportant factors should be clustered together near the
grand mean. Points that stand apart from this cluster identify important factors that should
be included in the model.

Sample DOE  Thefollowing isa DOE Y ouden plot for the data used in the Eddy current case study. The
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1.3.3.31.1. DOE Y ouden Plot

Youden Plot analysis in that case study demonstrated that X1 and X2 were the most important factors.

Youden Plot for Eddy Current Data
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Interpretation  From the above DOE Y ouden plot, we see that factors 1 and 2 stand out from the others.

of the Sample  That is, the mean response values for the low and high levels of factor 1 and factor 2 are
DOE Youden  quite different. For factor 3 and the 2 and 3-term interactions, the mean response values for
Plot the low and high levels are similar.

We would conclude from this plot that factors 1 and 2 are important and should be included
in our final model while the remaining factors and interactions should be omitted from the
final model.

Case Sudy The Eddy current case study demonstrates the use of the DOE Y ouden plot in the context of
the analysis of a full factorial design.

Software DOE Y ouden plots are not typically available as built-in plots in statistical software
programs. However, it should be relatively straightforward to write a macro to generate this
plot in most general purpose statistical software programs.
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1.3.3.32. 4-Plot
Purpose: The 4-plot is a collection of 4 specific EDA graphical
Check technigues whose purpose is to test the assumptions that
Underlying underlie most measurement processes. A 4-plot consists of
Statistical a
Assumptions

1. run sequence plot;

2. lag plat;

3. histogram;

4. normal probability plot.

If the 4 underlying assumptions of a typical measurement
process hold, then the above 4 plots will have a
characteristic appearance (see the normal random numbers
case study below); if any of the underlying assumptions
fail to hold, then it will be revealed by an anomalous
appearance in one or more of the plots. Several commonly
encountered situations are demonstrated in the case studies
below.

Although the 4-plot has an obvious use for univariate and
time series data, its usefulness extends far beyond that.
Many statistical models of the form

Y = f( X1, Xi) + B

have the same underlying assumptions for the error term.
That is, no matter how complicated the functional fit, the
assumptions on the underlying error term are still the
same. The 4-plot can and should be routinely applied to
the residuals when fitting models regardless of whether the
model is simple or complicated.

Sample Plot:
Process Has
Fixed
Location,
Fixed
Variation,
Non-Random
(Oscillatory),
Non-Normal
U-Shaped
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1.3.3.32. 4-Plot

Distribution,
and Has 3
Outliers.

Definition:

1. Run
Sequence
Plot;

2. Lag Plot;
3. Histogram;
4. Normal
Probability
Plot

4-PLOT
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This 4-plot reveals the following:

1. the fixed location assumption is justified as shown
by the run sequence plot in the upper left corner.

2. the fixed variation assumption isjustified as shown
by the run sequence plot in the upper left corner.

3. the randomness assumption is violated as shown by
the non-random (oscillatory) lag plot in the upper
right corner.

4. the assumption of a common, normal distribution is
violated as shown by the histogram in the lower |eft
corner and the normal probability plot in the lower
right corner. The distribution is non-normal and isa
U-shaped distribution.

5. there are severa outliers apparent in the lag plot in
the upper right corner.

The 4-plot consists of the following:

1. Run sequence plot to test fixed location and
variation.
o Vertically: Y,
o Horizontaly: i
2. Lag Plot to test randomness.
o Verticaly: Y,
o Horizontally: Y;_1
3. Histogram to test (normal) distribution.
o Verticaly: Counts
o Horizontally: Y
4. Normal probability plot to test normal distribution.
o Vertically: Ordered Y;

o Horizontally: Theoretical values from a
normal N(0O,1) distribution for ordered Y;
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Questions

I mportance:
Testing
Underlying
Assumptions
Helps Ensure
the Validity of
the Final
Scientific and
Engineering
Conclusions

4-plots can provide answers to many questions:

Is the process in-control, stable, and predictable?
I's the process drifting with respect to location?
I's the process drifting with respect to variation?
Are the data random?
Is an observation related to an adjacent observation?
If the data are a time series, isis white noise?
If the data are a time series and not white noise, isit
sinusoidal, autoregressive, etc.?
8. If the data are non-random, what is a better model ?
9. Doesthe process follow a normal distribution?
10. If non-normal, what distribution does the process
follow?
11. Isthe model

Y, =4+ E;

valid and sufficient?

NogrwdhE

12. If the default model is insufficient, what is a better
modedl ?
13. Istheformula g, = 3'/‘1;;\; valid?

14. |sthe sample mean a good estimator of the process
location?

15. If not, what would be a better estimator?

16. Arethere any outliers?

There are 4 assumptions that typically underlie all
measurement processes, namely, that the data from the
process at hand "behave like":

1. random drawings;

2. from afixed distribution;

3. with that distribution having a fixed location; and
4. with that distribution having fixed variation.

Predictability is an all-important goal in science and
engineering. If the above 4 assumptions hold, then we
have achieved probabilistic predictability--the ability to
make probability statements not only about the processin
the past, but also about the processin the future. In short,
such processes are said to be "statistically in control”. If
the 4 assumptions do not hold, then we have a process that
is drifting (with respect to location, variation, or
distribution), is unpredictable, and is out of control. A
simple characterization of such processes by a location
estimate, a variation estimate, or a distribution "estimate"
inevitably leads to optimistic and grossly invalid
engineering conclusions.

Inasmuch as the validity of the final scientific and
engineering conclusions isinextricably linked to the
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Inter pretation:
Flat, Equi-
Banded,
Random, Bell-
Shaped, and
Linear

Related
Techniques

Case Sudies

Software

validity of these same 4 underlying assumptions, it
naturally follows that there is a real necessity for al 4
assumptions to be routinely tested. The 4-plot (run
sequence plot, lag plot, histogram, and normal probability
plot) is seen as a smple, efficient, and powerful way of
carrying out this routine checking.

Of the 4 underlying assumptions:

1. If the fixed location assumption holds, then the run
sequence plot will be flat and non-drifting.

2. If the fixed variation assumption holds, then the
vertical spread in the run sequence plot will be
approximately the same over the entire horizontal
axis.

3. If the randomness assumption holds, then the lag
plot will be structureless and random.

4. If the fixed distribution assumption holds (in
particular, if the fixed normal distribution
assumption holds), then the histogram will be bell-
shaped and the normal probability plot will be
approximatelylinear.

If al 4 of the assumptions hold, then the processis
"statistically in control”. In practice, many processes fall
short of achieving this ideal.

Run Sequence Plot

Lag Plot

Histogram

Normal Probability Plot

Autocorrelation Plot

Spectral Plot
PPCC Plot

The 4-plot is used in most of the case studies in this
chapter:

Normal random numbers (the ideal)

Uniform random numbers

Random walk

Josephson junction cryothermometry
Beam deflections

Filter transmittance

Standard resistor

Heat flow meter 1

N A~WONE

It should be feasible to write a macro for the 4-plot in any
general purpose statistical software program that supports
the capability for multiple plots per page and supports the
underlying plot techniques.

http://www.itl .nist.gov/div898/handbook/eda/section3/eda3332.htm[6/27/2012 2:01:40 PM]


http://www.itl.nist.gov/div898/handbook/eda/section3/runseqpl.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/lagplot.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/histogra.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/normprpl.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/autocopl.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/spectrum.htm
http://www.itl.nist.gov/div898/handbook/eda/section3/ppccplot.htm

1.3.3.32. 4-Plot

NIST

—_— [HOME [TOOLS & AIDS [SEARCH [BACK MNEXT]|
SEMATECH

http://www.itl .nist.gov/div898/handbook/eda/section3/eda3332.htm[6/27/2012 2:01:40 PM]


http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/
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The 6-plot is a collection of 6 specific graphical techniques
whose purpose is to assess the validity of a Y versus X fit.
Thefit can be alinear fit, a non-linear fit, a LOWESS
(locally weighted least squares) fit, a spline fit, or any other

6 plots are:
Scatter plot of the response and predicted values versus
the independent variable;
Scatter plot of the residuals versus the independent
variable;
Scatter plot of the residuals versus the predicted values;
Lag plot of the residuals;
Histogram of the residuals;
Normal probability plot of the residuals.
6-PLOT (PONTIUS DAT)
0.003 . 0.003 .
0,001 : ' oo -
£0.001° .t -0.001°7 .
00037 - ‘| 0003
T 0,005 T -0.005 T
1000000 3002000 1000000 3000000 0 1 2 3
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. " .
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| I o 0,005 e
-0.004 0,001 0.002 4001 4] .01 23-2-101 2 3
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This 6-plot, which followed a linear fit, shows that the linear
model is not adequate. It suggests that a quadratic model
would be a better model.

Purpose:
Graphical
Model
Validation
The
1.
2.
3.
4,
5.
6.
Sample Plot .
o]
a
0.002
0.0007
Definition:
6

The 6-plot consists of the following:
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1.3.3.33. 6-Plot

Component 1. Response and predicted values
Plots o Vertical axis. Response variable, predicted
values

o Horizontal axis. Independent variable
2. Residuals versus independent variable
o Vertical axis. Residuals
o Horizontal axis: Independent variable
3. Residuals versus predicted values
o Vertical axis. Residuals
o Horizontal axis: Predicted values
4. Lag plot of residuals
o Vertical axis: RES(I)
o Horizontal axis: RES(I-1)
5. Histogram of residuals
o Vertical axis. Counts
o Horizontal axis. Residual values
6. Normal probability plot of residuals
o Vertical axis: Ordered residuals
o Horizontal axis: Theoretical valuesfrom a
normal N(0O,1) distribution for ordered residuals

Questions The 6-plot can be used to answer the following questions:

1. Arethe residuals approximately normally distributed
with a fixed location and scale?

2. Arethereoutliers?

3. Isthe fit adequate?

4. Do the residuals suggest a better fit?

Importance. A model involving a response variable and a single
Validating independent variable has the form:

Mode€l
Y= f(X) + B

where Y isthe response variable, X is the independent
variable, f isthe linear or non-linear fit function, and E is the
random component. For a good model, the error component
should behave like:

random drawings (i.e., independent);
from a fixed distribution;

with fixed location; and

with fixed variation.

PONPE

In addition, for fitting models it is usually further assumed
that the fixed distribution is normal and the fixed location is
zero. For a good model the fixed variation should be as small
as possible. A necessary component of fitting models is to
verify these assumptions for the error component and to
assess whether the variation for the error component is
sufficiently small. The histogram, lag plot, and normal
probability plot are used to verify the fixed distribution,
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Related
Techniques

Case Sudy

Software

NIST
SEMATECH

location, and variation assumptions on the error component.
The plot of the response variable and the predicted values
versus the independent variable is used to assess whether the
variation is sufficiently small. The plots of the residuals
versus the independent variable and the predicted valuesis
used to assess the independence assumption.

Assessing the validity and quality of the fit in terms of the
above assumptions is an absolutely vital part of the model-
fitting process. No fit should be considered compl ete without
an adequate model validation step.

Linear L east Squares
Non-Linear L east Squares
Scatter Plot

Run Sequence Plot

Lag Plot

Normal Probability Plot
Histogram

The 6-plot is used in the Alaska pipeline data case study.

It should be feasible to write a macro for the 6-plot in any
general purpose statistical software program that supports the
capability for multiple plots per page and supports the
underlying plot techniques.
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1 Factor
y=f(x)+e

Multi-
Factor/Comparative

y =
f(xp, x1,x2,...,xk) +
e

Multi-
Factor/Screening
y =
f(x1,x2,X3,...,xk) +
e
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1.3.4. Graphical Techniques: By Problem Category
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Confirmatory
Satistics

Interval
Estimates

The techniques discussed in this section are classical
statistical methods as opposed to EDA techniques. EDA and
classical techniques are not mutually exclusive and can be
used in a complementary fashion. For example, the analysis
can start with some simple graphical techniques such as the
4-plot followed by the classical confirmatory methods
discussed herein to provide more rigorous statements about
the conclusions. If the classical methods yield different
conclusions than the graphical analysis, then some effort
should be invested to explain why. Often thisisan
indication that some of the assumptions of the classical
techniques are violated.

Many of the quantitative techniques fall into two broad
categories:

1. Interval estimation
2. Hypothesistests

It is common in statistics to estimate a parameter from a
sample of data. The value of the parameter using all of the
possible data, not just the sample data, is called the
population parameter or true value of the parameter. An
estimate of the true parameter value is made using the
sample data. Thisis called a point estimate or a sample
estimate.

For example, the most commonly used measure of location
is the mean. The population, or true, mean is the sum of all
the members of the given population divided by the number
of members in the population. Asitistypically impractical
to measure every member of the population, a random
sample is drawn from the population. The sample mean is
calculated by summing the values in the sample and
dividing by the number of valuesin the sample. This sample
mean is then used as the point estimate of the population
mean.

Interval estimates expand on point estimates by
incorporating the uncertainty of the point estimate. In the
example for the mean above, different samples from the
same population will generate different values for the
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Hypothesis
Tests

sample mean. An interval estimate quantifies this
uncertainty in the sample estimate by computing lower and
upper values of an interval which will, with a given level of
confidence (i.e., probability), contain the population
parameter.

Hypothesis tests also address the uncertainty of the sample
estimate. However, instead of providing an interval, a
hypothesis test attempts to refute a specific claim about a
population parameter based on the sample data. For
example, the hypothesis might be one of the following:

« the population mean is equal to 10

« the population standard deviation is equal to 5

« the means from two populations are equal

« the standard deviations from 5 populations are equal

To rgject a hypothesis is to conclude that it is false.
However, to accept a hypothesis does not mean that it is
true, only that we do not have evidence to believe
otherwise. Thus hypothesis tests are usually stated in terms
of both a condition that is doubted (null hypothesis) and a
condition that is believed (alternative hypothesis).

A common format for a hypothesis test is:

Ho: A statement of the null hypothesis, e.g., two
population means are equal .

Hy A statement of the alternative hypothesis, e.g.,
two population means are not equal.

Test The test statistic is based on the specific

Statistic: hypothesis test.

Significance The significance level, «, defines the

Level: sensitivity of the test. A value of & = 0.05
means that we inadvertently reject the null
hypothesis 5% of the time when it isin fact
true. Thisis also called the type | error. The
choice of & is somewhat arbitrary, although in
practice values of 0.1, 0.05, and 0.01 are
commonly used.

The probability of rejecting the null
hypothesiswhen it isin fact false is called the
power of the test and is denoted by 1 - . Its
complement, the probability of accepting the
null hypothesis when the alternative
hypothesisis, in fact, true (type Il error), is
called /3 and can only be computed for a
specific alternative hypothesis.

Critical The critical region encompasses those values

Region: of the test statistic that lead to a rejection of
the null hypothesis. Based on the distribution
of the test statistic and the significance level,
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Versus
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Bootstrap
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a cut-off value for the test statisticis
computed. Values either above or below or
both (depending on the direction of the test)
this cut-off define the critical region.

It is important to distinguish between statistical significance
and practical significance. Statistical significance simply
means that we reject the null hypothesis. The ability of the
test to detect differences that lead to rejection of the null
hypothesis depends on the sample size. For example, for a
particularly large sample, the test may reject the null
hypothesis that two process means are equivalent. However,
in practice the difference between the two means may be
relatively small to the point of having no real engineering
significance. Similarly, if the sample sizeissmall, a
difference that is large in engineering terms may not lead to
rejection of the null hypothesis. The analyst should not just
blindly apply the tests, but should combine engineering
judgement with statistical analysis.

In some cases, it is possible to mathematically derive
appropriate uncertainty intervals. Thisis particularly true for
intervals based on the assumption of a normal distribution.
However, there are many cases in which it is not possible to
mathematically derive the uncertainty. In these cases, the
bootstrap provides a method for empirically determining an
appropriate interval.

Some of the more common classical quantitative techniques
are listed below. This list of quantitative techniques is by no
means meant to be exhaustive. Additional discussions of
classical statistical techniques are contained in the product

comparisons chapter.

« Location
1. Measures of Location
2. Confidence Limits for the Mean and One

Sample t-Test
Two Samplet-Test for Equal Means
One Factor Analysis of Variance

. Multi-Factor Analysis of Variance
e (or variability or spread)

. Measures of Scale
Bartlett's Test
Chi-Square Test
E-Test
Levene Test
. Skewness and Kurtosis
1. Measures of Skewness and Kurtosis
« Randomness
1. Autocorrelation
2. Runs Test

QRN

Q

m#www
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Distributional Measures

1. Anderson-Darling Test
2. Chi-Square Goodness-of -Fit Test

3. Kalmogorov-Smirnov Test
« Outliers

1. Detection of Outliers

2. Grubbs Test

3. Tietjen-Moore Test

4. Generalized Extreme Deviate Test
« 2-Level Factorial Designs

1. Yates Algorithm
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1.3.5.1. M easures of L ocation

Location A fundamental task in many statistical analyses isto estimate
a location parameter for the distribution; i.e., to find a typical
or central value that best describes the data.

Definition The first step is to define what we mean by a typical value.
of Location  For univariate data, there are three common definitions:

1. mean - the mean is the sum of the data points divided
by the number of data points. That is,

N
¥ =3 Y/N
i=1

The mean is that value that is most commonly referred
to as the average. We will use the term average as a
synonym for the mean and the term typical value to
refer generically to measures of location.

2. median - the median is the value of the point which has
half the data smaller than that point and half the data
larger than that point. That is, if X1, X5, ... Xy isa
random sample sorted from smallest value to largest
value, then the median is defined as:

1? :}EN-I-I};FE if ¥ is add
1} = (YNfﬂ +YEN‘;2}+1)'/-2 if V¥ is even

3. mode - the mode is the value of the random sample that
occurs with the greatest frequency. It is not necessarily
unique. The mode istypically used in a qualitative
fashion. For example, there may be a single dominant
hump in the data perhaps two or more smaller humps
in the data. Thisis usually evident from a histogram of
the data.

When taking samples from continuous popul ations, we
need to be somewhat careful in how we define the
mode. That is, any specific value may not occur more
than once if the data are continuous. What may be a
more meaningful, if less exact measure, is the midpoint
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of the class interval of the histogram with the highest

peak.
Why A natural question is why we have more than one measure of
Different the typical value. The following example helps to explain

Measures why these alternative definitions are useful and necessary.

This plot shows histograms for 10,000 random numbers
generated from a normal, an exponential, a Cauchy, and a
lognormal distribution.
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Normal Thefirst histogram is a sample from a normal distribution.

Distribution  The mean is 0.005, the median is-0.010, and the mode is -
0.144 (the mode is computed as the midpoint of the
histogram interval with the highest peak).

The normal distribution is a symmetric distribution with well-
behaved tails and a single peak at the center of the
distribution. By symmetric, we mean that the distribution can
be folded about an axis so that the 2 sides coincide. That is, it
behaves the same to the left and right of some center point.
For a normal distribution, the mean, median, and mode are
actually equivalent. The histogram above generates similar
estimates for the mean, median, and mode. Therefore, if a
histogram or normal probability plot indicates that your data
are approximated well by a normal distribution, then it is
reasonabl e to use the mean as the location estimator.

Exponential  The second histogram is a sample from an exponential

Distribution  distribution. The mean is 1.001, the median is 0.684, and the
mode is 0.254 (the mode is computed as the midpoint of the
histogram interval with the highest peak).

The exponentia distribution is a skewed, i. e., not symmetric,

distribution. For skewed distributions, the mean and median
are not the same. The mean will be pulled in the direction of
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the skewness. That is, if the right tail is heavier than the left
tail, the mean will be greater than the median. Likewise, if
the left tail is heavier than the right tail, the mean will be less
than the median.

For skewed distributions, it isnot at all obvious whether the
mean, the median, or the mode is the more meaningful
measure of the typical value. In this case, all three measures
are useful.

Cauchy The third histogram is a sample from a Cauchy distribution.

Distribution  The mean is 3.70, the median is -0.016, and the mode is -
0.362 (the mode is computed as the midpoint of the
histogram interval with the highest peak).

For better visual comparison with the other data sets, we
restricted the histogram of the Cauchy distribution to values
between -10 and 10. The full Cauchy data set in fact has a
minimum of approximately -29,000 and a maximum of
approximately 89,000.

The Cauchy distribution is a symmetric distribution with
heavy tails and a single peak at the center of the distribution.
The Cauchy distribution has the interesting property that
collecting more data does not provide a more accurate
estimate of the mean. That is, the sampling distribution of the
mean is equivalent to the sampling distribution of the origina
data. This means that for the Cauchy distribution the mean is
useless as a measure of the typical value. For this histogram,
the mean of 3.7 iswell above the vast majority of the data.
Thisis caused by a few very extreme valuesin the tail.
However, the median does provide a useful measure for the
typical value.

Although the Cauchy distribution is an extreme case, it does
illustrate the importance of heavy tailsin measuring the
mean. Extreme values in the tails distort the mean. However,
these extreme values do not distort the median since the
median is based on ranks. In general, for data with extreme
valuesin the tails, the median provides a better estimate of
location than does the mean.

Lognormal  The fourth histogram is a sample from a lognormal

Distribution  distribution. The mean is 1.677, the median is 0.989, and the
mode is 0.680 (the mode is computed as the midpoint of the
histogram interval with the highest peak).

The lognormal is also a skewed distribution. Therefore the
mean and median do not provide similar estimates for the
location. As with the exponential distribution, thereisno
obvious answer to the question of which isthe more
meaningful measure of location.

Robustness  There are various alternatives to the mean and median for
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measuring location. These alternatives were developed to
address non-normal data since the mean is an optimal
estimator if in fact your data are normal.

Tukey and Mosteller defined two types of robustness where
robustness is a lack of susceptibility to the effects of
nonnormality.

1. Robustness of validity means that the confidence
intervals for the population location have a 95%
chance of covering the population location regardless
of what the underlying distribution is.

2. Robustness of efficiency refers to high effectivenessin
the face of non-normal tails. That is, confidence
intervals for the population location tend to be amost
as narrow as the best that could be done if we knew the
true shape of the distributuion.

The mean is an example of an estimator that is the best we
can do if the underlying distribution is normal. However, it
lacks robustness of validity. That is, confidence intervals
based on the mean tend not to be precise if the underlying
distribution is in fact not normal.

The median is an example of a an estimator that tends to
have robustness of validity but not robustness of efficiency.

The alternative measures of location try to balance these two
concepts of robustness. That is, the confidence intervals for
the case when the data are normal should be almost as
narrow as the confidence intervals based on the mean.
However, they should maintain their validity even if the
underlying data are not normal. In particular, these
alternatives address the problem of heavy-tailed distributions.

Alternative A few of the more common alternative location measures are:

Measures

of Location 1. Mid-Mean - computes a mean using the data between
the 25th and 75th percentiles.

2. Trimmed Mean - similar to the mid-mean except
different percentile values are used. A common choice
isto trim 5% of the points in both the lower and upper
tails, i.e,, calculate the mean for data between the 5th
and 95th percentiles.

3. Winsorized Mean - similar to the trimmed mean.
However, instead of trimming the points, they are set
to the lowest (or highest) value. For example, all data
below the 5th percentile are set equal to the value of
the 5th percentile and all data greater than the 95th
percentile are set equal to the 95th percentile.

4. Mid-range = (smallest + largest)/2.
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Case Sudy

Software

NIST
SEMATECH

The first three aternative location estimators defined above
have the advantage of the median in the sense that they are
not unduly affected by extremesin the tails. However, they
generate estimates that are closer to the mean for data that are
normal (or nearly o).

The mid-range, sinceit is based on the two most extreme
points, is not robust. Its use is typically restricted to situations
in which the behavior at the extreme points is relevant.

The uniform random numbers case study compares the
performance of several different location estimators for a
particular non-normal distribution.

Most general purpose statistical software programs can
compute at least some of the measures of location discussed
above.
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1.3.5.2. Confidence Limitsfor the Mean

Purpose: Confidence limits for the mean (Snedecor and Cochran, 1989) are an interval estimate for the
Interval mean. Interval estimates are often desirable because the estimate of the mean varies from
Estimate sample to sample. Instead of a single estimate for the mean, a confidence interval generates a
for Mean lower and upper limit for the mean. Theinterval estimate gives an indication of how much

uncertainty thereisin our estimate of the true mean. The narrower the interval, the more
precise isour estimate.

Confidence limits are expressed in terms of a confidence coefficient. Although the choice of
confidence coefficient is somewhat arbitrary, in practice 90 %, 95 %, and 99 % intervals are
often used, with 95 % being the most commonly used.

As atechnical note, a 95 % confidence interval does not mean that thereis a 95 % probability
that the interval contains the true mean. The interval computed from a given sample either
contains the true mean or it does not. Instead, the level of confidence is associated with the
method of calculating the interval. The confidence coefficient is ssmply the proportion of
samples of a given size that may be expected to contain the true mean. That is, for a 95 %
confidence interval, if many samples are collected and the confidence interval computed, in
the long run about 95 % of these intervals would contain the true mean.

Definition:  Confidence limits are defined as;
Confidence
Interval g

?:I:t_f_-,.-' nN—
1 J2,N L\.W

where ¥ is the sample mean, s is the sample standard deviation, N is the sample size, &x is the
desired significance level, and t;_,/» \.1 isthe 100(1-a/2) percentile of the t distribution with
N - 1 degrees of freedom. Note that the confidence coefficient is1 - a.

From the formula, it is clear that the width of the interval is controlled by two factors:

1. AsN increases, the interval gets narrower from the ¥ ¥ term.

That is, one way to obtain more precise estimates for the mean is to increase the sample
size.

2. Thelarger the sample standard deviation, the larger the confidence interval. This ssmply

means that noisy data, i.e., data with a large standard deviation, are going to generate
wider intervals than data with a smaller standard deviation.
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Definition:  To test whether the population mean has a specific value, f4p, against the two-sided aternative
Hypothesis  that it does not have a value f45, the confidence interval is converted to hypothesis-test form.

Test Thetest is a one-sample t-test, and it is defined as:
Ho: = g
Ha 7 e

Test Statistic: T = (Y — i)/ (8/VN)
where ¥, N, and 5 are defined as above.
Significance Level: &x. The most commonly used value for & is 0.05.
Critical Region:  Reject the null hypothesis that the mean is a specified value, fg, if

T <t.mn_1
or

T>t1_apm N1

Confidence We generated a 95 %, two-sided confidence interval for the ZARR13.DAT data set based on

Interval the following information.
Example
= 195
MVEAN = 9.261460
STANDARD DEVI ATI ON = 0.022789
;. 0.025 N1 = 1.9723
LOAER LIMT = 9.261460 - 1.9723*0.022789/ V195

UPPER LIM T 9.261460 + 1.9723*0.022789/ V195

Thus, a 95 % confidence interval for the mean is (9.258242, 9.264679).

t-Test We performed a two-sided, one-sample t-test using the ZARR13.DAT data set to test the null
Example hypothesis that the population mean is equal to 5.

H: np =25

Hy: p #5

Test statistic: T = 2611.284
Degrees of freedom v 194
Significance level: « = 0.05
Critical value: T; .42 , = 1.9723

Critical region: Reject Hy if |T| > 1.9723

We rgject the null hypotheses for our two-tailed t-test because the absolute value of the test
statistic is greater than the critical value. If we were to perform an upper, one-tailed test, the

critical value would be t;_,, , = 1.6527, and we would still reject the null hypothesis.

The confidence interval provides an alternative to the hypothesis test. If the confidence
interval contains 5, then Hp cannot be rejected. In our example, the confidence interval

(9.258242, 9.264679) does not contain 5, indicating that the population mean does not equal 5
at the 0.05 level of significance.

In general, there are three possible alternative hypotheses and rejection regions for the one-
sample t-test:
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1.3.5.2. Confidence Limits for the Mean

Alternative Hypothesis | Rejection Region
Ha 17 1o ITI >t a2,

Hai > po T>1.,,

Ha: <o T<1,,

The rgjection regions for three posssible alternative hypotheses using our example data are
shown in the following graphs.

Two-Tailed Test Crifical Value = +- 1,9723

o
H
- Reject Ho Repct Ho
o
= oy
5 o
[= -
g
o | _'_'_'_'_'_'_'__,_,-/"' \-\—..\_\_\_\_\_\_\_\_
= T T T T T T T
-3 -2 -1 a 1 2 3
Test State tic

Upper-Tailed Test Critical Value = 1.6527

Reipct Ho

Dansity
oo 01 02 03 0.4

Test Stats tic

Lower-Tailed Test Critical Value = 1.6527

Feject Ho

D ity
00 01 02 03 04

Test Statstic

Questions  Confidence limits for the mean can be used to answer the following questions:

1. What is a reasonable estimate for the mean?
2. How much variability is there in the estimate of the mean?
3. Doesa given target value fall within the confidence limits?

http://www.itl.nist.gov/div898/handbook/eda/section3/eda352.htm[6/27/2012 2:01:46 PM]



1.3.5.2. Confidence Limits for the Mean

Related Two-Samplet-Test

Techniques
Confidence intervals for other location estimators such as the median or mid-mean tend to be
mathematically difficult or intractable. For these cases, confidence intervals can be obtained

using the bootstrap.

Case Sudy Heat flow meter data.

Software Confidence limits for the mean and one-sample t-tests are available in just about all general
purpose statistical software programs. Both Dataplot code and R code can be used to generate
the analyses in this section.
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1.3.5.3. Two-Sample <i>t</i>-Test for Equal Means
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1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.5. Quantitative Techniques

1.3.5.3. Two-Sample t-Test for Equal Means

Purpose:
Test if two
population
means are
equal

Definition

The two-sample t-test (Snedecor and Cochran, 1989) is used to determine if two population
means are equal. A common application isto test if a new process or treatment is superior to a
current process or treatment.

There are several variations on this test.

1. The data may either be paired or not paired. By paired, we mean that there is a one-to-
one correspondence between the valuesin the two samples. That is, if X4, X5, ..., X, and
Y1, Yo, ..., Yy a@re the two samples, then X; corresponds to Y;. For paired samples, the
difference X; - Y; isusualy calculated. For unpaired samples, the sample sizes for the

two samples may or may not be equal. The formulas for paired data are somewhat
simpler than the formulas for unpaired data.

2. The variances of the two samples may be assumed to be equal or unequal. Equal
variances yields somewhat simpler formulas, although with computers this is no longer
a significant issue.

3. In some applications, you may want to adopt a new process or treatment only if it
exceeds the current treatment by some threshold. In this case, we can state the null
hypothesis in the form that the difference between the two populations meansis equal to
some constant (g4, — jsg = dy) Where the constant is the desired threshold.

The two-sample t-test for unpaired data is defined as:

Ho: f1 = jia
P i F jig
Test Statistic: - Y, Y,

- VIV + BN,

where Ny and N, are the sample sizes, ¥, and ¥, are the sample means, and s?
and 52 are the sample variances,

If equal variances are assumed, then the formula reduces to:
Y-
s/ 1/ N1+ 1/

T

where
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1.3.5.3. Two-Sample <i>t</i>-Test for Equal Means

2 (1)t (N~ 1)s]

P N +N,—2
Significance rx.
Level:
Critical Reject the null hypothesis that the two means are equal if
Region:
IT| > tl—a/Z,v
where t;_,/, , isthe critical value of the t distribution with v degrees of
freedom where
y — (s1/N1 + 53/ 0Va)°
(51/NL2/ (N1 — 1) + (53/N2)? (V2 — 1)
If equal variances are assumed, then
= Nl + N2 —2
Two- The following two-sample t-test was generated for the AUTO83B.DAT data set. The data set
Sample t- contains miles per gallon for U.S. cars (sample 1) and for Japanese cars (sample 2); the
Test summary statistics for each sample are shown below.
Example SAVPLE 1:
NUMBER OF OBSERVATI ONS = 249
MVEAN = 20.14458
STANDARD DEVI ATI ON = 6.41470
STANDARD ERROR OF THE MEAN =  0.40652
SAVPLE 2:
NUMBER OF OBSERVATI ONS =79
MEAN = 30. 48101
STANDARD DEVI ATI ON = 6.10771
STANDARD ERROR OF THE MEAN = 0.68717

We are testing the hypothesis that the population means are equal for the two samples. We
assume that the variances for the two samples are equal .

Hoo  m1 = w2
Ha:  np1 # n2

Test statistic: T = -12. 62059
Pool ed standard devi ati on: Sp = 6. 34260

Degrees of freedom v = 326
Significance level: « = 0.05

Critical value (upper tail): tq.,2 , = 1.9673
Critical region: Reject Hy if |T| > 1.9673

The absolute value of the test statistic for our example, 12.62059, is greater than the critical
value of 1.9673, so we reject the null hypothesis and conclude that the two population means
are different at the 0.05 significance level.

In general, there are three possible alternative hypotheses and rejection regions for the one-
sample t-test:

Alternative Hypothesis | Rejection Region
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1.3.5.3. Two-Sample <i>t</i>-Test for Equal Means

Hal pg # pp ITI> 11 42y
Ha pg > 1o T> tl—a,v
Ha 1 < 2 T<t,,

For our two-tailed t-test, the critical valueist;_,, , = 1.9673, where a = 0.05 and v = 326. If

we were to perform an upper, one-tailed test, the critical value would be ty_, |, = 1.6495. The
rejection regions for three posssible alternative hypotheses using our example data are shown

below.

Two-Tailed Test Crifical Value = +- 1,9673

T

Z Reject Ho Refct Ho
= 2
2 3
D -

g

= _'_'_'_'_'_'_,_,.'—""F \"‘—\-\_\_\_\_\_\_\_\_

= T T T T T T

-3 -1 ] 1 2 3
Test Stats tic
Upper-Tailed Test Critical Value = 1.6495

=

[}

- Rejct Ho
= 7
(] [}
5 o
= —

=0

= T T T T T T

-3 -1 a 1 2 3
Test Stats tic
Lower-Tailed Test Critical Value = -1.6495
Reject Ho

D ity
00 01 02 03 04

|

Test Statstic

Questions  Two-sample t-tests can be used to answer the following questions:

1. Isprocess 1 equivalent to process 2?

2. Isthe new process better than the current process?
3. Isthe new process better than the current process by at |east some pre-determined

threshold amount?
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1.3.5.3. Two-Sample <i>t</i>-Test for Equal Means

Related Confidence Limits for the Mean
Techniques Analysis of Variance

Case Study  Ceramic strength data.

Software Two-sample t-tests are available in just about all general purpose statistical software
programs. Both Dataplot code and R code can be used to generate the analyses in this section.
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1.3.5.3.1. Data Used for Two-Sample <i>t</i>-Test
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1. Exploratory Data Analysis

1.3. EDA Techniques

1.3.5. Quantitative Techniques

1.3.5.3. Two-Samplet-Test for Equal Means

1.3.5.3.1. Data Used for Two-Samplet-Test

DataUsed Thefollowing isthe data used for the two-sample t-test

for Two- example. Thefirst columnis miles per gallon for U.S. cars and
Sample t- the second column is miles per gallon for Japanese cars. For
Test the t-test example, rows with the second column equal to -999
Example were deleted.
18 24
15 27
18 27
16 25
17 31
15 35
14 24
14 19
14 28
15 23
15 27
14 20
15 22
14 18
22 20
18 31
21 32
21 31
10 32
10 24
11 26
9 29
28 24
25 24
19 33
16 33
17 32
19 28
18 19
14 32
14 34
14 26
14 30
12 22
13 22
13 33
18 39
22 36
19 28
18 27
23 21
26 24
25 30
20 34
21 32
13 38
14 37
15 30
14 31
17 37
11 32
13 47
12 41
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1.3.5.3.1. Data Used for Two-Sample <i>t</i>-Test

13 45
15 34
13 33
13 24
14 32
22 39
28 35
13 32
14 37
13 38
14 34
15 34
12 32
13 33
13 32
14 25
13 24
12 37
13 31
18 36
16 36
18 34
18 38
23 32
11 38
12 32
13 - 999
12 -999
18 - 999
21 -999
19 - 999
21 -999
15 - 999
16 -999
15 - 999
11 -999
20 - 999
21 -999
19 - 999
15 -999
26 - 999
25 -999
16 - 999
16 -999
18 - 999
16 -999
13 - 999
14 -999
14 - 999
14 - 999
28 - 999
19 -999
18 - 999
15 -999
15 - 999
16 -999
15 - 999
16 - 999
14 - 999
17 -999
16 - 999
15 -999
18 - 999
21 -999
20 - 999
13 -999
23 - 999
20 -999
23 - 999
18 - 999
19 - 999
25 - 999
26 - 999
18 - 999
16 - 999
16 - 999
15 - 999
22 - 999
22 - 999
24 - 999
23 - 999
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1.3.5.3.1. Data Used for Two-Sample <i>t</i>-Test

29 - 999
25 - 999
20 - 999
18 - 999
19 - 999
18 - 999
27 - 999
13 - 999
17 - 999
13 - 999
13 - 999
13 - 999
30 - 999
26 - 999
18 - 999
17 - 999
16 - 999
15 - 999
18 - 999
21 - 999
19 - 999
19 - 999
16 - 999
16 - 999
16 - 999
16 - 999
25 - 999
26 - 999
31 - 999
34 - 999
36 - 999
20 - 999
19 - 999
20 - 999
19 - 999
21 - 999
20 - 999
25 - 999
21 - 999
19 - 999
21 - 999
21 - 999
19 - 999
18 - 999
19 - 999
18 - 999
18 - 999
18 - 999
30 - 999
31 - 999
23 - 999
24 - 999
22 - 999
20 - 999
22 - 999
20 - 999
21 - 999
17 - 999
18 - 999
17 - 999
18 - 999
17 - 999
16 - 999
19 - 999
19 - 999
36 - 999
27 - 999
23 - 999
24 - 999
34 - 999
35 - 999
28 - 999
29 - 999
27 - 999
34 - 999
32 - 999
28 - 999
26 - 999
24 - 999
19 - 999
28 - 999
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1.3.5.3.1. Data Used for Two-Sample <i>t</i>-Test

24 - 999
27 - 999
27 - 999
26 - 999
24 - 999
30 - 999
39 - 999
35 - 999
34 - 999
30 - 999
22 - 999
27 - 999
20 - 999
18 - 999
28 - 999
27 - 999
34 - 999
31 - 999
29 - 999
27 - 999
24 - 999
23 - 999
38 - 999
36 - 999
25 - 999
38 - 999
26 - 999
22 - 999
36 - 999
27 - 999
27 - 999
32 - 999
28 - 999
31 - 999
NIST . .
e et HOME TOOLS & AIDS SEARCH BACK MEXT
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1.3.5.4. One-Factor ANOVA

| P ENGINEERING STATISTICS HANDBOOK

[HOME

[TOOLS & AIDS [SEARCH [EACK "NEXT|

1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.5. Quantitative Techniques

1.3.5.4. One-Factor ANOVA

Purpose:
Test for
Equal
Means
Across
Groups

Definition

One factor analysis of variance (Snedecor and Cochran, 1989)
isa gpecia case of analysis of variance (ANOVA), for one
factor of interest, and a generalization of the two-sample t-
test. The two-sample t-test is used to decide whether two
groups (levels) of a factor have the same mean. One-way
analysis of variance generalizes this to levels where k, the
number of levels, is greater than or equal to 2.

For example, data collected on, say, five instruments have one
factor (instruments) at five levels. The ANOVA tests whether
instruments have a significant effect on the results.

The Product and Process Comparisons chapter (chapter 7)
contains a more extensive discussion of one-factor ANOVA,

including the details for the mathematical computations of
one-way analysis of variance.

The model for the analysis of variance can be stated in two
mathematically equivalent ways. In the following discussion,
each level of each factor is called a cell. For the one-way
case, a cell and alevel are equivalent since thereis only one
factor. In the following, the subscript i refers to the level and
the subscript j refers to the observation within a level. For
example, Y3 refers to the third observation in the second

level.
The first model is
Yy =p+ By

This model decomposes the response into a mean for each cell
and an error term. The analysis of variance provides estimates
for each cell mean. These estimated cell means are the
predicted values of the model and the differences between the
response variable and the estimated cell means are the
residuals. That is

"~

Yii=fu

Ry =Y — s
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1.3.5.4. One-Factor ANOVA

Mode
Validation

One-Way
ANOVA
Example

The second model is
Y, = pt o+ By

This model decomposes the response into an overall (grand)
mean, the effect of the ith factor level, and an error term. The
analysis of variance provides estimates of the grand mean and
the effect of the ith factor level. The predicted values and the
residuals of the model are

~

Y-ij :;14—&.!
Ry =Yy —h—&

The distinction between these models is that the second model
divides the cell mean into an overall mean and the effect of
the ith factor level. This second model makes the factor effect
more explicit, so we will emphasize this approach.

Note that the ANOV A model assumes that the error term, E;

should follow the assumptions for a univariate measurement
process. That is, after performing an analysis of variance, the
model should be validated by analyzing the residuals.

j

A one-way analysis of variance was generated for the
GEAR.DAT data set. The data set contains 10 measurements
of gear diameter for ten different batchesfor atotal of 100
measurements.

DEGREES OF SUM OF MEAN
SOURCE FREEDOM SQUARES SQUARE
F STATISTIC
BATCH 9 0. 000729
0. 000081 2. 2969
RESI DUAL 90 0. 003174
0. 000035
TOTAL ( CORRECTED) 99 0. 003903
0. 000039

RESI DUAL STANDARD DEVI ATI ON = 0. 00594

BATCH N MEAN SD( MEAN)
1 10 0. 99800 0.00178
2 10 0.99910 0.00178
3 10 0. 99540 0.00178
4 10 0. 99820 0.00178
5 10 0.99190 0.00178
6 10 0. 99880 0.00178
7 10 1. 00150 0.00178
8 10 1. 00040 0.00178
9 10 0. 99830 0.00178

10 10 0. 99480 0.00178

The ANOVA table decomposes the variance into the
following component sum of squares:

« Total sum of squares. The degrees of freedom for this
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1.3.5.4. One-Factor ANOVA

entry is the number of observations minus one.

« Sum of squaresfor the factor. The degrees of freedom
for this entry is the number of levels minus one. The
mean sgquare is the sum of squares divided by the
number of degrees of freedom.

» Residual sum of squares. The degrees of freedom isthe
total degrees of freedom minus the factor degrees of
freedom. The mean square is the sum of squares divided
by the number of degrees of freedom.

The sums of squares summarize how much of the variance in
the data (total sum of squares) is accounted for by the factor
effect (batch sum of squares) and how much is random error
(residual sum of squares). Ideally, we would like most of the
variance to be explained by the factor effect.

The ANOVA table provides a formal F test for the factor
effect. For our example, we are testing the following
hypothesis.

Hg: All individual batch means are equal.
H,: At least one batch mean is not equal to the others.

The F statistic is the batch mean square divided by the residual
mean square. This statistic follows an E distribution with (k-1)
and (N-k) degrees of freedom. For our example, the critical F
value (upper tail) for o = 0.05, (k-1) = 10, and (N-k) = Q0 is
1.9376. Since the F statistic, 2.2969, is greater than the critical
value, we conclude that there is a significant batch effect at
the 0.05 level of significance.

Once we have determined that there is a significant batch
effect, we might be interested in comparing individual batch
means. The batch means and the standard errors of the batch
means provide some information about the individual batches,
however, we may want to employ multiple comparison
methods for a more formal analysis. (See Box, Hunter, and
Hunter for more information.)

In addition to the quantitative ANOVA output, it is
recommended that any analysis of variance be complemented
with model validation. At a minimum, this should include:

1. arun sequence plot of the residuals,
2. anormal probability plot of the residuals, and
3

. ascatter plot of the predicted values against the
residuals.

Question The analysis of variance can be used to answer the following
guestion

« Are means the same across groups in the data?
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1.3.5.4. One-Factor ANOVA

Importance  The analysis of uncertainty depends on whether the factor
significantly affects the outcome.

Related Two-sample t-test
Techniques Multi-factor analysis of variance
Regression

Box plot

Software Most general purpose statistical software programs can
generate an analysis of variance. Both Dataplot code and R
code can be used to generate the analyses in this section.
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1.3.5.5. Multi-factor Analysis of Variance
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1.3.5.5. Multi-factor Analysisof Variance

Purpose: The analysis of variance (ANOVA) (Neter, Wasserman, and
Detect Kunter, 1990) is used to detect significant factorsin a multi-
significant  factor model. In the multi-factor model, there is a response
factors (dependent) variable and one or more factor (independent)

variables. Thisisacommon model in designed experiments
where the experimenter sets the values for each of the factor
variables and then measures the response variable.

Each factor can take on a certain number of values. These are
referred to as the levels of a factor. The number of levels can
vary betweeen factors. For designed experiments, the number
of levels for a given factor tends to be small. Each factor and
level combination is a cell. Balanced designs are those in
which the cells have an equal number of observations and
unbalanced designs are those in which the number of
observations varies among cells. It is customary to use
balanced designs in designed experiments.

Definition  The Product and Process Comparisons chapter (chapter 7)
contains a more extensive discussion of two-factor ANOVA,
including the details for the mathematical computations.

The model for the analysis of variance can be stated in two
mathematically equivalent ways. We explain the model for a
two-way ANOVA (the concepts are the same for additional
factors). In the following discussion, each combination of
factors and levelsis called a cell. In the following, the
subscript i refers to the level of factor 1, j refers to the level of
factor 2, and the subscript k refers to the kth observation
within the (i,j)th cell. For example, Y35 refers to the fifth

observation in the second level of factor 1 and the third level
of factor 2.

The first model is
Yiix = poy + B

This model decomposes the response into a mean for each cell
and an error term. The analysis of variance provides estimates
for each cell mean. These cell means are the predicted values
of the model and the differences between the response
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1.3.5.5. Multi-factor Analysis of Variance

variable and the estimated cell means are the residuals. That is

-~

Y-::;;‘k = ﬂe:j
Roe = Yoz — oy
The second model is
Yo =ptaog+ 5+ B
This model decomposes the response into an overall (grand)

mean, factor effects (¢, and ﬁj represent the effects of the ith

level of the first factor and the jth level of the second factor,
respectively), and an error term. The analysis of variance
provides estimates of the grand mean and the factor effects.
The predicted values and the residuals of the model are

Y =p+&+ b
Fiyjn Zﬂjk—ﬁ'_&i—ﬁj

The distinction between these models is that the second model
divides the cell mean into an overall mean and factor effects.
This second model makes the factor effect more explicit, so
we will emphasize this approach.

Model Note that the ANOVA model assumes that the error term, Ejjy,,

Validation  ghould follow the assumptions for a univariate measurement
process. That is, after performing an analysis of variance, the
model should be validated by analyzing the residuals.

Multi- An analysis of variance was performed for the

Factor JAHANMI2.DAT data set. The data contains four, two-level
ANOVA factors: table speed, down feed rate, wheel grit size, and batch.
Example There are 30 measurements of ceramic strength for each factor

combination for a total of 480 measurements.

SCURCE DF SUM OF SQUARES MEAN
SQUARE F STATISTIC

TABLE SPEED 1 26672. 726562
26672. 726562 6. 7080

DO FEED RATE 1 11524. 053711
11524. 053711 2.8982

WHEEL GRIT SIZE 1 14380. 633789
14380. 633789 3.6166

BATCH 1 727143.125000
727143. 125000 182. 8703

RESI DUAL 475 1888731. 500000

3976. 276855
TOTAL (CORRECTED) 479 2668446. 000000
5570. 868652

RESI DUAL STANDARD DEVI ATI ON = 63. 05772781

TABLE SPEED -1 240 657.53168 2.87818
1 240 642.62286 2.87818
DOWN FEED RATE -1 240 645.17755 2.87818
1 240 654.97723 2.87818
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Questions

WHEEL GRIT SI ZE 1 240 655.55084 2.87818
1 240 644.60376 2.87818
BATCH 1 240 688.99890 2.87818
2 240 611.15594 2.87818

The ANOVA decomposes the variance into the following
component sum of squares:

« Total sum of sguares. The degrees of freedom for this
entry is the number of observations minus one.

« Sum of squaresfor each of the factors. The degrees of
freedom for these entries are the number of levels for
the factor minus one. The mean square is the sum of
squares divided by the number of degrees of freedom.

« Residual sum of squares. The degrees of freedom isthe
total degrees of freedom minus the sum of the factor
degrees of freedom. The mean square is the sum of
squares divided by the number of degrees of freedom.

The analysis of variance summarizes how much of the
variance in the data (total sum of squares) is accounted for by
the factor effects (factor sum of squares) and how much is due
to random error (residual sum of squares). Ideally, we would
like most of the variance to be explained by the factor effects.
The ANOVA table provides a formal F test for the factor
effects. To test the overall batch effect in our example we use
the following hypotheses.

Ho: All individual batch means are equal.
H,: At least one batch mean is not equal to the others.

The F statistic is the mean square for the factor divided by the
residual mean sguare. This statistic follows an E _distribution
with (k-1) and (N-k) degrees of freedom where k is the
number of levels for the given factor. Here, we see that the
size of the "direction” effect dominates the size of the other
effects. For our example, the critical F value (upper tail) for a
= 0.05, (k-1) = 1, and (N-k) = 475is 3.86111. Thus, "table
speed” and "batch” are significant at the 5 % level while
"down feed rate" and "wheel grit size" are not significant at
the 5% level.

In addition to the quantitative ANOV A output, it is
recommended that any analysis of variance be complemented
with model validation. At a minimum, this should include

1. A run sequence plot of the residuals.

2. A normal probability plot of the residuals.

3. A scatter plot of the predicted values against the
residuals.

The analysis of variance can be used to answer the following
guestions:

1. Do any of the factors have a significant effect?
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1.3.5.5. Multi-factor Analysis of Variance

2. Which is the most important factor?
3. Can we account for most of the variability in the data?

Related One-factor analysis of variance
Techniqgues Two-sample t-test

Box plot

Block plot

DOE mean plot

Case Sudy  The quantitative ANOV A approach can be contrasted with the
more graphical EDA approach in the ceramic strength case

study.

Software Most general purpose statistical software programs can
perform multi-factor analysis of variance. Both Dataplot code
and R _caode can be used to generate the analyses in this
section.
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1.3.5.6. M easur es of Scale

Scale, A fundamental task in many statistical analysesisto
Variability,  characterize the spread, or variability, of a data set. Measures
or Sporead of scale are simply attempts to estimate this variability.

When ng the variability of a data set, there are two key
components:

1. How spread out are the data values near the center?
2. How spread out are the tails?

Different numerical summaries will give different weight to
these two elements. The choice of scale estimator is often
driven by which of these components you want to emphasize.

The histogram is an effective graphical technique for showing
both of these components of the spread.

Definitions For univariate data, there are several common numerical
of measures of the spread:
Variability

1. variance - thgrvariance is defined as

£ =3 (%—- VPN -1
_ i—1
where Y is ;ﬁe mean of the data.

The variance is roughly the arithmetic average of the
squared distance from the mean. Squaring the distance
from the mean has the effect of giving greater weight
to values that are further from the mean. For example,
a point 2 units from the mean adds 4 to the above sum
while a point 10 units from the mean adds 100 to the
sum. Although the variance is intended to be an overall
measure of spread, it can be greatly affected by the tail
behavior.

2. standard deviation - the standard deviation is the square
root of the variance. That is,

3=J§m—ﬁww—n

i=l
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1.3.5.6. Measures of Scale

The standard deviation restores the units of the spread
to the original data units (the variance squares the
units).

3. range - the range is the largest value minus the smallest
value in a data set. Note that this measure is based only
on the lowest and highest extreme values in the sample.
The spread near the center of the datais not captured at
all.

4. average absolute deviation - the average absolute
deviation (AAD) is defined as

AAD = i(mmw

where ¥ is the mean of the data and |Y| is the absolute
value of Y. This measure does not square the distance
from the mean, so it is less affected by extreme
observations than are the variance and standard
deviation.

5. median absolute deviation - the median absolute
deviation (MAD) is defined as

MAD = median(|¥; — Y|

where ¥ is the median of the data and |Y| isthe
absolute value of Y. Thisis a variation of the average
absolute deviation that is even less affected by
extremes in the tail because the data in the tails have
less influence on the calculation of the median than
they do on the mean.

6. interquartile range - this isthe value of the 75th
percentile minus the value of the 25th percentile. This
measure of scale attempts to measure the variability of
points near the center.

In summary, the variance, standard deviation, average
absolute deviation, and median absolute deviation measure
both aspects of the variability; that is, the variability near the
center and the variability in the tails. They differ in that the
average absolute deviation and median absolute deviation do
not give undue weight to the tail behavior. On the other hand,
the range only uses the two most extreme points and the
interquartile range only uses the middle portion of the data

Why The following example helpsto clarify why these alternative
Different defintions of spread are useful and necessary.
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Measures?
This plot shows histograms for 10,000 random numbers
generated from a normal, a double exponential, a Cauchy,
and a Tukey-Lambda distribution.
2000 1
HOAMAL RANDOM NUMBERS 2000 .IIJIIJELE EXPOMNENTIAL RAND NUMB
15100 1 1500
1000 1000
500 50:]'.
0 —F T 0
=10 A a b1 10 =10 -5 a b1 10
50 =08997, MAD= 0681, AR=7 87 50 =1.417, MAD = 0. 706, A= 17.556
w0 CAUCHY RANDOM NUMBERS 1mﬂ':.TIJKE'r' LAMBDA (L=12) RAND NUMB
2500 7 9007
800~
2000 1 7007
1500 -
1000 1 ' %E:
] i | |-I-I I-|_|'h- A 100
n—m 45 I:] 5 10 n—m ~5 a ] 10
S50=98839 MAD=1.016 R=118853TF7 SD=0493 MAD =0428 RA=1 667
Normal Thefirst histogram is a sample from a normal distribution.

Distribution The standard deviation is 0.997, the median absolute
deviation is 0.681, and the range is 7.87.

The normal distribution is a symmetric distribution with well-
behaved tails and a single peak at the center of the
distribution. By symmetric, we mean that the distribution can
be folded about an axis so that the two sides coincide. That

is, it behaves the same to the left and right of some center
point. In this case, the median absolute deviation is a bit less
than the standard deviation due to the downweighting of the
tails. The range of a little less than 8 indicates the extreme
values fall within about 4 standard deviations of the mean. If
a histogram or normal probability plot indicates that your
data are approximated well by a normal distribution, then it is
reasonable to use the standard deviation as the spread
estimator.

Double The second histogram is a sample from a double exponential
Exponential  distribution. The standard deviation is 1.417, the median
Distribution  absolute deviation is 0.706, and the range is 17.556.

Comparing the double exponential and the normal histograms
shows that the double exponential has a stronger peak at the
center, decays more rapidly near the center, and has much
longer tails. Due to the longer tails, the standard deviation
tends to be inflated compared to the normal. On the other
hand, the median absolute deviation is only dlightly larger
than it isfor the normal data. The longer tails are clearly
reflected in the value of the range, which shows that the
extremes fall about 6 standard deviations from the mean
compared to about 4 for the normal data.
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Cauchy The third histogram is a sample from a Cauchy distribution.
Distribution  The standard deviation is 998.389, the median absolute
deviation is 1.16, and the range is 118,953.6.

The Cauchy distribution is a symmetric distribution with
heavy tails and a single peak at the center of the distribution.
The Cauchy distribution has the interesting property that
collecting more data does not provide a more accurate
estimate for the mean or standard deviation. That is, the
sampling distribution of the means and standard deviation are
equivalent to the sampling distribution of the original data.
That means that for the Cauchy distribution the standard
deviation is useless as a measure of the spread. From the
histogram, it is clear that just about all the data are between
about -5 and 5. However, a few very extreme values cause
both the standard deviation and range to be extremely large.
However, the median absolute deviation is only slightly
larger than it isfor the normal distribution. In this case, the
median absolute deviation is clearly the better measure of
spread.

Although the Cauchy distribution is an extreme case, it does
illustrate the importance of heavy tailsin measuring the
spread. Extreme values in the tails can distort the standard
deviation. However, these extreme values do not distort the
median absolute deviation since the median absolute
deviation is based on ranks. In general, for data with extreme
valuesin the tails, the median absolute deviation or
interquartile range can provide a more stable estimate of
spread than the standard deviation.

Tukey- The fourth histogram is a sample from a Tukey lambda
Lambda distribution with shape parameter ex = 1.2. The standard

Distribution deviation is 0.49, the median absolute deviation is 0.427, and
the range is 1.666.

The Tukey lambda distribution has a range limited to
(—1/A,1/A) That is, it has truncated tails. In this case the

standard deviation and median absolute deviation have closer
values than for the other three examples which have
significant tails.

Robustness  Tukey and Mosteller defined two types of robustness where
robustness is a lack of susceptibility to the effects of
nonnormality.

1. Robustness of validity means that the confidence
intervals for a measure of the population spread (e.g.,
the standard deviation) have a 95 % chance of covering
the true value (i.e., the population value) of that
measure of spread regardless of the underlying
distribution.
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2. Robustness of efficiency refers to high effectivenessin
the face of non-normal tails. That is, confidence
intervals for the measure of spread tend to be aimost as
narrow as the best that could be done if we knew the
true shape of the distribution.

The standard deviation is an example of an estimator that is
the best we can do if the underlying distribution is normal.
However, it lacks robustness of validity. That is, confidence
intervals based on the standard deviation tend to lack
precision if the underlying distribution is in fact not normal.

The median absolute deviation and the interquartile range are
estimates of scale that have robustness of validity. However,
they are not particularly strong for robustness of efficiency.

If histograms and probability plots indicate that your data are
in fact reasonably approximated by a normal distribution,
then it makes sense to use the standard deviation as the
estimate of scale. However, if your data are not normal, and
in particular if there are long tails, then using an alternative
measure such as the median absolute deviation, average
absolute deviation, or interquartile range makes sense. The
range is used in some applications, such as quality control,
for its simplicity. In addition, comparing the range to the
standard deviation gives an indication of the spread of the
datain the tails.

Since the range is determined by the two most extreme points
in the data set, we should be cautious about its use for large
values of N.

Tukey and Mosteller give a scale estimator that has both
robustness of validity and robustness of efficiency. However,
it is more complicated and we do not give the formula here.

Software Most general purpose statistical software programs can
generate at least some of the measures of scale discusssed
above.
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1.35.7. Bartlett's Test

Purpose: Bartlett's test (Snedecor and Cochran, 1983) is used to test if k samples have equal

Test for variances. Equal variances across samplesis called homogeneity of variances. Some
Homogeneity statistical tests, for example the analysis of variance, assume that variances are equal across
of Variances  groups or samples. The Bartlett test can be used to verify that assumption.

Bartlett's test is sensitive to departures from normality. That is, if your samples come from
non-normal distributions, then Bartlett's test may simply be testing for non-normality. The
Levene test is an aternative to the Bartlett test that is less sensitive to departures from
normality.

Definition The Bartlett test is defined as:

Ho: (512 = (522 =..= sz

Ha: 6i2#0;? for at least one pair (i j).

Test The Bartlett test statistic is designed to test for equality of variances across

Statistic: groups against the alternative that variances are unequal for at least two
groups.

T— (N —k)Ins? —xF (N;—1)Ins]
1+ (1/ Bk - 1))((=E, 1/(N: — 1)) — 1/(N — k))

In the above, si2 is the variance of the ith group, N is the total sample size, N;

Is the sample size of the ith group, k is the number of groups, and sp2 isthe

pooled variance. The pooled variance is a weighted average of the group
variances and is defined as:

k
82 = Y. (N: = 1)8?/(N — k)

Significance &

Level:

Critica The variances are judged to be unequal if,
Region:

T > Xf_n.k_1
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2
where X1-a,k-1 isthe critical value of the chi-square distribution with k - 1
degrees of freedom and a significance level of .

An aternate definition (Dixon and Massey, 1969) is based on an approximation to the F
distribution. This definition is given in the Product and Process Comparisons chapter
(chapter 7).

Example Bartlett's test was performed for the GEAR.DAT data set. The
data set contains 10 measurements of gear diameter for ten
different batches for a total of 100 measurements.

Hp: 012 = 022 = ... = 0102
Hy: At least one o2 is not equal to the others.

Test statistic: T = 20.78580
Degrees of freedom k - 1 =29
Significance level: o = 0.05

Critical value: x 2 .1 = 16.919
Critical region: Reject Hy if T > 16.919

We are testing the null hypothesis that the batch variances are
all equal. Because the test statistic is larger than the critical
value, we regject the null hypotheses at the 0.05 significance
level and conclude that at |east one batch variance is different
from the others.

Question Bartlett's test can be used to answer the following question:

« Isthe assumption of equal variances valid?

Importance Bartlett's test is useful whenever the assumption of equal
variances is made. In particular, this assumption is made for
the frequently used one-way analysis of variance. In this case,
Bartlett's or Levene's test should be applied to verify the
assumption.

Related Standard Deviation Plot
Techniques Box Plot
Levene Test
Chi-Square Test
Analysis of Variance

Case Study  Heat flow meter data

Software The Bartlett test is available in many general purpose
statistical software programs. Both Dataplot code and R code
can be used to generate the analyses in this section.
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Purpose: A chi-sguare test ( Snedecor and Cochran, 1983) can be used to test if the variance
Testifthe  of a population is equal to a specified value. This test can be either a two-sided test
varianceis or aone-sided test. The two-sided version tests against the alternative that the true
equal toa  varianceis either lessthan or greater than the specified value. The one-sided version
specified only tests in one direction. The choice of a two-sided or one-sided test is determined
value by the problem. For example, if we are testing a new process, we may only be
concerned if its variability is greater than the variability of the current process.

Definition  The chi-square hypothesis test is defined as:

2

Ho: T =T

Hy ol < g? for a lower one-tailed test

o? > crg for an upper one-tailed test

o’ #£ a'g for a two-tailed test

Test _ . 2
Statistic: T'=(N—1)/(s/o0)
where N is the sample size and S is the sample standard deviation. The
key element of this formulais the ratio /65 which compares the ratio

of the sample standard deviation to the target standard deviation. The
more this ratio deviates from 1, the more likely we are to reject the null

hypothesis.
Significance .
Level:
grit[cal Reject the null hypothesis that the variance is a specified value, o2, if
egion:
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Chi-
Square
Test
Example

Questions

Related
Techniques

Software

T> xi_ . n_1 [foran upper one-tailed alternative

T < xi Fen for a lower one-tailed alternative
T< x%,5_, foratwo-tailed test
or

]
T> X1 /2Nt

where x? . isthecritical value of the chi-square distribution with

1
N - 1 degrees of freedom.

The formula for the hypothesis test can easily be converted to form an interval
estimate for the variance:

N —1)s? N —1)s?
(N-1)s o N-1)
Xi—a/2,N-1 Xaj2, N1

A confidence interval for the standard deviation is computed by taking the square
root of the upper and lower limits of the confidence interval for the variance.

A chi-sguare test was performed for the GEAR.DAT data set. The observed variance
for the 100 measurements of gear diameter is 0.00003969 (the standard deviation is

0.0063). We will test the null hypothesis that the true variance is equal to 0.01.
o? = 0.01
Hy: o% # 0.01

Test statistic: T = 0.3903
Degrees of freedom N - 1 =
Significance level: o = 0.0

Critical values: x 2,5 N1 = 73.361
X 21_ al 2,N-1 = 128. 422
Critical region: Reject Hy if T < 73.361 or T > 128.422

99

The test statistic value of 0.3903 is much smaller than the lower critical value, so we
reject the null hypothesis and conclude that the variance is not equal to 0.01.

The chi-square test can be used to answer the following questions:

1. Isthe variance equal to some pre-determined threshold value?
2. Isthe variance greater than some pre-determined threshold value?
3. Isthe variance less than some pre-determined threshold value?

E Test

Bartlett Test
Levene Test

The chi-square test for the variance is available in many general purpose statistical
software programs. Both Dataplot code and R code can be used to generate the
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analyses in this section.
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1.3.5.8.1. Data Used for Chi-Square Test for the Variance
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1.3.5.8. Chi-Square Test for the Variance

1.3.5.8.1. Data Used for Chi-Square Test for the
Variance

DataUsed Thefollowing are the data used for the chi-square test for the

for Chi- variance example. Thefirst column is gear diameter and the

Square second column is batch number. Only the first column is used

Test for for this example.

the 1. 006 1. 000

Variance 0. 996 1. 000

Example 0.998 1. 000
1. 000 1. 000
0. 992 1. 000
0. 993 1. 000
1. 002 1. 000
0. 999 1. 000
0. 994 1. 000
1. 000 1. 000
0. 998 2.000
1. 006 2.000
1. 000 2.000
1. 002 2.000
0. 997 2. 000
0. 998 2.000
0. 996 2. 000
1. 000 2.000
1. 006 2.000
0.988 2.000
0.991 3. 000
0.987 3.000
0. 997 3. 000
0.999 3.000
0. 995 3. 000
0. 994 3.000
1. 000 3. 000
0.999 3.000
0. 996 3. 000
0.996 3.000
1. 005 4. 000
1. 002 4. 000
0. 994 4. 000
1. 000 4. 000
0. 995 4. 000
0. 994 4. 000
0. 998 4. 000
0. 996 4.000
1. 002 4. 000
0. 996 4. 000
0. 998 5. 000
0.998 5. 000
0.982 5. 000
0.990 5. 000
1. 002 5. 000
0. 984 5.000
0. 996 5. 000
0.993 5. 000
0. 980 5. 000
0. 996 5.000
1. 009 6. 000
1.013 6. 000
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1.009 6. 000
0. 997 6. 000
0. 988 6. 000
1.002 6. 000
0. 995 6. 000
0.998 6. 000
0.981 6. 000
0. 996 6. 000
0. 990 7. 000
1. 004 7. 000
0. 996 7. 000
1.001 7. 000
0.998 7. 000
1.000 7. 000
1.018 7. 000
1.010 7. 000
0. 996 7. 000
1.002 7. 000
0.998 8. 000
1. 000 8. 000
1. 006 8. 000
1.000 8. 000
1.002 8. 000
0. 996 8. 000
0.998 8. 000
0. 996 8. 000
1.002 8. 000
1. 006 8. 000
1.002 9. 000
0.998 9. 000
0. 996 9. 000
0. 995 9. 000
0. 996 9. 000
1.004 9. 000
1.004 9. 000
0.998 9. 000
0. 999 9. 000
0.991 9. 000
0.991 10. 000
0. 995 10. 000
0. 984 10. 000
0.994 10. 000
0. 997 10. 000
0. 997 10. 000
0.991 10. 000
0.998 10. 000
1.004 10. 000
0. 997 10. 000
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1.3.5.9. F-Test for Equality of Two Variances
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1.3.5.9.F-Test for Equality of Two Variances

Purpose: An F-test (Snedecor and Cochran, 1983) is used to test if the

Test if variances of two populations are equal. This test can be a

variances two-tailed test or a one-tailed test. The two-tailed version

from two tests against the alternative that the variances are not equal.

populations  The one-tailed version only tests in one direction, that is the

are equal variance from the first population is either greater than or less
than (but not both) the second population variance. The
choice is determined by the problem. For example, if we are
testing a new process, we may only be interested in knowing
if the new processis less variable than the old process.

Definition The F hypothesis test is defined as:

Ho: (512 = (522
Ha 6,2< 6,2 for alower one-tailed test
6,2> 6,2 for an upper one-tailed test

0,2#05% for atwo-tailed test
T Fes/s}
Statistic:
where g% and 53 are the sample variances. The

more this ratio deviates from 1, the stronger the
evidence for unequal population variances.

Significance ¢
Level:

Critical The hypothesis that the two variances are equal
Region: isrejected if

F>F, no1N,-1  fOr an upper one-tailed test

F < Fl-a, Ni-1, Np-1 for a lower one-tailed
test

F < Fl-a/z, Ni-1, No-1 for atwo-tailed test
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F Test
Example

Questions

or
F>Foo Np-1, Np1

where F,, n,.1, N,-1 iS the critical value of the E
distribution with N1-1 and N,-1 degrees of
freedom and a significance level of a.

In the above formulas for the critical regions,
the Handbook follows the convention that F, is
the upper critical value from the F distribution
and F,_, isthe lower critical value from the F
distribution. Note that this is the opposite of the

designation used by some texts and software
programs.

The following F-test was generated for the AUTO83B.DAT
data set. The data set contains 480 ceramic strength
measurements for two batches of material. The summary
statistics for each batch are shown below.

BATCH 1:
NUMBER OF OBSERVATI ONS = 240
VEAN = 688. 9987
STANDARD DEVI ATI ON = 65. 54909
BATCH 2:
NUMBER OF OBSERVATI ONS = 240
VEAN = 611. 1559
STANDARD DEVI ATl ON = 61. 85425

We are testing the null hypothesis that the variances for the
two batches are equal .

. 2 — 2
Ho. o1~ = O2
Hy: 012 # 022

Test statistic: F = 1.123037
Nuner at or degrees of freedom N; - 1 239

Denom nat or degrees of freedom N, - 1 = 239

Significance level: «o = 0.05

Critical values: F(1-a/2,N;-1,Ny-1) = 0.7756
F(of 2, Ng-1, Np-1) = 1.2894

Rej ection region: Reject Hy if F < 0.7756 or F >

1.2894

The F test indicates that there is not enough evidence to reject
the null hypothesis that the two batch variancess are equal at
the 0.05 significance level.

The F-test can be used to answer the following questions:

1. Do two samples come from populations with equal
variancess?

2. Does a new process, treatment, or test reduce the
variability of the current process?
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Related Quantile-Quantile Plot
Techniques  Bihistogram
Chi-Square Test
Bartlett's Test
Levene Test

Case Sudy  Ceramic strength data.

Software The F-test for equality of two variances is available in many
genera purpose statistical software programs. Both Dataplot
code and R code can be used to generate the analyses in this
section.
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1.3.5.10. Levene Test for Equality of Variances

Purpose:
Test for
Homogeneity
of Variances

Definition

Levene's test ( Levene 1960) is used to test if k samples have
equal variances. Equal variances across samplesis called
homogeneity of variance. Some statistical tests, for example
the analysis of variance, assume that variances are equal
across groups or samples. The Levene test can be used to
verify that assumption.

Levene's test is an aternative to the Bartlett test. The Levene
test is less sensitive than the Bartlett test to departures from
normality. If you have strong evidence that your datado in
fact come from a normal, or nearly normal, distribution, then
Bartlett's test has better performance.

The Levene test is defined as:

HO: 6122022: ...:sz
Ha: 6i2#0;% for at least one pair (i j).
Test Given avariable Y with sample of sizeN

Statistic:  divided into k subgroups, where N; is the
sample size of the ith subgroup, the Levene test
statistic is defined as:

_(N—k) BEN(Z—2)

h—1) T, 5551( 2 — 2u)?

where Z;; can have one of the following three
definitions:

W

1 Zy = ¥ — Y
where ¥; isthe mean of the ith subgroup.

2. Zy = ¥y — Y4

where ¥, is the median of theith
subgroup.

3. Zy = |¥y — Y|
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where 17; is the 10% trimmed mean of
the ith subgroup.

Z,; arethe group means of the Z;; and Z_isthe
overall mean of the Z;;.

The three choices for defining Z;; determine the

robustness and power of Levene's test. By
robustness, we mean the ability of the test to
not falsely detect unequal variances when the
underlying data are not normally distributed and
the variables are in fact equal. By power, we
mean the ability of the test to detect unequal
variances when the variances are in fact
unequal.

Levene's original paper only proposed using the
mean. Brown and Forsythe (1974)) extended
Levene's test to use either the median or the
trimmed mean in addition to the mean. They
performed Monte Carlo studies that indicated
that using the trimmed mean performed best
when the underlying data followed a Cauchy
distribution (i.e., heavy-tailed) and the median
performed best when the underlying data
followed a;,c?4 (i.e., skewed) distribution. Using

the mean provided the best power for
symmetric, moderate-tailed, distributions.

Although the optimal choice depends on the
underlying distribution, the definition based on
the median is recommended as the choice that
provides good robustness against many types of
non-normal data while retaining good power. If
you have knowledge of the underlying
distribution of the data, this may indicate using
one of the other choices.

Significance

Level:
Critical
Region:

The Levene test regjects the hypothesis that the
variances are equal if

W>F, k1 Nk

where F, 1 n-k IS the upper critical value of
the E_distribution with k-1 and N-k degrees of
freedom at a significance level of a.

In the above formulas for the critical regions,
the Handbook follows the convention that F, is
the upper critical value from the F distribution
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Levene's Test
Example

Question

Related
Techniques

Software

NIST
SEMATECH

|HOME

and F_, isthe lower critical value. Note that

this is the opposite of some texts and software
programs.

Levene's test, based on the median, was performed for the
GEAR.DAT data set. The data set includes ten measurements
of gear diameter for each of ten batchesfor a total of 100
measurements.

. 2 _
Ho. o1 - ...
Ha: 012 [

_ 2
= %10
# 0102

Test statistic: W=
Degrees of freedom

05910

k
Si gni ficance |evel: = 0.
Critical value (upper tail): F, .1 nk = 1.9855

Critical region: Reject Hy if F > 1.9855

1.7
k-1
N-
o

a

We are testing the hypothesis that the group variances are
equal. We fail to rgject the null hypothesis at the 0.05
significance level since the value of the Levene test statistic is
less than the critical value. We conclude that thereis
insufficient evidence to claim that the variances are not equal.

Levene's test can be used to answer the following question:

« Isthe assumption of equal variances valid?

Standard Deviation Plot
Box Plot
Bartlett Test

Chi-Square Test
Analysis of Variance

The Levene test is available in some general purpose
statistical software programs. Both Dataplot code and R code
can be used to generate the analyses in this section.
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1.3.5.11. Measures of Skewness and Kurtosis

| P ENGINEERING STATISTICS HANDBOOK

[HOME [TOOLS & AIDS [SEARCH [BACK MNEXT|

1. Exploratory Data Analysis
1.3. EDA Techniques
1.3.5. Quantitative Techniques

1.3.5.11. M easur es of Skewness and Kurtosis

Sewness A fundamental task in many statistical analysesisto

and characterize the location and variability of a data set. A
Kurtosis further characterization of the data includes skewness and
kurtosis.

Skewness is a measure of symmetry, or more precisely, the
lack of symmetry. A distribution, or data set, is symmetric if
it looks the same to the left and right of the center point.

Kurtosis is a measure of whether the data are peaked or flat
relative to a normal distribution. That is, data sets with high
kurtosis tend to have a distinct peak near the mean, decline
rather rapidly, and have heavy tails. Data sets with low
kurtosis tend to have a flat top near the mean rather than a
sharp peak. A uniform distribution would be the extreme
case.

The histogram is an effective graphical technique for showing
both the skewness and kurtosis of data set.

Definition For univariate data Y1, Y5, ..., Yy, the formulafor skewness
of Skewness g

SN (YY)

skewmess — [N — 1)33

where ¥ is the mean, s is the standard deviation, and N isthe
number of data points. The skewness for a normal
distribution is zero, and any symmetric data should have a
skewness near zero. Negative values for the skewness
indicate data that are skewed left and positive values for the
skewness indicate data that are skewed right. By skewed |eft,
we mean that the left tail islong relative to the right tail.
Similarly, skewed right means that the right tail is long
relative to the | eft tail. Some measurements have a lower
bound and are skewed right. For example, in reliability
studies, failure times cannot be negative.

Definition For univariate data Y1, Y5, ..., Yy, the formulafor kurtosisis:
of Kurtosis
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1.3.5.11. Measures of Skewness and Kurtosis

(-1
(VW —1)st

kurtosis =

where Y is the mean, s is the standard deviation, and N is the
number of data points.

Alternative  The kurtosis for a standard normal distribution is three. For
Definition this reason, some sources use the following definition of
of Kurtosis  kurtosis (often referred to as "excess kurtosis'):

L (-Y)
(N —1)5

—3

kurtosis =

This definition is used so that the standard normal
distribution has a kurtosis of zero. In addition, with the
second definition positive kurtosis indicates a " peaked"
distribution and negative kurtosis indicates a "flat"
distribution.

Which definition of kurtosisis used is a matter of convention
(this handbook uses the original definition). When using
software to compute the sample kurtosis, you need to be
aware of which convention is being followed. Many sources
use the term kurtosis when they are actually computing
"excess kurtosis', so it may not always be clear.

Examples The following example shows histograms for 10,000 random
numbers generated from a normal, a double exponential, a
Cauchy, and a Weibull distribution.

@ HOAMAL RANCOM HUMBERS DZDI'.'*@JU LE EXPONENTIAL RANDOM HUMBERS
1500 1500+
1000 10007
500 500+
a+ 1 a
-10 5 a 5 10 -10 -5 ] 5 10
SKEWNESS = 0.03, KURTOSIS = 2962 SKEWNESS = 0062, KURTOSIS =5.903
CAUCHY RANCOM HUMBERS WEIBULL (GAMMA =1.5) RANCOM HUMBERS
3000 2000
2500

1500+

2000 |
1500 | 10007
1000 - |
500
500 |
— e
] ¥ 0 5 1

a a T
-1 a -10 -5 ] 5 10
SKEWMESS =609, KURTOSIS =6583 SKEWNESS =1.082 KURTOSIS = 4,46

Normal Thefirst histogram is a sample from a normal distribution.

Distribution  The normal distribution is a symmetric distribution with well-
behaved tails. Thisisindicated by the skewness of 0.03. The
kurtosis of 2.96 is near the expected value of 3. The
histogram verifies the symmetry.

http://www.itl .nist.gov/div898/handbook/eda/section3/eda35h.htm[6/27/2012 2:02:00 PM]



Double
Exponential
Distribution

Cauchy
Distribution

Weibull
Distribution

Dealing
with
Kewness
and
Kurtosis

1.3.5.11. Measures of Skewness and Kurtosis

The second histogram is a sample from a double exponential
distribution. The double exponential is a symmetric
distribution. Compared to the normal, it has a stronger peak,
more rapid decay, and heavier tails. That is, we would expect
a skewness near zero and a kurtosis higher than 3. The
skewness is 0.06 and the kurtosisis 5.9.

The third histogram is a sample from a Cauchy distribution.

For better visual comparison with the other data sets, we
restricted the histogram of the Cauchy distribution to values
between -10 and 10. The full data set for the Cauchy datain
fact has a minimum of approximately -29,000 and a
maximum of approximately 89,000.

The Cauchy distribution is a symmetric distribution with
heavy talls and a single peak at the center of the distribution.
Since it is symmetric, we would expect a skewness near zero.
Due to the heavier tails, we might expect the kurtosis to be
larger than for a normal distribution. In fact the skewnessis
69.99 and the kurtosis is 6,693. These extremely high values
can be explained by the heavy tails. Just as the mean and
standard deviation can be distorted by extreme valuesin the
tails, so too can the skewness and kurtosis measures.

The fourth histogram is a sample from a Weibull distribution
with shape parameter 1.5. The Weibull distribution isa
skewed distribution with the amount of skewness depending
on the value of the shape parameter. The degree of decay as
we move away from the center also depends on the value of
the shape parameter. For this data set, the skewness is 1.08
and the kurtosis is 4.46, which indicates moderate skewness
and kurtosis.

Many classical statistical tests and intervals depend on
normality assumptions. Significant skewness and kurtosis
clearly indicate that data are not normal. If a data set exhibits
significant skewness or kurtosis (as indicated by a histogram
or the numerical measures), what can we do about it?

One approach is to apply some type of transformation to try
to make the data normal, or more nearly normal. The Box-
Cox transformation is a useful technique for trying to
normalize a data set. In particular, taking the log or square
root of a data set is often useful for data that exhibit moderate
right skewness.

Another approach is to use techniques based on distributions
other than the normal. For example, in reliability studies, the
exponential, Weibull, and lognormal distributions are
typically used as a basis for modeling rather than using the
normal distribution. The probability plot correlation
coefficient plot and the probability plot are useful tools for
determining a good distributional model for the data.
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Software The skewness and kurtosis coefficients are available in most
general purpose statistical software programs.
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1.3.5.12. Autocorrelation

Purpose:
Detect Non-
Randomness,
Time Series
Modeling

Definition

Autocorrelation
Example

The autocorrelation ( Box and Jenkins, 1976) function
can be used for the following two purposes:

1. To detect non-randomness in data.
2. Toidentify an appropriate time series model if the
data are not random.

Given measurements, Y1, Yo, ..., Yy @ time Xq, X,, ..., Xy
the lag k autocorrelation function is defined as

_ S (v — 17)(1”_”1: —Y)
S (Y- Y)?

Although the time variable, X, isnot used in the formula
for autocorrelation, the assumption is that the observations
are equi-spaced.

Tk

Autocorrelation is a correlation coefficient. However,
instead of correlation between two different variables, the
correlation is between two vaues of the same variable at
ﬂWESXiaWjXHk.

When the autocorrelation is used to detect non-
randomness, it is usually only thefirst (lag 1)
autocorrelation that is of interest. When the
autocorrelation is used to identify an appropriate time
series model, the autocorrelations are usually plotted for
many lags.

L ag-one autocorrelations were computed for the the
LEW.DAT data set.

(=]

aut ocorrel ation

CWNPINAWNEOD

0000000000000
[
N
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1.3.5.12. Autocorrelation

16. 0. 40
17. 0. 48
18. -0.70
19. -0.03
20. 0.70
21. -0.41
22. -0.43
23. 0.67
24. 0. 00
25. -0.66
26. 0.42
27. 0. 39
28. -0.65
29. 0.03
30. 0.63
31. -0.42
32. -0.36
33. 0. 64
34. -0.05
35. -0.60
36. 0.43
37. 0.32
38. -0.64
39. 0.08
40. 0. 58
41. -0.45
42. -0.28
43. 0.62
44, -0.10
45. -0.55
46. 0. 45
47. 0. 25
48. -0.61
49. 0.14
Questions The autocorrelation function can be used to answer the

following questions.

1. Was this sample data set generated from a random
process?

2. Would a non-linear or time series model be a more
appropriate model for these data than a simple
constant plus error model ?

Importance Randomness is one of the key assumptions in
determining if a univariate statistical processisin control.
If the assumptions of constant location and scale,
randomness, and fixed distribution are reasonable, then
the univariate process can be modeled as:

Y= Ag + By

where E; is an error term.

If the randomness assumption is not valid, then a different
model needs to be used. Thiswill typically be either a
time series model or a non-linear model (with time as the
independent variable).

Related Autocorrelation Plot
Techniques Run Sequence Plot
Lag Plot
Runs Test
Case Sudy The heat flow meter data demonstrate the use of

autocorrelation in determining if the data are from a
random process.

Software The autocorrelation capability is available in most genera
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1.3.5.12. Autocorrelation

purpose statistical software programs. Both Dataplot code
and R _code can be used to generate the analyses in this
section.
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1.3.5.13. Runs Test for Detecting Non-

randomness
Purpose: Therunstest (Bradley, 1968) can be used to decide if a data
Detect Non-  set isfrom a random process.
Randomness
A run is defined as a series of increasing values or a series of
decreasing values. The number of increasing, or decreasing,
valuesis the length of the run. In a random data set, the
probability that the (I+1)th valueis larger or smaller than the
Ith value follows a binomial distribution, which forms the basis
of the runs test.
Typical Thefirst step in the runs test is to count the number of runsin
Analysis the data sequence. There are several waysto define runsin the
and Test literature, however, in all cases the formulation must produce a
Satistics dichotomous sequence of values. For example, a series of 20
coin tosses might produce the following sequence of heads (H)
and tails (T).

HHTTHTHHHHTHHTTTTTHH

The number of runs for this seriesis nine. There are 11 heads
and 9 tails in the sequence.

Definition We will code values above the median as positive and values
below the median as negative. A run is defined as a series of
consecutive positive (or negative) values. Therunstest is

defined as:
Ho: the sequence was produced in a random manner
H. the sequence was not produced in a random
& manner
Test Thetest statistic is
Statistic:
_R-—R
=

where Ris the observed number of runs, R, is the
expected number of runs, and sg is the standard

deviation of the number of runs. The values of R
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Runs Test
Example

Question

I mportance

and sg are computed as follows:

_ 211 1n2
R=——
1 + N2

9 2'?11_'1‘12(2111_1’12 — Ty — nz]
g5 =
B (ny 4 ng)2(ny +np — 1)

where n; and n, are the number of positive and
negative valuesin the series.
Significance
Level:
Critical The runs test regjects the null hypothesis if
Region:
VARA7)

For a large-sample runs test (where n; > 10 and
n, > 10), the test statistic is compared to a

standard normal table. That is, at the 5%
significance level, a test statistic with an absolute
value greater than 1.96 indicates non-
randomness. For a small-sample runs test, there
are tables to determine critical values that depend
on values of ny and n, (Mendenhall, 1982).

A runs test was performed for 200 measurements of beam
deflection contained in the LEW.DAT data set.

Hp: the sequence was produced in a random manner
Hy: the sequence was not produced in a random
manner

Test statistic: Z = 2.6938

Significance level: « = 0.05

Critical value (upper tail): Zj.,2 = 1.96
Critical region: Reject Hy if |Z] > 1.96

Since the test statistic is greater than the critical value, we
conclude that the data are not random at the 0.05 significance
level.

The runs test can be used to answer the following question:

» Were these sample data generated from a random
process?

Randomness is one of the key assumptions in determining if a
univariate statistical processisin control. If the assumptions of
constant location and scale, randomness, and fixed distribution
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1.3.5.13. Runs Test for Detecting Non-randomness

Related
Techniques

Case Sudy

Software

NIST
SEMATECH

are reasonable, then the univariate process can be modeled as:
Y= Ay + E;

where E; is an error term.

If the randomness assumption is not valid, then a different
model needs to be used. This will typically be either a times
series model or a non-linear model (with time as the
independent variable).

Autocorrelation

Run Sequence Plot
Lag Plot

Heat flow meter data

Most general purpose statistical software programs support a
runs test. Both Dataplot code and R code can be used to
generate the analyses in this section.
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1.3.5.14. Anderson-Darling Test
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1.3.5.14. Anderson-Darling Test

Purpose: The Anderson-Darling test (Stephens, 1974) is used to test if a
Test for sample of data came from a population with a specific distribution.
Distributional It isa modification of the Kolmogorov-Smirnov (K-S) test and
Adequacy gives more weight to the tails than does the K-S test. The K-S test

is distribution free in the sense that the critical values do not depend
on the specific distribution being tested. The Anderson-Darling test
makes use of the specific distribution in calculating critical values.
This has the advantage of allowing a more sensitive test and the
disadvantage that critical values must be calculated for each
distribution. Currently, tables of critical values are available for the
normal, lognormal, exponential, Weibull, extreme value type |, and
logistic distributions. We do not provide the tables of critical values
in this Handbook (see Stephens 1974, 1976, 1977, and 1979) since
this test is usually applied with a statistical software program that
will print the relevant critical values.

The Anderson-Darling test is an alternative to the chi-sguare and
Kolmogorov-Smirnov goodness-of -fit tests.

Definition The Anderson-Darling test is defined as:
Ho: The data follow a specified distribution.
Hy: The data do not follow the specified distribution
Test The Anderson-Darling test statistic is defined as
Statistic:
A*=-N-5
where
(24 — 1)
S = Z [th( i)+ (1l — F(¥npi-4))]

F is the cumulative distribution function of the
specified distribution. Note that the Y; are the ordered

data.
Significance &
Level:

Critical The critical values for the Anderson-Darling test are
Region: dependent on the specific distribution that is being
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1.3.5.14. Anderson-Darling Test

tested. Tabulated values and formulas have been
published (Stephens, 1974, 1976, 1977, 1979) for a
few specific distributions (normal, lognormal,
exponential, Weibull, logistic, extreme value type 1).
Thetest is a one-sided test and the hypothesis that the
distribution is of a specific form is rejected if the test
statistic, A, is greater than the critical value.

Note that for a given distribution, the Anderson-
Darling statistic may be multiplied by a constant
(which usually depends on the sample size, n). These
constants are given in the various papers by Stephens.
In the sample output below, the test statistic values are
adjusted. Also, be aware that different constants (and
therefore critical values) have been published. Y ou
just need to be aware of what constant was used for a
given set of critical values (the needed constant is
typically given with the critical values).

Sample We generated 1,000 random numbers for normal, double

Output exponential, Cauchy, and lognormal distributions. In all four cases,
the Anderson-Darling test was applied to test for a normal
distribution.

The normal random numbers were stored in the variable Y 1, the
double exponential random numbers were stored in the variable Y 2,
the Cauchy random numbers were stored in the variable Y 3, and the
lognormal random numbers were stored in the variable Y 4.

~ Distribution Mean St andard
Devi ati on
Nor mal (Y1) 0. 004360
1.001816 )
Doubl e Exponential (Y2) 0. 020349
1.321627
Cauchy (Y3) 1.503854
35. 130590
Lognor mal (Y4) 1.518372
1.719969

Hp: the data are normally distributed
Hy: the data are not normally distributed

Y1 adjusted test statistic: A2 = 0.2576
Y2 adjusted test statistic: A2 = 5.8492
Y3 adjusted test statistic: A2 = 288.7863
Y4 adjusted test statistic: AZ = 83.3935

Significance level: o = 0.05
Critical value: 0.752

Critical region: Reject Hy if A2 > 0.752

When the data were generated using a normal distribution, the test
statistic was small and the hypothesis of normality was not rejected.
When the data were generated using the double exponential,
Cauchy, and lognormal distributions, the test statistics were large,
and the hypothesis of an underlying normal distribution was
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1.3.5.14. Anderson-Darling Test

Questions

Importance

Related
Techniques

Case Sudy

Software

NIST
SEMATECH

rejected at the 0.05 significance level.

The Anderson-Darling test can be used to answer the following
guestions:

Arethe data from a normal distribution?

Are the data from a log-normal distribution?
Arethe data from a Weibull distribution?
Arethe data from an exponentia distribution?
Arethe data from a logistic distribution?

Many statistical tests and procedures are based on specific
distributional assumptions. The assumption of normality is
particularly common in classical statistical tests. Much reliability
modeling is based on the assumption that the data follow a Weibull
distribution.

There are many non-parametric and robust techniques that do not
make strong distributional assumptions. However, techniques based
on specific distributional assumptions are in general more powerful
than non-parametric and robust techniques. Therefore, if the
distributional assumptions can be validated, they are generally
preferred.

Chi - Square goodness-of -fit Test
Kolmogorov-Smirnov Test

Shapiro-Wilk Normality Test
Probability Plot

Probability Plot Correlation Coefficient Plot

Josephson junction cryothermometry case study.
The Anderson-Darling goodness-of -fit test is available in some

genera purpose statistical software programs. Both Dataplot code
and R _code can be used to generate the analyses in this section.
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1.3.5.15. Chi-Square Goodness-of-Fit Test
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1.3.5.15. Chi-Squar e Goodness-of -Fit Test

Purpose: The chi-square test (Snedecor and Cochran, 1989) is used
Test for to test if a sample of data came from a population with a
distributional  specific distribution.

adequacy

An attractive feature of the chi-square goodness-of -fit test
isthat it can be applied to any univariate distribution for
which you can calculate the cumulative distribution
function. The chi-square goodness-of -fit test is applied to
binned data (i.e., data put into classes). Thisis actually not a
restriction since for non-binned data you can simply
calculate a histogram or frequency table before generating
the chi-square test. However, the value of the chi-square
test statistic are dependent on how the data is binned.
Another disadvantage of the chi-square test is that it
requires a sufficient sample size in order for the chi-square
approximation to be valid.

The chi-sgquare test is an alternative to the Anderson-
Darling and Kolmogorov-Smirnov goodness-of -fit tests.
The chi-square goodness-of -fit test can be applied to
discrete distributions such as the binomial and the Poisson.
The Kolmogorov-Smirnov and Anderson-Darling tests are
restricted to continuous distributions.

Additional discussion of the chi-sguare goodness-of -fit test

is contained in the product and process comparisons chapter
(chapter 7).

Definition The chi-square test is defined for the hypothesis:

Ho: The data follow a specified distribution.

Hy: The data do not follow the specified
distribution.

Test For the chi-sguare goodness-of -fit

Statistic:  computation, the data are divided into k bins
and the test statistic is defined as

¥ =30~ B/ 5
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1.3.5.15. Chi-Square Goodness-of-Fit Test

where O is the observed frequency for bin i
and £% i's the expected frequency for bini.
The expected frequency is calculated by

E; = N(F(Y,) — F(¥3))

where F is the cumulative Distribution
function for the distribution being tested, Y, is

the upper limit for classi, Y, is the lower limit
for classi, and N is the sample size.

This test is sensitive to the choice of bins.
There is no optimal choice for the bin width
(since the optimal bin width depends on the
distribution). Most reasonable choices should
produce similar, but not identical, results. For
the chi-square approximation to be valid, the
expected frequency should be at least 5. This
test is not valid for small samples, and if some
of the counts are |less than five, you may need
to combine some binsin the tails.

Significance .

Level:

Critical The test statistic follows, approximately, a

Region: chi-square distribution with (k - ¢) degrees of
freedom where k is the number of non-empty
cells and ¢ = the number of estimated
parameters (including location and scale
parameters and shape parameters) for the
distribution + 1. For example, for a 3-
parameter Weibull distribution, ¢ = 4.

Therefore, the hypothesis that the data are
from a population with the specified
distribution is rejected if

XZ = x?—n. k—c

o]
where Xi_q, k—c isthe chi-square critical
value with k - ¢ degrees of freedom and
significance level a.

Chi-Sguare We generated 1,000 random numbers for normal, double

Test Example  exponential, t with 3 degrees of freedom, and lognormal
distributions. In all cases, a chi-square test with k = 32 bins
was applied to test for normally distributed data. Because
the normal distribution has two parameters, c =2+ 1=3

The normal random numbers were stored in the variable

Y 1, the double exponential random numbers were stored in
the variable Y 2, the t random numbers were stored in the
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1.3.5.15. Chi-Square Goodness-of-Fit Test

Questions

I mportance

variable Y 3, and the lognormal random numbers were
stored in the variable Y4.

Hp: the data are nornally distributed
Hy: the data are not normally distributed

Y1l Test statistic: x 2 = 32. 256
Y2 Test statistic: x 2 = 91.776
Y3 Test statistic: x 2 = 101.488
Y4 Test statistic: x 2 = 1085.104

Significance level: o = 0.05
Degrees of freedom k - ¢ =32 - 3 = 29

Critical value: le_a, k-c = 42.557
Critical region: Reject Hy if x 2 > 42.557

Aswe would hope, the chi-sguare test fails to reject the null
hypothesis for the normally distributed data set and rejects
the null hypothesis for the three non-normal data sets.

The chi-sguare test can be used to answer the following
types of questions:

« Arethe datafrom a normal distribution?
 Arethe datafrom alog-normal distribution?
« Arethe datafrom a Weibull distribution?
 Arethe datafrom an exponential distribution?
« Arethe datafrom alogistic distribution?

« Arethe datafrom a binomial distribution?

Many statistical tests and procedures are based on specific
distributional assumptions. The assumption of normality is
particularly common in classical statistical tests. Much
reliability modeling is based on the assumption that the
distribution of the data followsa Weibull distribution.

There are many non-parametric and robust techniques that
are not based on strong distributional assumptions. By non-
parametric, we mean a technique, such as the sign test, that
is not based on a specific distributional assumption. By
robust, we mean a statistical technique that performs well
under a wide range of distributional assumptions. However,
techniques based on specific distributional assumptions are
in general more powerful than these non-parametric and
robust techniques. By power, we mean the ability to detect a
difference when that difference actually exists. Therefore, if
the distributional assumption can be confirmed, the
parametric techniques are generally preferred.

If you are using a technique that makes a normality (or
some other type of distributional) assumption, it is important
to confirm that this assumption isin fact justified. If it is,
the more powerful parametric techniques can be used. If the
distributional assumption is not justified, a non-parametric
or robust technique may be required.
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1.3.5.15. Chi-Square Goodness-of-Fit Test

Related Anderson-Darling Goodness-of -Fit Test
Techniques Kolmogorov-Smirnov Test

Shapiro-Wilk Normality Test

Probability Plots

Probability Plot Correlation Coefficient Plot

Software Some general purpose statistical software programs provide
a chi-sguare goodness-of -fit test for at least some of the
common distributions. Both Dataplot code and R code can
be used to generate the analyses in this section.
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1.3.5.16. Kolmogor ov-Smirnov Goodness-of-Fit Test

Purpose: The Kolmogorov-Smirnov test (Chakravart, Laha, and Roy,

Test for 1967) is used to decide if a sample comes from a population with
Distributional a specific distribution.

Adequacy

The Kolmogorov-Smirnov (K-S) test is based on the empirical
distribution function (ECDF). Given N ordered data points Y1,

Yo, ..., YN, the ECDF is defined as
By = n(i)/N

where n(i) is the number of points lessthan Y; and the Y; are

ordered from smallest to largest value. Thisis a step function that
increases by 1/N at the value of each ordered data point.

The graph below is a plot of the empirical distribution function
with a normal cumulative distribution function for 100 normal
random numbers. The K-Stest is based on the maximum distance
between these two curves.

100 NORMAL RANDOM NUMBERS

1 —
E ECDF
= Normal CDF
Eﬂ.?ﬁ—
m
o
o
W 05
=
5
3025—
=
3
(5]

L] T T T T T T

. | -3 -2 -1 i} 1 2 3
X

Characteristics An attractive feature of this test is that the distribution of the K-S
and test statistic itself does not depend on the underlying cumulative
Limitations of distribution function being tested. Another advantage isthat it is
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1.3.5.16. Kolmogorov-Smirnov Goodness-of -Fit Test

the K-STest

Definition

Technical Note

an exact test (the chi-square goodness-of -fit test depends on an
adequate sample size for the approximations to be valid). Despite
these advantages, the K-S test has several important limitations:

1. It only applies to continuous distributions.

2. It tends to be more sensitive near the center of the
distribution than at the tails.

3. Perhaps the most serious limitation is that the distribution
must be fully specified. That is, if location, scale, and shape
parameters are estimated from the data, the critical region
of the K-Stest isno longer valid. It typically must be
determined by simulation.

Due to limitations 2 and 3 above, many analysts prefer to use the
Anderson-Darling goodness-of -fit test. However, the Anderson-
Darling test is only available for a few specific distributions.

The Kolmogorov-Smirnov test is defined by:

Ho:
Ha:

Test
Statistic:

The data follow a specified distribution
The data do not follow the specified distribution
The Kolmogorov-Smirnov test statistic is defined as

i—1 1
b= max (F(Y‘) N 'N F(Y‘))
where F isthe theoretical cumulative distribution of
the distribution being tested which must be a
continuous distribution (i.e., no discrete
distributions such as the binomial or Poisson), and
it must be fully specified (i.e., the location, scale,
and shape parameters cannot be estimated from the
data).

Significance a.

Level:
Critical
Values:

The hypothesis regarding the distributional form is
rejected if the test statistic, D, is greater than the
critical value obtained from atable. There are
severa variations of these tables in the literature
that use somewhat different scalings for the K-S
test statistic and critical regions. These aternative
formulations should be equivalent, but itis
necessary to ensure that the test statistic is
calculated in a way that is consistent with how the
critical values were tabulated.

We do not provide the K-S tables in the Handbook
since software programs that perform a K-S test
will provide the relevant critical values.

Previous editions of e-Handbook gave the following formula for
the computation of the Kolmogorov-Smirnov goodness of fit
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1.3.5.16. Kolmogorov-Smirnov Goodness-of -Fit Test

Kolmogorov-
Smirnov Test
Example

Questions

statistic:

i
D= max |F(¥;) —

This formulaisin fact not correct. Note that this formula can be
rewritten as;
D= (F(}’) L 2 F(y)
= VTN'N :
This form makesit clear that an upper bound on the difference

between these two formulasisi/N. For actual data, the difference
is likely to be less than the upper bound.

For example, for N = 20, the upper bound on the difference
between these two formulasis 0.05 (for comparison, the 5%
critical value is 0.294). For N = 100, the upper bound is 0.001. In
practice, if you have moderate to large sample sizes (say N > 50),
these formulas are essentially equivalent.

We generated 1,000 random numbers for normal, double
exponential, t with 3 degrees of freedom, and lognormal
distributions. In all cases, the Kolmogorov-Smirnov test was
applied to test for a normal distribution.

The normal random numbers were stored in the variable Y 1, the
double exponential random numbers were stored in the variable

Y 2, the t random numbers were stored in the variable Y 3, and the
lognormal random numbers were stored in the variable Y 4.

Hp: the data are nornally distributed
Hy: the data are not normally distributed

Y1l test statistic: D = 0.0241492
Y2 test statistic: D = 0.0514086
Y3 test statistic: D = 0.0611935
Y4 test statistic: D = 0.5354889
Significance level: o = 0.05

Critical value: 0.04301
Critical region: Reject Hy if D > 0.04301

As expected, the null hypothesisis not rejected for the normally
distributed data, but is rejected for the remaining three data sets
that are not normally distributed.

The Kolmogorov-Smirnov test can be used to answer the
following types of questions:

« Arethe datafrom a normal distribution?

Are the data from a log-normal distribution?
Arethe data from a Weibull distribution?
Arethe data from an exponentia distribution?
Arethe data from a logistic distribution?
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1.3.5.16. Kolmogorov-Smirnov Goodness-of -Fit Test

Importance Many statistical tests and procedures are based on specific
distributional assumptions. The assumption of normality is
particularly common in classical statistical tests. Much reliability
modeling is based on the assumption that the datafollow a
Weibull distribution.

There are many non-parametric and robust techniques that are not
based on strong distributional assumptions. By non-parametric,
we mean a technique, such as the sign test, that is not based on a
specific distributional assumption. By robust, we mean a
statistical technique that performs well under a wide range of
distributional assumptions. However, techniques based on specific
distributional assumptions are in general more powerful than
these non-parametric and robust techniques. By power, we mean
the ability to detect a difference when that difference actualy
exists. Therefore, if the distributional assumptions can be
confirmed, the parametric techniques are generally preferred.

If you are using a technique that makes a normality (or some
other type of distributional) assumption, it is important to confirm
that this assumption isin fact justified. If it is, the more powerful
parametric techniques can be used. If the distributional
assumption is not justified, using a non-parametric or robust
technique may be required.

Related Anderson-Darling goodness-of -fit Test
Techniques Chi - Square goodness-of -fit Test
Shapiro-Wilk Normality Test
Probability Plots
Probability Plot Correlation Coefficient Plot

Software Some general purpose statistical software programs support the
Kolmogorov-Smirnov goodness-of -fit test, at least for the more
common distributions. Both Dataplot code and R code can be
used to generate the analyses in this section.
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1.3.5.17. Detection of Outliers

Introduction An outlier is an observation that appears to deviate
markedly from other observations in the sample.

Identification of potential outliersis important for the
following reasons.

1. Anoutlier may indicate bad data. For example, the
data may have been coded incorrectly or an
experiment may not have been run correctly. If it
can be determined that an outlying point isin fact
erroneous, then the outlying value should be deleted
from the analysis (or corrected if possible).

2. In some cases, it may not be possible to determine if
an outlying point is bad data. Outliers may be due to
random variation or may indicate something
scientifically interesting. In any event, we typicaly
do not want to simply delete the outlying
observation. However, if the data contains
significant outliers, we may need to consider the use
of robust statistical techniques.

Labeling, Iglewicz and Hoaglin distinguish the three following
Accomodation, issues with regards to outliers.
Identification

1. outlier labeling - flag potential outliers for further
investigation (i.e., are the potential outliers
erroneous data, indicative of an inappropriate
distributional model, and so on).

2. outlier accomodation - use robust statistical
technigues that will not be unduly affected by
outliers. That is, if we cannot determine that
potential outliers are erroneous observations, do we
need modify our statistical analysis to more
appropriately account for these observations?

3. outlier identification - formally test whether
observations are outliers.

This section focuses on the labeling and identification
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1.3.5.17. Detection of Outliers

Normality
Assumption

Sngle Versus
Multiple
Outliers

Masking and
Swvamping

issues.

Identifying an observation as an outlier depends on the
underlying distribution of the data. In this section, we limit
the discussion to univariate data sets that are assumed to
follow an approximately normal distribution. If the
normality assumption for the data being tested is not valid,
then a determination that there is an outlier may in fact be
due to the non-normality of the data rather than the
prescence of an outlier.

For this reason, it is recommended that you generate a
normal probability plot of the data before applying an
outlier test. Although you can aso perform formal tests for
normality, the prescence of one or more outliers may
cause the tests to reject normality whenitisin fact a
reasonable assumption for applying the outlier test.

In addition to checking the normality assumption, the
lower and upper tails of the normal probability plot can be
a useful graphical technique for identifying potential
outliers. In particular, the plot can help determine whether
we need to check for a single outlier or whether we need
to check for multiple outliers.

The box plot and the histogram can also be useful
graphical tools in checking the normality assumption and
in identifying potential outliers.

Some outlier tests are designed to detect the prescence of a
single outlier while other tests are designed to detect the
prescence of multiple outliers. It is not appropriate to

apply atest for a single outlier sequentially in order to
detect multiple outliers.

In addition, some tests that detect multiple outliers may
require that you specify the number of suspected outliers
exactly.

Masking can occur when we specify too few outliersin the
test. For example, if we are testing for a single outlier
when there are in fact two (or more) outliers, these
additional outliers may influence the value of the test
statistic enough so that no points are declared as outliers.

On the other hand, swamping can occur when we specify
too many outliersin the test. For example, if we are testing
for two or more outliers when thereisin fact only a single
outlier, both points may be declared outliers (many tests
will declare either al or none of the tested points as
outliers).

Due to the possibility of masking and swamping, itis
useful to complement formal outlier tests with graphical
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1.3.5.17. Detection of Outliers

Z-Scores and
Modified Z-
Scores

Formal
Outlier Tests

methods. Graphics can often help identify cases where
masking or swamping may be an issue. Swamping and
masking are also the reason that many tests require that the
exact number of outliers being tested must be specified.

Also, masking is one reason that trying to apply a single
outlier test sequentially can fail. For example, if there are
multiple outliers, masking may cause the outlier test for
the first outlier to return a conclusion of no outliers (and
so the testing for any additional outliersis not performed).

The Z-score of an observation is defined as

_%-Y
o g

Z

with ¥ and s denoting the sample mean and sample
standard deviation, respectively. In other words, datais
given in units of how many standard deviationsit is from
the mean.

Although it is common practice to use Z-scores to identify
possible outliers, this can be misleading (partiucarly for
small sample sizes) due to the fact that the maximum Z-
scoreisat most (n — 1),/+/7.

Iglewicz and Hoaglin recommend using the modified Z-
score

0.6745(x; — )

M; = MAD

with MAD denoting the median absolute deviation and 7
denoting the median.

These authors recommend that modified Z-scores with an
absolute value of greater than 3.5 be labeled as potential
outliers.

A number of formal outlier tests have proposed in the
literature. These can be grouped by the following
characterigtics:

« What isthe distributiona model for the data? We
restrict our discussion to tests that assume the data
follow an approximately normal distribution.

« Isthetest designed for a single outlier or isit
designed for multiple outliers?

« If the test is designed for multiple outliers, does the
number of outliers need to be specified exactly or
can we specify an upper bound for the number of
outliers?
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The following are a few of the more commonly used
outlier tests for normally distributed data. This list is not
exhaustive (alarge number of outlier tests have been
proposed in the literature). The tests given here are
essentially based on the criterion of "distance from the
mean". Thisis not the only criterion that could be used.
For example, the Dixon test, which is not discussed here,
is based a value being too large (or small) compared to its
nearest neighbor.

1. Grubbs Test - this is the recommended test when
testing for a single outlier.

2. Tietjen-Moore Test - this is a generdization of the
Grubbs' test to the case of more than one outlier. It
has the limitation that the number of outliers must
be specified exactly.

3. Generalized Extreme Studentized Deviate (ESD)
Test - this test requires only an upper bound on the

suspected number of outliersand isthe
recommended test when the exact number of outliers
is not known.

The tests discussed here are specifically based on the
assumption that the data follow an approximately normal
disribution. If your data follow an approximately
lognormal distribution, you can transform the data to
normality by taking the logarithms of the data and then
applying the outlier tests discussed here.

Iglewicz and Hoaglin provide an extensive discussion of
the outlier tests given above (as well as some not given
above) and also give a good tutorial on the subject of
outliers. Barnett and L ewis provide a book length
treatment of the subject.

In addition to discussing additional tests for data that
follow an approximately normal distribution, these sources
also discuss the case where the data are not normally
distributed.
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Full factorial and fractional factorial designs are common
in designed experiments for engineering and scientific
applications.

In these designs, each factor is assigned two levels. These
are typically called the low and high levels. For
computational purposes, the factors are scaled so that the
low level is assigned a value of -1 and the high level is
assigned a value of +1. These are also commonly referred
toas"-" and "+".

A full factorial design contains all possible combinations
of low/high levels for al the factors. A fractional factorial
design contains a carefully chosen subset of these
combinations. The criterion for choosing the subsets is
discussed in detail in the process improvement chapter.

The Y ates algorithm exploits the special structure of these
designs to generate least squares estimates for factor
effects for al factors and all relevant interactions.

The mathematical details of the Y ates algorithm are given

in chapter 10 of Box, Hunter, and Hunter (1978). Natrella
(1963) also provides a procedure for testing the

significance of effect estimates.

The effect estimates are typically complemented by a
number of graphical techniques such as the DOE mean
plot and the DOE contour plot ("DOE" represents "design
of experiments'). These are demonstrated in the eddy
current case study.

Before performing the Y ates algorithm, the data should be
arranged in "Yates order”. That is, given k factors, the kth
column consists of 2¢'1 minus signs (i.e., the low level of

the factor) followed by 2k-1 plus signs (i.e., the high level
of the factor). For example, for a full factorial design with
three factors, the design matrix is
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1.3.5.18. Yates Algorithm

Yates
Algorithm

+++ 4+

Determining the Y ates order for fractional factorial
designs requires knowledge of the confounding structure
of the fractional factorial design.

The Y ates algorithm is demonstrated for the eddy current
data set. The data set contains eight measurements from a
two-level, full factorial design with three factors. The
purpose of the experiment is to identify factors that have
the most effect on eddy current measurements.

In the "Effect" column, we list the main effects and
interactions from our factorial experiment in standard
order. In the "Response” column, we list the measurement
results from our experiment in Y ates order.

Ef f ect Response Col 1 Col 2 Col 3
Estimate

Mean 1.70 6. 27 10. 21 21. 27
2. 65875

X1 4.57 3.94 11. 06 12.41
1.55125

X2 0.55 6.10 5.71 -3.47
0.43375

X1* X2 3.39 4.96 6.70 0.51
0. 06375

X3 1.51 2.87 -2.33 0.85
0. 10625

X1* X3 4.59 2.84 -1.14 0.99
0. 12375

X2* X3 0. 67 3.08 -0.03 1.19
0. 14875

X1* X2* X3 4.29 3.62 0.54 0. 57
0.07125

Sum of responses: 21.27

Sum- of - squar ed responses: 77.7707

Sum of - squared Col 3: 622. 1656

Thefirst four valuesin Col 1 are obtained by adding
adjacent pairs of responses, for example 4.57 + 1.70 =
6.27, and 3.39 + 0.55 = 3.94. The second four valuesin
Col 1 are obtained by subtracting the same adjacent pairs
of responses, for example, 4.57 - 1.70 = 2.87, and 3.39 -
0.55 = 2.84. Thevauesin Col 2 are calculated in the same
way, except that we are adding and subtracting adjacent
values from Col 1. Col 3iscomputed using adjacent
values from Col 2. Finally, we obtain the "Estimate”
column by dividing the valuesin Col 3 by the total number
of responses, 8.

We can check our calculations by making sure that the
first value in Col 3 (21.27) isthe sum of al the responses.
In addition, the sum-of-sgquared responses (77.7707)
should equal the sum-of-squared Col 3 values divided by 8
(622.1656/8 = 77.7707).
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The Y ates algorithm provides a convenient method for
computing effect estimates; however, the same
information is easily obtained from statistical software
using either an analysis of variance or regression
procedure. The methods for analyzing data from a
designed experiment are discussed more fully in the

chapter on Process |mprovement.

The following plots may be useful to complement the
guantitative information from the Y ates algorithm.

1. Ordered data plot
2. Ordered absolute effects plot
3. Cumulative residual standard deviation plot

The Y ates algorithm can be used to answer the following
guestion.

1. What is the estimated effect of a factor on the
response?

Multi-factor analysis of variance
DOE mean plot

Block plot

DOE contour plot

The analysis of a full factorial design is demonstrated in
the eddy current case study.

All statistical software packages are capable of estimating
effects using an analysis of variance or least squares
regression procedure.
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In most cases of |east-squares fitting, the model coefficients
for previously added terms change depending on what was
successively added. For example, the X1 coefficient might
change depending on whether or not an X2 term was included
in the model. Thisis not the case when the design is

orthogonal, as isa 22 full factorial design. For orthogonal
designs, the estimates for the previously included terms do not
change as additional terms are added. This means the ranked
list of parameter estimates are the least-squares coefficient
estimates for progressively more complicated models.

We use the parameter estimates derived from a least-squares
analysis for the eddy current data set to create an example
prediction equation.

Par anet er Esti mat e
Mean 2. 65875
X1 1.55125
X2 - 0. 43375
X1* X2 0. 06375
X3 0. 10625
X1* X3 0.12375
X2* X3 0. 14875
X1* X2* X3 0.07125

A prediction equation predicts a value of the reponse variable
for given values of the factors. The equation we select can
include all the factors shown above, or it can include a subset
of the factors. For example, one possible prediction equation
using only two factors, X1 and X2, is:

-~

Y = 2.65875 4 1.55125 - X; — 0.43375 - X»

The least-squares parameter estimates in the prediction
eguation reflect the change in response for a one-unit change
in the factor value. To obtain "full" effect estimates (as
computed using the Y ates algorithm) for the change in factor
levels from -1 to +1, the effect estimates (except for the
intercept) would be multiplied by two.

Remember that the Y ates algorithm is just a convenient
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method for computing effects, any statistical software package
with least-squares regression capabilities will produce the
same effects as well as many other useful analyses.

Model We want to select the most appropriate model for our data
Selection while balancing the following two goals.

1. We want the model to include all important factors.
2. We want the model to be parsimonious. That is, the
model should be as simple as possible.

Note that the residual standard deviation aone is insufficient
for determining the most appropriate model as it will aways
be decreased by adding additional factors. The next section
describes a number of approaches for determining which
factors (and interactions) to include in the model.

NIST
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| dentify We want to select the most appropriate model to represent our data. This requires balancing
| mportant the following two goals.
Factors

1. We want the model to include al important factors.
2. We want the model to be parsimonious. That is, the model should be as simple as
possible.

In short, we want our model to include all the important factors and interactions and to omit
the unimportant factors and interactions.

Seven criteria are utilized to define important factors. These seven criteria are not all equally
important, nor will they yield identical subsets, in which case a consensus subset or a
weighted consensus subset must be extracted. In practice, some of these criteria may not apply
in all situations.

These criteria will be examined in the context of the eddy current data set. The parameter
estimates computed using least-squares analysis are shown below.

Par anet er Esti mat e
Mean 2.65875
X1 1.55125
X2 -0. 43375
X1* X2 0. 06375
X3 0.10625
X1* X3 0.12375
X2* X3 0. 14875
X1* X2* X3 0.07125

In practice, not all of these criteria will be used with every analysis (and some analysts may
have additional criteria). These critierion are given as useful guidelines. Most analysts will
focus on those criteria that they find most useful.

Criteriafor ~ The seven criteria that we can use in determining whether to keep a factor in the model can be
Including summarized as follows.

Termsin
the Model Parameters. Engineering Significance

Parameters. Order of Magnitude

Parameters. Statistical Significance

Parameters. Probability Plots

Effects: Youden Plot

Residual Standard Deviation: Engineering Significance
Residual Standard Deviation: Statistical Significance

Noug,prwWNE

The first four criteria focus on parameter estimates with three numeric criteria and one
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Parameters:
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Parameters:
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Magnitude

Parameters:
Satistical
Sgnificance

graphical criteria. The fifth criteria focuses on effects, which are twice the parameter
estimates. The last two criteria focus on the residual standard deviation of the model. We
discuss each of these seven criteriain detail in the sections that following.

The minimum engineering significant difference is defined as
Bl > A

where | ﬁi| Is the absolute value of the parameter estimate and A is the minimum engineering
significant difference.

That is, declare a factor as "important” if the parameter estimate is greater than some a priori
declared engineering difference. This implies that the engineering staff have in fact stated
what a minimum difference will be. Oftentimes this is not the case. In the absence of an a
priori difference, a good rough rule for the minimum engineering significant 4, is to keep only
those factors whose parameter estimate is greater than, say, 10% of the current production
average. In this case, let's say that the average detector has a sensitivity of 2.5 ohms. This
would suggest that we would declare all factors whose parameter is greater than 10 % of 2.5
ohms = 0.25 ohm to be significant (from an engineering point of view).

Based on this minimum engineering significant difference criterion, we conclude that we
should keep two terms: X1 and X2.

The order of magnitude criterion is defined as

|ﬂ;| < (.10 * mﬂ.:r|ﬂ.,,|

That is, exclude any factor that is lessthan 10 % of the maximum parameter size. We may or
may not keep the other factors. This criterion is neither engineering nor statistical, but it does
offer some additional numerical insight. For the current example, the largest parameter is from
X1 (1.55125 ohms), and so 10 % of that is 0.155 ohms, which suggests keeping all factors
whose parameters exceed 0.155 ohms.

Based on the order-of -magnitude criterion, we thus conclude that we should keep two terms:
X1 and X2. A third term, X2* X3 (0.14875), isjust dightly under the cutoff level, so we may
consider keeping it based on the other criterion.

Statistical significance is defined as

|,f.§;.| > 2 s.e.{,@,;}

That is, declare a factor as important if its parameter is more than 2 standard deviations away
from 0 (0, by definition, meaning "no effect").

The"2" comes from normal theory (more specifically, a value of 1.96 yields a 95 %
confidence interval). More precise values would come from t-distribution theory.

The difficulty with this isthat in order to invoke this criterion we need the standard deviation,
«a, of an observation. Thisis problematic because

1. the engineer may not know ¢;
2. the experiment might not have replication, and so a model-free estimate of & is not
obtainable;
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3. obtaining an estimate of & by assuming the sometimes- employed assumption of
ignoring 3-term interactions and higher may be incorrect from an engineering point of
view.

For the eddy current example:

1. the engineer did not know ;

2. the design (a 2 full factorial) did not have replication;
3. ignoring 3-term interactions and higher interactions leads to an estimate of & based on
omitting only a single term: the X1* X2* X3 interaction.

For the eddy current example, if one assumes that the 3-term interaction is nil and hence
represents a single drawing from a population centered at zero, then an estimate of the
standard deviation of a parameter is simply the estimate of the 3-factor interaction (0.07125).
Two standard deviations is thus 0.1425. For this example, the ruleis thus to keep all | ﬁg_| >

0.1425.
This results in keeping three terms: X1 (1.55125), X2 (-0.43375), and X1* X2 (0.14875).

Probability plots can be used in the following manner.

1. Normal Probability Plot: Keep a factor as "important” if it iswell off the line through
zero on a normal probability plot of the parameter estimates.

2. Half-Normal Probability Plot: Keep a factor as "important” if it iswell off the line near
zero on a half-normal probability plot of the absolute value of parameter estimates.

Both of these methods are based on the fact that the least-squares estimates of parameters for
these two-level orthogonal designs are simply half the difference of averages and so the
central limit theorem, loosely applied, suggests that (if no factor were important) the
parameter estimates should have approximately a normal distribution with mean zero and the
absolute value of the estimates should have a half-normal distribution.

Since the half-normal probability plot is only concerned with parmeter magnitudes as opposed
to signed parameters (which are subject to the vagaries of how the initial factor codings +1
and -1 were assigned), the half-normal probability plot is preferred by some over the normal
probability plot.

The following normal probability plot shows the parameter estimates for the eddy current
data
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For the example at hand, the probability plot clearly shows two factors (X1 and X2) displaced
off the line. All of the remaining five parameters are behaving like random drawings from a
normal distribution centered at zero, and so are deemed to be statistically non-significant. In
conclusion, this rule keeps two factors: X1 (1.55125) and X2 (-0.43375).

A Youden plot can be used in the following way. Keep a factor as "important” if it is
displaced away from the central -tendancy "bunch” in a Y ouden plot of high and low averages.
By definition, a factor isimportant when its average response for the low (-1) setting is
significantly different from its average response for the high (+1) setting. (Note that effects are
twice the parameter estimates.) Conversely, if the low and high averages are about the same,
then what difference does it make which setting to use and so why would such a factor be
considered important? This fact in combination with the intrinsic benefits of the Y ouden plot
for comparing pairs of items leads to the technique of generating a Y ouden plot of the low
and high averages.

The following is the Y ouden plot of the effect estimatess for the eddy current data.
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For the example at hand, the Y ouden plot clearly shows a cluster of points near the grand
average (2.65875) with two displaced points above (factor 1) and below (factor 2). Based on
the Y ouden plot, we conclude to keep two factors: X1 (1.55125) and X2 (-0.43375).

This criterion is defined as
Residua Standard Deviation > Cutoff

That is, declare a factor as "important” if the cumulative model that includes the factor (and
al larger factors) has a residual standard deviation smaller than an a priori engineering-
specified minimum residual standard deviation.

This criterion is different from the others in that it is model focused. In practice, this criterion
states that starting with the largest parameter, we cumulatively keep adding terms to the model
and monitor how the residual standard deviation for each progressively more complicated
model becomes smaller. At some point, the cumulative model will become complicated
enough and comprehensive enough that the resulting residual standard deviation will drop
below the pre-specified engineering cutoff for the residual standard deviation. At that point,
we stop adding terms and declare all of the model-included terms to be "important” and
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everything not in the model to be "unimportant”.

This approach implies that the engineer has considered what a minimum residual standard
deviation should be. In effect, this relates to what the engineer can tolerate for the magnitude
of the typical residua (the difference between the raw data and the predicted value from the
model). In other words, how good does the engineer want the prediction equation to be.
Unfortunately, this engineering specification has not always been formulated and so this
criterion can become moot.

In the absence of a prior specified cutoff, a good rough rule for the minimum engineering
residual standard deviation is to keep adding terms until the residual standard deviation just
dips below, say, 5 % of the current production average. For the eddy current data, let's say
that the average detector has a sensitivity of 2.5 ohms. Then this would suggest that we would
keep adding terms to the model until the residual standard deviation falls below 5 % of 2.5
ohms = 0.125 ohms.

Resi dual
Model Std. Dev.
Mean + X1 0.57272
Mean + X1 + X2 0. 30429
Mean + X1 + X2 + X2*X3 0.26737
Mean + X1 + X2 + X2*X3 + X1*X3 0. 23341
Mean + X1 + X2 + X2*X3 + X1*X3 + X3 0.19121
Mean + X1 + X2 + X2*X3 + XI1*X3 + X3 + X1*X2*X3 0. 18031
Mean + X1 + X2 + X2*X3 + XI*X3 + X3 + X1*X2*X3 + X1*X2 NA

Based on the minimum residual standard deviation criteria, and we would include all termsin
order to drive the residual standard deviation below 0.125. Again, the 5 % ruleis a rough-
and-ready rule that has no basisin engineering or statistics, but is simply a "numerics'.
Ideally, the engineer has a better cutoff for the residual standard deviation that is based on
how well he/she wants the equation to peform in practice. If such a number were available,
then for this criterion and data set we would select something less than the entire collection of
terms.

This criterion is defined as
Residual Standard Deviation > &
where ¢ is the standard deviation of an observation under replicated conditions.

That is, declare aterm as "important” until the cumulative model that includes the term has a
residual standard deviation smaller than . In essence, we are alowing that we cannot demand
a model fit any better than what we would obtain if we had replicated data; that is, we cannot
demand that the residual standard deviation from any fitted model be any smaller than the
(theoretical or actual) replication standard deviation. We can drive the fitted standard
deviation down (by adding terms) until it achieves a value close to ¢, but to attempt to drive it
down further means that we are, in effect, trying to fit noise.

In practice, this criterion may be difficult to apply because
1. the engineer may not know ¢;
2. the experiment might not have replication, and so a model-free estimate of & is not
obtainable.

For the current case study:

1. the engineer did not know ;
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2. the design (a 2 full factorial) did not have replication. The most common way of
having replication in such designsis to have replicated center points at the center of the
cube ((X1,X2,X3) = (0,0,0)).

Thusfor this current case, this criteria could not be used to yield a subset of "important”
factors.

Conclusions In summary, the seven criteria for specifying "important” factors yielded the following for the
eddy current data:

1. Parameters, Engineering Significance: X1, X2
2. Parameters, Numerically Significant: X1, X2
3. Parameters, Statistically Significant: X1, X2, X2*X3
4. Parameters, Probability Plots: X1, X2
5. Effects, Youden Plot: X1, X2

6. Residual SD, Engineering Significance: all 7 terms

\l

. Residual SD, Statistical Significance:  not applicable
Such conflicting results are common. Arguably, the three most important criteria (listed in
order of most important) are:

4. Parameters, Probability Plots: X1, X2

1. Parameters, Engineering Significance: X1, X2

3. Residual SD, Engineering Significance: all 7 terms

Scanning all of the above, we thus declare the following consensus for the eddy current data:

1. Important Factors: X1 and X2
2. Parsimonious Prediction Equation:

-~

Y = 2.65875 + 1.55125 - X; — 0.43375- X

(with aresidual standard deviation of 0.30429 ohms)

Note that this isthe initial model selection. We till need to perform model validation with a
residual analysis.
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Probability Probability distributions are a fundamental concept in
Distributions  statistics. They are used both on a theoretical level and a
practical level.

Some practical uses of probability distributions are:

« To calculate confidence intervals for parameters and
to calculate critical regions for hypothesis tests.

« For univariate data, it is often useful to determine a
reasonable distributional model for the data.

« Statistical intervals and hypothesis tests are often
based on specific distributional assumptions. Before
computing an interval or test based on a distributional
assumption, we need to verify that the assumption is
justified for the given data set. In this case, the
distribution does not need to be the best-fitting
distribution for the data, but an adequate enough
model so that the statistical technique yields valid
conclusions.

« Simulation studies with random numbers generated
from using a specific probability distribution are often
needed.

Table of
Contents

Wheat is a probability distribution?

Related probability functions
Eamiilies of distributions

L ocation and scale parameters

Estimating the parameters of a distribution
A galery of common distributions

Tables for probability distributions
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1.3.6.1. What is a Probability Distribution

Discrete The mathematical definition of a discrete probability
Distributions  function, p(x), is a function that satisfies the following
properties.

1. The probability that x can take a specific value is p(x).
That is

PX =z]=plz) =p.
2. p(x) isnon-negative for al real x.

3. The sum of p(x) over al possible values of x is 1, that
IS

> p=1
7

where j represents all possible values that x can have
and p; is the probability at x;.

One consequence of properties 2 and 3isthat 0 <=
p(x) <= 1.

What does this actually mean? A discrete probability
function is a function that can take a discrete number of
values (not necessarily finite). Thisis most often the non-
negative integers or some subset of the non-negative
integers. There is no mathematical restriction that discrete
probability functions only be defined at integers, but in
practice this is usualy what makes sense. For example, if
you toss a coin 6 times, you can get 2 heads or 3 heads but
not 2 1/2 heads. Each of the discrete values has a certain
probability of occurrence that is between zero and one. That
is, a discrete function that allows negative values or values
greater than one is not a probability function. The condition
that the probabilities sum to one means that at least one of
the values has to occur.

Continuous  The mathematical definition of a continuous probability
Distributions  function, f(x), is a function that satisfies the following
properties.
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Versus
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Density
Functions
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1. The probability that x is between two pointsaand b is

pla < z <} :_/:f(a:)d:n

2. Itisnon-negative for al real x.

3. Theintegral of the probability function is one, that is

f_:f(a:)da: —1

What does this actually mean? Since continuous probability
functions are defined for an infinite number of points over a
continuous interval, the probability at a single point is
always zero. Probabilities are measured over intervals, not
single points. That is, the area under the curve between two
distinct points defines the probability for that interval. This
means that the height of the probability function can in fact
be greater than one. The property that the integral must
egual one is equivalent to the property for discrete
distributions that the sum of all the probabilities must equal
one.

Discrete probability functions are referred to as probability
mass functions and continuous probability functions are
referred to as probability density functions. The term
probability functions covers both discrete and continuous
distributions. When we are referring to probability functions
in generic terms, we may use the term probability density
functions to mean both discrete and continuous probability
functions.
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1.3.6.2. Related Distributions

Probability
Density
Function

Cumulative
Distribution
Function

Probability distributions are typically defined in terms of the
probability density function. However, there are a number of
probability functions used in applications.

For a continuous function, the probability density function
(pdf) is the probability that the variate has the value x. Since
for continuous distributions the probability at a single point is
zero, thisis often expressed in terms of an integral between
two points.

b
f f(z)dr = Prla < X <Y

i
For a discrete distribution, the pdf is the probability that the
variate takes the value x.
f(z) = Pr[X =2]

The following is the plot of the normal probability density
function.

Wormal PDF

a4

[=]
at

Protab llity Dens ity
[=]
ha

ai

The cumulative distribution function (cdf) is the probability
that the variable takes a value less than or equal to x. That is

Flz)=PriX<z]=a
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Percent
Point
Function

For a continuous distribution, this can be expressed
mathematically as

i
Flo)= [ fludp
For a discrete distribution, the cdf can be expressed as
F(z) = 3 f(i)
i=0

The following is the plot of the normal cumulative
distribution function.

Mormal COF
1
0.7
£
o
B 05—
<]
o
0.25
a 1 T T T T T T
-4 | 2 -1 a 1 2 | 4

The horizontal axisis the allowable domain for the given
probability function. Since the vertical axisis a probability, it
must fall between zero and one. It increases from zero to one
as we go from left to right on the horizontal axis.

The percent point function (ppf) is the inverse of the
cumulative distribution function. For this reason, the percent
point function is also commonly referred to as the inverse
distribution function. That is, for a distribution function we
calculate the probability that the variable is less than or equal
to x for a given x. For the percent point function, we start
with the probability and compute the corresponding x for the
cumulative distribution. Mathematically, this can be
expressed as

PriXx < Gla)=«a
or aternatively
r = Gla) = G(F(x))

Thefollowing is the plot of the normal percent point
function.
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Hazard
Function

Cumulative
Hazard

Mormal PPF

-4 T T T T T T
q a23 a5 4.73
Praba bl ity

Since the horizontal axisis a probability, it goes from zero to
one. The vertical axis goes from the smallest to the largest
value of the cumulative distribution function.

The hazard function is the ratio of the probability density
function to the survival function, §x).

flz) flz)
he) = Sy ~ T F(@)

The following is the plot of the normal distribution hazard
function.

Marmal Hezard

Hazam

I
dy
fa
|

o
ta
I
I

Hazard plots are most commonly used in reliability
applications. Note that Johnson, Kotz, and Balakrishnan refer
to this as the conditional failure density function rather than
the hazard function.

The cumulative hazard function is the integral of the hazard
function.
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Function .
Hi)= [ hlp)dp
—a0
This can alternatively be expressed as
Hz) = —In{1 — F(z))

The following is the plot of the norma cumulative hazard
function.

Marmal Cumu lathee Hazard

Cumulathve Hazard
&
1

Cumulative hazard plots are most commonly used in
reliability applications. Note that Johnson, Kotz, and
Balakrishnan refer to this as the hazard function rather than
the cumulative hazard function.

Survival Survival functions are most often used in reliability and
Function related fields. The survival function is the probability that the
variate takes a value greater than x.

S(x) =Pr(X > z] =1— F(z)

The following is the plot of the normal distribution survival
function.
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Inverse
Survival
Function

Mormal Sunrhwal

0.7

Protab ity
=
kh
I

0.25 7

For a survival function, the y value on the graph starts at 1
and monotonically decreases to zero. The survival function
should be compared to the cumulative distribution function.

Just as the percent point function is the inverse of the

cumulative distribution function, the survival function also
has an inverse function. The inverse survival function can be
defined in terms of the percent point function.

Z{a) =Gl —a)

The following is the plot of the normal distribution inverse
survival function.

Mormal Inverse Survival

3 r T r T r T
q Q25 a5 0.75 1
Praba bl lity

As with the percent point function, the horizontal axisis a
probability. Therefore the horizontal axis goes from 0to 1
regardless of the particular distribution. The appearanceis
similar to the percent point function. However, instead of
going from the smallest to the largest value on the vertical
axis, it goes from the largest to the smallest value.
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1.3.6.3. Families of Distributions

Shape Many probability distributions are not a single distribution,
Parameters  but are in fact a family of distributions. Thisis due to the
distribution having one or more shape parameters.

Shape parameters allow a distribution to take on a variety of
shapes, depending on the value of the shape parameter. These
distributions are particularly useful in modeling applications
since they are flexible enough to model a variety of data sets.

Example: The Weibull distribution is an example of a distribution that

Weibull has a shape parameter. The following graph plots the Weibull
Digtribution  pdf with the following values for the shape parameter: 0.5,
1.0, 2.0, and 5.0.
s Weibull PDF (Gamma = 0.5) . Weibull PDF{Gamma=1)
a7 075 1
B ® a5
o 21 o
1 Q25
a K\\__ — i ]
a 1 % i | 4 a 1 % 3 4
Weibull PDF{Gamma =2) Weibull PDF{Gamma =5)

a5

P roba bil ity
(=T == = T = I =
[ QT SRR T T RN 1)
S
—
P roka bility
a 2 m
N
———
r_—}

The shapes above include an exponential distribution, a right-
skewed distribution, and a relatively symmetric distribution.

The Weibull distribution has a relatively simple distributional
form. However, the shape parameter allows the Weibull to
assume a wide variety of shapes. This combination of
simplicity and flexibility in the shape of the Weibull
distribution has made it an effective distributional model in
reliability applications. This ability to model a wide variety
of distributional shapes using arelatively simple
distributional form is possible with many other distributional
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families as well.

PPCC Plots The PPCC plot is an effective graphical tool for selecting the
member of a distributional family with a single shape
parameter that best fits a given set of data.
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Normal A probability distribution is characterized by location and
PDF scale parameters. Location and scale parameters are typically
used in modeling applications.

For example, the following graph is the probability density
function for the standard normal distribution, which has the
location parameter equal to zero and scale parameter equal to

one.
Narmal PDF
a4
a3
s
&
£ az
g
2
ai
-~ /"
a .
- -3 2 -1 a 1 2 i | 4
Location The next plot shows the probability density function for a

Parameter normal distribution with a location parameter of 10 and a
scale parameter of 1.
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Mormal PDF{Location= 10}

a4
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az

Probtability Dens ity

g

The effect of the location parameter is to translate the graph,
relative to the standard normal distribution, 10 units to the
right on the horizontal axis. A location parameter of -10
would have shifted the graph 10 units to the left on the
horizontal axis.

That is, alocation parameter simply shifts the graph left or
right on the horizontal axis.

Scale The next plot has a scale parameter of 3 (and a location

Parameter parameter of zero). The effect of the scale parameter isto
stretch out the graph. The maximum y value is approximately
0.13 as opposed 0.4 in the previous graphs. They value, i.e.,
the vertical axis value, approaches zero at about (+/-) 9 as
opposed to (+/-) 3 with the first graph.

Marmal PDF {Scale = 3]
a2

Q.15

aA

Probability Dens ity

Q.05

In contrast, the next graph has a scale parameter of 1/3
(=0.333). The effect of this scale parameter is to squeeze the
pdf. That is, the maximum y value is approximately 1.2 as
opposed to 0.4 and the y value is near zero at (+/-) 1 as
opposed to (+/-) 3.
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Mormal POF (Scale = 1/3)

Probab ity Dens ity

as

The effect of a scale parameter greater than one is to stretch
the pdf. The greater the magnitude, the greater the stretching.
The effect of a scale parameter less than one is to compress
the pdf. The compressing approaches a spike as the scale
parameter goes to zero. A scale parameter of 1 leaves the pdf
unchanged (if the scale parameter is 1 to begin with) and
non-positive scale parameters are not allowed.

Location The following graph shows the effect of both a location and
and Scale a scale parameter. The plot has been shifted right 10 units
Together and stretched by a factor of 3.

Mormal PDF{Location = 10, Scale =13

az

Q.15

&
£ a1
g
o
a.a5 )
e / !
a
a ] 10 15 20
Sandard The standard form of any distribution is the form that has
Form location parameter zero and scale parameter one.

It is common in statistical software packages to only
compute the standard form of the distribution. There are
formulas for converting from the standard form to the form
with other location and scale parameters. These formulas are
independent of the particular probability distribution.
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1.3.6.4. Location and Scale Parameters

The following are the formulas for computing various
probability functions based on the standard form of the
distribution. The parameter a refers to the location parameter
and the parameter b refers to the scale parameter. Shape
parameters are not included.

Cumulative Distribution
Function

Probability Density Function f(x;a,b) = (1/b)f((x-a)/b;0,1)
Percent Point Function G(ex;a,b) = a+ bG(ex;0,1)
Hazard Function h(x;a,b) = (U/b)h((x-a)/b;0,1)
Cumulative Hazard Function H(x;a,b) = H((x-a)/b;0,1)
Surviva Function S(x;a,b) = §((x-a)/b;0,1)
[nverse Survival Function Z(ex;a,b) = a+ bZ(ex;0,1)
Random Numbers Y(ab) =a+ bY(0,1)

F(x;a,b) = F((x-a)/b;0,1)

For the normal distribution, the location and scale parameters
correspond to the mean and standard deviation, respectively.
However, this is not necessarily true for other distributions.
In fact, it is not true for most distributions.
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1.3.6.5. Estimating the Parameters of a
Distribution

Model a One common application of probability distributions is
univariate  modeling univariate data with a specific probability

data set distribution. This involves the following two steps:
with a
probability 1. Determination of the "best-fitting" distribution.

distribution 2. Estimation of the parameters (shape, location, and scale
parameters) for that distribution.

Various There are various methods, both numerical and graphical, for
Methods estimating the parameters of a probability distribution.

1. Method of moments

2. Maximum likelihood

3. Least squares

4. PPCC and probability plots
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1.3.6.5.1. Method of Moments

Method of
Moments

Software

NIST
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The method of moments equates sample moments to parameter
estimates. When moment methods are available, they have the
advantage of simplicity. The disadvantage is that they are often
not available and they do not have the desirable optimality

properties of maximum likelihood and least squares estimators.

The primary use of moment estimates is as starting values for
the more precise maximum likelihood and |east squares
estimates.

Most general purpose statistical software does not include
explicit method of moments parameter estimation commands.
However, when utilized, the method of moment formulas tend
to be straightforward and can be easily implemented in most
statistical software programs.
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Maximum
Likelihood

Advantages

Maximum likelihood estimation begins with the
mathematical expression known as a likelihood function of
the sample data. Loosely speaking, the likelihood of a set
of datais the probability of obtaining that particular set of
data given the chosen probability model. This expression
contains the unknown parameters. Those values of the
parameter that maximize the sample likelihood are known
as the maximum likelihood estimates.

The reliability chapter contains some examples of the
likelihood functions for a few of the commonly used
distributions in reliability analysis.

The advantages of this method are:

« Maximum likelihood provides a consistent approach
to parameter estimation problems. This means that
maximum likelihood estimates can be developed for
alarge variety of estimation situations. For example,
they can be applied in reliability analysis to
censored data under various censoring models.

« Maximum likelihood methods have desirable
mathematical and optimality properties. Specifically,
1. They become minimum variance unbiased

estimators as the sample size increases. By
unbiased, we mean that if we take (avery
large number of) random samples with
replacement from a population, the average
value of the parameter estimates will be
theoretically exactly equal to the population
value. By minimum variance, we mean that
the estimator has the smallest variance, and
thus the narrowest confidence interval, of all
estimators of that type.

2. They have approximate normal distributions
and approximate sample variances that can be
used to generate confidence bounds and
hypothesis tests for the parameters.

« Several popular statistical software packages provide
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excellent algorithms for maximum likelihood
estimates for many of the commonly used
distributions. This helps mitigate the computational
complexity of maximum likelihood estimation.

Disadvantages  The disadvantages of this method are:

« Thelikelihood equations need to be specifically
worked out for a given distribution and estimation
problem. The mathematics is often non-trivial,
particularly if confidence intervals for the
parameters are desired.

« The numerical estimation is usualy non-trivial.
Except for a few cases where the maximum
likelihood formulas are in fact simple, it is generally
best to rely on high quality statistical software to
obtain maximum likelihood estimates. Fortunately,
high quality maximum likelihood software is
becoming increasingly common.

« Maximum likelihood estimates can be heavily biased
for small samples. The optimality properties may not
apply for small samples.

« Maximum likelihood can be sensitive to the choice
of starting values.

Software Most general purpose statistical software programs support
maximum likelihood estimation (MLE) in some form.
MLE estimation can be supported in two ways.

1. A software program may provide a generic function
minimization (or equivalently, maximization)
capability. Thisisalso referred to as function
optimization. Maximum likelihood estimation is
essentially a function optimization problem.

This type of capability is particularly common in
mathematical software programs.

2. A software program may provide MLE
computations for a specific problem. For example, it
may generate ML estimates for the parameters of a
Weibull distribution.

Statistical software programs will often provide ML
estimates for many specific problems even when
they do not support general function optimization.

The advantage of function minimization software is that it

can be applied to many different MLE problems. The
drawback is that you have to specify the maximum
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1.3.6.5.2. Maximum Likelihood

likelihood equations to the software. As the functions can
be non-trivial, thereis potential for error in entering the
equations.

The advantage of the specific MLE procedures is that
greater efficiency and better numerical stability can often
be obtained by taking advantage of the properties of the
specific estimation problem. The specific methods often
return explicit confidence intervals. In addition, you do not
have to know or specify the likelihood equations to the
software. The disadvantage is that each MLE problem
must be specifically coded.
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1.3.6.5.3. Least Squares
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Least Squares

Advantages

Disadvantages

Software
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Non-linear |least squares provides an alternative to
maximum likelihood.

The advantages of this method are:

« Non-linear least squares software may be available
in many statistical software packages that do not
support maximum likelihood estimates.

« It can be applied more generally than maximum
likelihood. That is, if your software provides non-
linear fitting and it has the ability to specify the
probability function you are interested in, then you
can generate least squares estimates for that
distribution. This will allow you to obtain reasonable
estimates for distributions even if the software does
not provide maximum likelihood estimates.

The disadvantages of this method are:
« Itisnot readily applicable to censored data.

« Itisgeneraly considered to have less desirable
optimality properties than maximum likelihood.

« It can be quite sensitive to the choice of starting
values.

Non-linear least squaresfitting is available in many
general purpose statistical software programs.
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1.3.6.5.4. PPCC and Probability Plots
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1.3.6.5.4. PPCC and Probability Plots

PPCC and The PPCC plot can be used to estimate the shape
Probability parameter of a distribution with a single shape parameter.
Plots After finding the best value of the shape parameter, the

probability plot can be used to estimate the location and
scale parameters of a probability distribution.

Advantages The advantages of this method are:

It is based on two well-understood concepts.

1. Thelinearity (i.e, straightness) of the
probability plot is a good measure of the
adequacy of the distributional fit.

2. The correlation coefficient between the points
on the probability plot is a good measure of
the linearity of the probability plot.

It is an easy technigue to implement for a wide
variety of distributions with a single shape
parameter. The basic requirement is to be able to
compute the percent point function, which is needed
in the computation of both the probability plot and
the PPCC plot.

The PPCC plot provides insight into the sensitivity
of the shape parameter. That is, if the PPCC plot is
relatively flat in the neighborhood of the optimal
value of the shape parameter, thisis a strong
indication that the fitted model will not be sensitive
to small deviations, or even large deviations in some
cases, in the value of the shape parameter.

The maximum correlation value provides a method
for comparing across distributions as well as
identifying the best value of the shape parameter for
a given distribution. For example, we could use the
PPCC and probability fits for the Weibull,
lognormal, and possibly several other distributions.
Comparing the maximum correlation coefficient
achieved for each distribution can help in selecting
which is the best distribution to use.
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1.3.6.5.4. PPCC and Probability Plots

Disadvantages The disadvantages of this method are:

« Itislimited to distributions with a single shape
parameter.

« PPCC plots are not widely available in statistical
software packages other than Dataplot (Dataplot
provides PPCC plots for 40+ distributions).
Probability plots are generally available. However,
many statistical software packages only provide
them for a limited number of distributions.

« Significance levels for the correlation coefficient
(i.e., if the maximum correlation value is above a
given value, then the distribution provides an
adequate fit for the data with a given confidence
level) have only been worked out for a limited
number of distributions.

Other For reliability applications, the hazard plot and the Weibull
Graphical plot are alternative graphical methods that are commonly
Methods used to estimate parameters.
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Gallery of Detailed information on a few of the most common

Common distributions is available below. There are a large number of

Distributions  distributions used in statistical applications. It is beyond the
scope of this Handbook to discuss more than a few of these.
Two excellent sources for additional detailed information on
alarge array of distributions are Johnson, Kotz, and
Balakrishnan and Evans, Hastings, and Peacock. Equations
for the probability functions are given for the standard form
of the distribution. Formulas exist for defining the functions
with location and scale parameters in terms of the standard
form of the distribution.

The sections on parameter estimation are restricted to the
method of moments and maximum likelihood. Thisis
because the |east squares and PPCC and probability plot
estimation procedures are generic. The maximum likelihood
equations are not listed if they involve solving simultaneous
equations. This is because these methods require
sophisticated computer software to solve. Except where the
maximum likelihood estimates are trivial, you should depend
on a statistical software program to compute them.
References are given for those who are interested.

Be aware that different sources may give formulas that are
different from those shown here. In some cases, these are
simply mathematically equivalent formulations. In other
cases, a different parameterization may be used.

Continuous £ iz £
Distributions E i E
i
..l.'lj._ngl [N ] 1] E Lh .l.d.'l_'l_ngll.jl.
Normal Uniform Cauchy
Distribution Distribution Distribution
,; ; N
L : £
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1.3.6.6. Gallery of Distributions

Discrete
Distributions
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t Distribution E Distribution Chi-Square
Distribution
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Exponential Weibull Lognormal
Distribution Distribution Distribution
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Birnbaum- Gamma Double
Saunders Distribution Exponential
(Fatigue L ife) Distribution
Distribution
L ) r
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Power Normal Power Tukey-1L ambda
Distribution L ognormal Distribution
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E ':
i
Extreme Value Beta Distribution
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Distribution
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1.3.6.6.1. Normal Distribution
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1.3.6.6.1. Normal Distribution

Probability = The general formulafor the probability density function of
Density the normal distribution is
Function

otz (22

a2

where #i is the |ocation parameter and  is the scale
parameter. The case where j4 = 0 and o = 1iscalled the
standard normal distribution. The equation for the standard
normal distribution is

a2

Since the general form of probability functions can be
expressed in terms of the standard distribution, all subsequent
formulasin this section are given for the standard form of the
function.

flz) =

The following is the plot of the standard normal probability
density function.

Marmal POF

a4

a3

az

Proba ity Dens ity

aa

Cumulative  The formula for the cumulative distribution function of the
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1.3.6.6.1. Normal Distribution

Distribution  normal distribution does not exist in a ssmple closed formula.
Function It is computed numerically.

The following is the plot of the normal cumulative
distribution function.

Mormal COF
1
0.78
-
E iF-
g
0.25
T 17 T T T 1T 7T T T T T T 7T
e -3 2 -1 a 1 2 | 4
Percent The formulafor the percent point function of the normal
Point distribution does not exist in a ssmple closed formula. It is
Function computed numericaly.
Thefollowing is the plot of the normal percent point
function.
Mormal PRF
k|
2]
1 —
o a
-1 -
-2 —
-4 T T T T T T
a 25 4] 075 1
Prabablitty
Hazard The formula for the hazard function of the normal
Function distribution is

) = g

where @ is the cumulative distribution function of the

P

http://www.itl .nist.gov/div898/handbook/eda/section3/eda3661.htm[6/27/2012 2:02:25 PM]



1.3.6.6.1. Normal Distribution

standard normal distribution and  is the probability density
function of the standard normal distribution.

The following is the plot of the normal hazard function.

Marmal Hezard

Hazam
1

Cumulative  The normal cumulative hazard function can be computed

Hazard from the normal cumulative distribution function.
Function
The following is the plot of the normal cumulative hazard
function.
Mo rmal Cumulathee Hazard
i |

Cumulgte Hazard
=]
|

- -4 Z -1 a 2 E | 4
x
Survival The normal survival function can be computed from the
Function normal cumulative distribution function.

The following is the plot of the normal survival function.
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1.3.6.6.1. Normal Distribution

harmal Sunchal
1
1.73
-
ﬁ a5 ]
5
1.25 —
9T T 717 T T T T T+ T T T t T 7T
-1 -3 2 -1 a 1 2 3 4
x
Inverse The normal inverse survival function can be computed from
Survival the normal percent point function.
Function
The following is the plot of the normal inverse survival
function.
Marmal Inverse S orwdwal
k|
2]
1 —
LR
-1 -
-2 —
-4 T T T T T T
a 425 a3 Q.75 1
Prababl ity
Common Mean The location parameter /.
Satistics Median The location parameter #-.
Mode The location parameter .
Range Infinity in both directions.
Standard The scale parameter a.
Deviation
Coefficientof  a/p
Variation
Skewness 0
Kurtosis 3

Parameter The location and scale parameters of the normal distribution
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1.3.6.6.1. Normal Distribution

Estimation

Comments

Theroretical
Justification
- Central
Limit
Theorem

Software
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can be estimated with the sample mean and sample standard
deviation, respectively.

For both theoretical and practical reasons, the normal
distribution is probably the most important distribution in
statistics. For example,

« Many classical statistical tests are based on the
assumption that the data follow a normal distribution.
This assumption should be tested before applying these
tests.

« In modeling applications, such as linear and non-linear
regression, the error term is often assumed to follow a
normal distribution with fixed location and scale.

« Thenormal distribution is used to find significance
levels in many hypothesis tests and confidence
intervals.

The normal distribution iswidely used. Part of the appeal is
that it iswell behaved and mathematically tractable.
However, the central limit theorem provides a theoretical
basis for why it has wide applicability.

The central limit theorem basically states that as the sample
size (N) becomes large, the following occur:

1. The sampling distribution of the mean becomes
approximately normal regardliess of the distribution of
the origina variable.

2. The sampling distribution of the mean is centered at
the population mean, j4, of the original variable. In
addition, the standard deviation of the sampling
distribution of the mean approaches . /‘\/ﬁ

Most general purpose statistical software programs support at
least some of the probability functions for the normal
distribution.
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1.3.6.6.2. Uniform Distribution

| P ENGINEERING STATISTICS HANDBOOK

HOME TOOLS & AIDS SEARCH BACK MNEXT

1. Exploratory Data Analysis
1.3. EDA Techniques

1.3.6. Probability Distributions
1.3.6.6. Gallery of Distributions

1.3.6.6.2. Uniform Distribution

Probability = The general formula for the probability density function of the uniform
Density distribution is
Function ]

) = <K<
flz) B for A<z < B

where A isthe location parameter and (B - A) is the scale parameter. The
case where A = 0 and B = 1iscalled the standard uniform distribution.
The equation for the standard uniform distribution is

flzy=1 ford<x<1

Since the general form of probability functions can be expressed in terms of
the standard distribution, all subsequent formulasin this section are given
for the standard form of the function.

The following is the plot of the uniform probability density function.

Uniform PDF

025

Protab ity Dens iy

0.975

Q.95
a az2s5 a5 Q.75 1

Cumulative  The formulafor the cumulative distribution function of the uniform
Distribution  distribution is

Function
Flr)==z for 0 << x <1

The following is the plot of the uniform cumulative distribution function.
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1.3.6.6.2. Uniform Distribution

U nfarm CDF
1
1.7
-
Fal
B a5
g
o -
0.25 7
a T T T T T T T
[4] a25 a5 Q.75 1
x
Percent The formula for the percent point function of the uniform distribution is

Point
Function Gp)=p for0<p<1

Thefollowing is the plot of the uniform percent point function.

Unlfarm PPF
1
0.7
= a5
.25 -
a T T T T T T
L] Q25 a5 075 1
Proba bl ity
Hazard The formulafor the hazard function of the uniform distribution is
Function .
h(z) = for0<z <1
l—m=x

The following is the plot of the uniform hazard function.
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1.3.6.6.2. Uniform Distribution

Unlform Hazard

a1

a1 —

w1 -

a1 —

51—

Hazamd

-
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a1 —

10 —

a Q23 a5 Q.73 1

Cumulative  The formulafor the cumulative hazard function of the uniform distribution
Hazard is

Function
H(r) =—In{l —x) for0<xr <1

The following is the plot of the uniform cumulative hazard function.

Unfarm Cumulatiee Heazard
a
4 -
H i
&
E 2
4 i
,
a T T T T T T T
L] 025 1] 075 1
x
Survival The uniform survival function can be computed from the uniform
Function cumul ative distribution function.

The following is the plot of the uniform survival function.
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1.3.6.6.2. Uniform Distribution

Unfarm Surwhral
1
0.7
E
% a4
0.25
a T T T
q a23 a5 4.73 1
x
Inverse The uniform inverse survival function can be computed from the uniform
Survival percent point function.
Function
Thefollowing is the plot of the uniform inverse survival function.
U nifarm Imeerse Suncheal
1
0.7
oas5
.25
a T T T T T T T
a 423 1] 0.73 1
Praba bl ity
Common Mean (A + B)/2
Satistics Median (A + B)/2
Range B-A
Standard Deviation (B — A)2
12
Coefficient of (B — A)
Variation \/3(3 + A)
Skewness 0
Kurtosis 9/5

Parameter The method of moments estimators for A and B are

Estimation .
A=7— 3s
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1.3.6.6.2. Uniform Distribution

B=75+4+3s

The maximum likelihood estimators are usually given in terms of the
parameters a and h where

A=a-h
B=a+h

The maximum likelihood estimators for a and h are

= midrange(Yy, Y5, ..., ¥,)
0.5[range(¥1,¥3, ..., Yo )]

o o
I

This gives the following maximum likelihood estimators for A and B

A = midrange(¥), Ya,...,¥,) — 0.5[range(¥1,¥,, ... Y, )| =¥

B = midrange({¥1,Ys,...,Y,) + 0.5[range(¥1,¥5, ... Y, )| = ¥,

Comments The uniform distribution defines equal probability over a given range for a
continuous distribution. For this reason, it is important as a reference
distribution.

One of the most important applications of the uniform distribution isin the
generation of random numbers. That is, almost all random number
generators generate random numbers on the (0,1) interval. For other
distributions, some transformation is applied to the uniform random
numbers.

Software Most general purpose statistical software programs support at least some of
the probability functions for the uniform distribution.
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1.3.6.6.3. Cauchy Distribution
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1.3.6.6.3. Cauchy Distribution

Probability  The general formula for the probability density function of
Density the Cauchy distribution is
Function ]

o) = a0/

where t is the location parameter and s is the scale parameter.
Thecasewheret = 0and s = 1 iscalled the standard
Cauchy distribution. The equation for the standard Cauchy
distribution reduces to

1
f(ﬂ?):m

Since the general form of probability functions can be

expressed in terms of the standard distribution, all subsequent
formulas in this section are given for the standard form of the

function.

The following is the plot of the standard Cauchy probability
density function.

Cauchy POF

a4
a3

az

Protab ity Dens iy

ai

Cumulative  The formulafor the cumulative distribution function for the
Distribution  Cauchy distribution is
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1.3.6.6.3. Cauchy Distribution

Function
_ arctan [rx
Pla) =0.5 + 2 7)
T
The following is the plot of the Cauchy cumulative
distribution function.
Caushy COF
1
0.7
E
% a3 -
0.25
a T T T
-1d -3 a 3 1d
x
Percent The formula for the percent point function of the Cauchy
Point distribution is
Function
G(p) = —cot (rp)
The following is the plot of the Cauchy percent point
function.
Caushy PRF
]
2
2
10 —
ta [\
=10 —
=
a0
-iK] T T T T T T
i} 25 a5 0.75 1
Praoba bl Ity
Hazard The Cauchy hazard function can be computed from the
Function Cauchy probability density and cumulative distribution
functions.

The following is the plot of the Cauchy hazard function.
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1.3.6.6.3. Cauchy Distribution

Caushy Hazard

a4 -

Hazand
(=]
=
|

Cumulative  The Cauchy cumulative hazard function can be computed
Hazard from the Cauchy cumulative distribution function.
Function
Thefollowing isthe plot of the Cauchy cumulative hazard
function.

Caushy Cumulathee Hezard

Cumulgtwe Hazard
ha
|

14 -8 a 5 1d
=
Survival The Cauchy survival function can be computed from the
Function Cauchy cumulative distribution function.

The following is the plot of the Cauchy survival function.
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1.3.6.6.3. Cauchy Distribution

Caushy Surwhral
1
0.7
g a4
0.25
a T T T
-1d -5 a 3 14d
x
Inverse The Cauchy inverse survival function can be computed from
Survival the Cauchy percent point function.
Function
The following is the plot of the Cauchy inverse survival
function.
Caushy Imrerse Sunchral
L i)
2 -
2
R
®
a
g -1
-1
-
X1 T T T
a a25 a5 0.75 1
=
Common Mean The mean is undefined.
Satistics Median The location parameter t.
Mode The location parameter t.
Range Infinity in both directions.
Standard The standard deviation is undefined.
Deviation
Coefficient of The coefficient of variation is undefined.
Variation
Skewness The skewness is undefined.
Kurtosis The kurtosis is undefined.

Parameter The likelihood functions for the Cauchy maximum likelihood
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1.3.6.6.3. Cauchy Distribution

Estimation

Comments

Software
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estimates are given in chapter 16 of Johnson, Kotz, and
Balakrishnan. These equations typically must be solved
numerically on a computer.

The Cauchy distribution isimportant as an example of a
pathological case. Cauchy distributions look similar to a
normal distribution. However, they have much heavier tails.
When studying hypothesis tests that assume normality, seeing
how the tests perform on data from a Cauchy distribution is a
good indicator of how sensitive the tests are to heavy-tail
departures from normality. Likewise, it is a good check for
robust techniques that are designed to work well under a wide
variety of distributional assumptions.

The mean and standard deviation of the Cauchy distribution
are undefined. The practical meaning of this isthat collecting
1,000 data points gives no more accurate an estimate of the
mean and standard deviation than does a single point.

Many general purpose statistical software programs support
at least some of the probability functions for the Cauchy
distribution.
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1.3.6.6.4.t Distribution

Probability
Density
Function

The formulafor the probability density function of thet
distribution is
(1 + =l::;t) —[r;+l}

15

1) = 30505000

where B is the betafunction and ¥ is a positive integer shape
parameter. The formulafor the beta function is

f #-1(1 — )1t

In a testing context, the t distribution is treated as a
"standardized distribution” (i.e., no location or scale
parameters). However, in a distributional modeling context
(as with other probability distributions), the t distribution
itself can be transformed with a location parameter, g4, and a

scale parameter, ¢.

The following is the plot of the t probability density function
for 4 different values of the shape parameter.

1 PDF {1 1PDF(10

a4 = a4 il

=y =

2 031 £ 037 \

& &

£ oz £ 021

2 2

o 441 o ai

o o
o+ a —TT 7T
-54-3-21:1123415 4324012345

1 PDF (20 tPnFcan

04 el a4 el

£ £

g3 o g3

& &

£ a2 £ a2

2 2

o a1 o 417

o o
a T sy s e a
4324012345 -5-4-3-21:112345

These plots all have a similar shape. The differenceisin the
heaviness of the tails. In fact, the t distribution with &+ equal
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1.3.6.6.4. t Distribution

Cumulative
Distribution
Function

Percent
Point
Function

Other
Probability
Functions

to 1isa Cauchy distribution. The t distribution approaches a
normal distribution as becomes large. The approximation is
quite good for values of ¢ > 30.

The formulafor the cumulative distribution function of thet
distribution is complicated and is not included here. It is
given in the Evans, Hastings, and Peacock book.

The following are the plots of the t cumulative distribution
function with the same values of ¥ as the pdf plots above.

; 1t COF {1 df} i t COF {10 dY
0751 075
3 / £ /
a n
T a5 T a5
(=] [+]
o o
a28 025
T
a — —— a ——r ——
-'5-4-3-2-1%12345 -5-4-3-2-1(]!12345
tCDFI:Zﬂd'l] tCDFﬂﬂdu
i 1
a7s 075 /
£ £
= = ,."r
g a5 g a3
[] [7] /
o o
025 / 0251
-'5-4-3-2-1212345 -5-4-3-2-1(]:12345

The formulafor the percent point function of the t
distribution does not exist in a simple closed form. It is
computed numerically.

The following are the plots of the t percent point function
with the same values of ¥ as the pdf plots above.

tPPF (1 of) 1PPF (10 )
an 1
aa 3l
201
10 1
% g _— % g
.-""'-FFF
A0 4
20
ELR 27,
-0 r -3 r
a % a5 047s 1 a 2% 05 07 1
Probability Probability
1 PPF (20 o 1 PPF (30 df)
3 a
2 21 /
1 1
0 - = 0 _—
-1 EE
21 2
P I e} A —
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Since the t distribution is typically used to develop hypothesis
tests and confidence intervals and rarely for modeling
applications, we omit the formulas and plots for the hazard,
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1.3.6.6.4. t Distribution

Common
Satistics

Parameter
Estimation

Comments

Software

NIST
SEMATECH

cumulative hazard, survival, and inverse surviva probability

functions.

Mean
Median
Mode
Range
Standard
Deviation

Coefficient of
Variation
Skewness

Kurtosis

0 (It isundefined for ¢+ equal to 1.)
0
0
Infinity in both directions.
v

(v —2)

It is undefined for ¢ equal to 1 or 2.
Undefined

0. It is undefined for t+ less than or equal
to 3. However, the t distribution is
symmetric in all cases.

3(v—2)
(v —4)

It is undefined for 1+ less than or equal to
4.

Since the t distribution is typically used to develop hypothesis
tests and confidence intervals and rarely for modeling
applications, we omit any discussion of parameter estimation.

Thet distribution is used in many cases for the critical
regions for hypothesis tests and in determining confidence
intervals. The most common example istesting if data are

consistent with the assumed process mean.

Most general purpose statistical software programs support at
least some of the probability functions for the t distribution.
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1.3.6.6.5. F Distribution
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1.3.6.6.5. F Distribution

Probability
Density
Function

The F distribution is the ratio of two chi-square distributions
with degrees of freedom 1 and 2, respectively, where each
chi-square has first been divided by its degrees of freedom.
The formulafor the probability density function of the F
distribution is

r(gn) () F 2% -

2 3
v tog
(T + 552

fle)= -

where ¥1 and 2 are the shape parameters and I' is the gamma
function. The formula for the gamma function is

T'fa) = _/:ﬂ t*le~tdt

In atesting context, the F distribution is treated as a
"standardized distribution” (i.e., no location or scale
parameters). However, in a distributional modeling context
(as with other probability distributions), the F distribution
itself can be transformed with a location parameter, 4, and a

scale parameter, a.

The following is the plot of the F probability density function
for 4 different values of the shape parameters.
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1.3.6.6.5. F Distribution

Cumulative
Distribution
Function

Percent
Point
Function

The formula for the Cumulative distribution function of the F

distribution is
g 14
Flr)=1—- L=, —

@) =1-&(2,2)
where k = 19/ (14 + 14*X) and | is the incomplete beta
function. The formula for the incomplete beta function is

1 —t)A-1dt
I;‘(ﬂi,ﬂ, 18) == ( )
B(e, 3)

where B is the beta function

Bla ) = [ Lpei(1 gy

Thefollowing is the plot of the F cumulative distribution
function with the same values of ¥1 and ¥2 as the pdf plots
above.

FCODF{1,1 F COF (1,10d
08 el 1 U —
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. 05 — Eﬂ.?i
= 057 =
F] 0
g 047 B 05
[x] [=]
g 93 S
0z LE-ER
a1
a i
a 1 2 i 4 5 a 1 2 i a4 &
x X

. F CDF (10,10 df)

P 1oba bl ity

The formulafor the percent point function of the F
distribution does not exist in a ssimple closed form. It is
computed numerically.

The following is the plot of the F percent point function with

the same values of ¥1 and 2 as the pdf plots above.
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1.3.6.6.5. F Distribution

Other
Probability
Functions

Common
Satistics

Parameter
Estimation

Comments

FPPF{1.1d FPPF{1,1a
5004 0 20 L
40040 15
3004
» 40 |
2000 ‘
1000 _/.I 5
a . a p—
a 25 05 0.75 1 a 0.25 A 0.75 1
Proba bility Probability

FPPF{10,1df FPPF{10,10 41

7000 5
000 1

4
5000 1

4000
L Eed
2000 a
2000
1000 1 fﬂ__f_r
a ] A
a 75 1 a 025 05 075 1
Proba bility

02 _ 05 @
Proba bility

Since the F distribution is typically used to develop
hypothesis tests and confidence intervals and rarely for
modeling applications, we omit the formulas and plots for the
hazard, cumulative hazard, survival, and inverse survival
probability functions.

The formulas below are for the case where the location
parameter is zero and the scale parameter is one.

Mean V2
— iy > 2
(12 — 2)
Mode Vﬂ(yl — 2) > 9
vy (19 + 2)
Range 0 to positive infinity
Standard 2
.. 2 (Hl-l—b"z—g)
Deviation 2 g > 4
'\ v (1 — 2)2 (v —4) 2
Coefficient of .
Variation E(FI + b 2) n >4
‘\ 4] (b‘z — 4)
Skewness

(201 + v2 — 2)4/8(20 — 4)

VI — 6/ (v + s — 2)

g > 6

Since the F distribution is typically used to develop
hypothesis tests and confidence intervals and rarely for
modeling applications, we omit any discussion of parameter
estimation.

The F distribution is used in many cases for the critical
regions for hypothesis tests and in determining confidence
intervals. Two common examples are the analysis of variance
and the E test to determineif the variances of two populations
are equal.
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1.3.6.6.5. F Distribution

Software Most general purpose statistical software programs support at
least some of the probability functions for the F distribution.
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1.3.6.6.6. Chi-Square Distribution
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1.3.6.6.6. Chi-Square Distribution

Probability
Density
Function

The chi-square distribution results when ¥ independent
variables with standard normal distributions are squared and
summed. The formula for the probability density function of
the chi-square distribution is

eF it

fl) = =7 farz >0
22T(3)

where ¥ is the shape parameter and I' is the gamma function.
The formulafor the gamma function is

I'fa) = —/:ﬂ 2 le—tdt

In atesting context, the chi-square distribution is treated as a
"standardized distribution” (i.e., no location or scale
parameters). However, in a distributional modeling context
(as with other probability distributions), the chi-square
distribution itself can be transformed with a location

parameter, g, and a scale parameter, «.

The following is the plot of the chi-square probability density
function for 4 different values of the shape parameter.
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1.3.6.6.6. Chi-Square Distribution

Cumulative
Distribution
Function

Percent
Point
Function

The formula for the cumulative distribution function of the
chi-square distribution is
'T(%? %)

I'(3)

F(x) = forx >0

where I' is the gamma function defined above and ¥ is the
incomplete gamma function. The formula for the incomplete
gamma function is

T.{a) = f: tre—tdt

Thefollowing is the plot of the chi-square cumulative
distribution function with the same values of # as the pdf
plots above.
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The formulafor the percent point function of the chi-square
distribution does not exist in a ssimple closed form. It is
computed numerically.

The following is the plot of the chi-square percent point
function with the same values of ¥ as the pdf plots above.
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1.3.6.6.6. Chi-Square Distribution

Other
Probability
Functions

Common
Satistics

Parameter
Estimation

Comments

Software
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Since the chi-square distribution is typically used to develop
hypothesis tests and confidence intervals and rarely for
modeling applications, we omit the formulas and plots for the
hazard, cumulative hazard, survival, and inverse survival
probability functions.

Mean v
Median approximately ¢ - 2/3 for large v
Mode v — 2 for v > 2
Range 0 to positive infinity
Standard
Deviation @
Coefficient of 2
Variation -
]

Skewness g5

V/E
Kurtosis 34+ 12

Since the chi-square distribution is typically used to develop
hypothesis tests and confidence intervals and rarely for
modeling applications, we omit any discussion of parameter
estimation.

The chi-square distribution is used in many cases for the
critical regions for hypothesis tests and in determining
confidence intervals. Two common examples are the chi-
square test for independence in an RxC contingency table
and the chi-sguare test to determine if the standard deviation
of a population is equal to a pre-specified value.

Most general purpose statistical software programs support at
least some of the probability functions for the chi-square
distribution.
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1.3.6.6.7. Exponential Distribution
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1.3.6.6.7. Exponential Distribution

Probability  The general formula for the probability density function of
Density the exponential distribution is
Function ]

fla) = 5B 52 5p>0

where #i is the location parameter and ;3 is the scale

parameter (the scale parameter is often referred to as A which
equals1/f). The case where s = 0and /3 = liscaled the

standard exponential distribution. The equation for the
standard exponential distribution is

flxy=e* forz>Q

The general form of probability functions can be expressed
in terms of the standard distribution. Subsequent formulasin
this section are given for the 1-parameter (i.e., with scale
parameter) form of the function.

The following is the plot of the exponential probability
density function.

Exponential PDF

oaTs

s

Protab ity Dens iy

(-]

Cumulative  The formulafor the cumulative distribution function of the
Distribution  exponential distribution is
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1.3.6.6.7. Exponential Distribution

Function
Flx)=1—e=% 2>08>0
The following is the plot of the exponential cumulative
distribution function.
Ernponentlal COF
E
% o3 —
x
Percent The formula for the percent point function of the exponential
Point distribution is
Function
Glp)=—fh{l-p) 0<p<L;f>0
The following is the plot of the exponential percent point
function.
Eaponentlal PPF
Proba bl ity .
Hazard The formulafor the hazard function of the exponential
Function distribution is
1

The following is the plot of the exponentia hazard function.
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1.3.6.6.7. Exponential Distribution

Cumulative
Hazard
Function

Survival
Function

Enponentlal Hazard

Hazam

o7 —

The formula for the cumulative hazard function of the
exponential distribution is

x>0 48>0

The following is the plot of the exponential cumulative
hazard function.

Enponentlal Cumulathee Hazard

Cumulgtve Hazard
1

The formulafor the survival function of the exponential
distribution is

S(xy =8  £>0;8>0

The following is the plot of the exponentia survival function.
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1.3.6.6.7. Exponential Distribution

Enponentlal Sunrheal
E
% o3 —
x

Inverse The formula for the inverse survival function of the
Survival exponential distribution is
Function

Z{p) =—fh(p) 0<p<1;f>0

The following is the plot of the exponential inverse survival

function.

Eaponentlal Imrerse Sunvheal
Praba bl ity .

Common Mean Ji]
Satistics Median ﬂ]ﬂE

Mode Zero

Range Zero to plusinfinity

Standard 3

Deviation

Coefficient of 1

Variation

Skewness 2

Kurtosis 9
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1.3.6.6.7. Exponential Distribution

Parameter
Estimation

Comments

Software

NIST
SEMATECH

For the full sample case, the maximum likelihood estimator
of the scale parameter is the sample mean. Maximum
likelihood estimation for the exponential distribution is
discussed in the chapter on reliability (Chapter 8). It isalso
discussed in chapter 19 of Johnson, Kotz, and Balakrishnan.

The exponential distribution is primarily used in reliability
applications. The exponential distribution is used to model
data with a constant failure rate (indicated by the hazard plot
which is simply equal to a constant).

Most general purpose statistical software programs support at
least some of the probability functions for the exponential
distribution.
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1.3.6.6.8. Weibull Distribution
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1.3.6.6.8. Weibull Distribution

Probability
Density
Function

Cumulative
Distribution
Function

The formulafor the probability density function of the general Weibull
distribution is

£z = X

x X

T Ao Dexp(—{{z—m/a)) x> my,e>0

where ¥ is the shape parameter, ji is the |ocation parameter and ¢ is the
scale parameter. The case where 1 = 0 and «x = 1 is caled the standard
Weibull distribution. The case where jt = 0 is called the 2-parameter
Weibull distribution. The equation for the standard Weibull distribution
reduces to

flz) =y Pexp(—(z")) 2>0v>0
Since the general form of probability functions can be expressed in
terms of the standard distribution, all subsequent formulasin this

section are given for the standard form of the function.

The following is the plot of the Weibull probability density function.
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The formula for the cumulative distribution function of the Weibull
distribution is

Flz)=1—e ) z>0y>0
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1.3.6.6.8. Weibull Distribution

Percent
Point
Function

Hazard
Function

Thefollowing is the plot of the Weibull cumulative distribution
function with the same values of ¥ as the pdf plots above.
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The formulafor the percent point function of the Weibull distribution is

G(p) = (—In(1 —p))'/”

U<p<sl;y>{

The following is the plot of the Weibull percent point function with the
same values of “f as the pdf plots above.
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The formula for the hazard function of the Weibull distribution is

h_(m) — ’YI('T_I}

x>0y >0

The following is the plot of the Weibull hazard function with the same
values of Y as the pdf plots above.
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1.3.6.6.8. Weibull Distribution
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Cumulative  Theformula for the cumulative hazard function of the Weibull
Hazard distribution is
Function
Hx)=2" =x>0y>0
The following is the plot of the Weibull cumulative hazard function
with the same values of Y as the pdf plots above.
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Survival The formula for the survival function of the Weibull distribution is
Function

S{z) = exp —(z")

The following is the plot of the Weibull survival function with the same
values of ¥ as the pdf plots above.

x>y >0
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1.3.6.6.8. Weibull Distribution
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Inverse The formulafor the inverse survival function of the Weibull
Survival distribution is
Function
_ 1 .
Z(p) = (—In(p))"" 0<p<l;¥>0
The following is the plot of the Weibull inverse survival function with
the same values of Y as the pdf plots above.
;'&I'dhull Imrerse Survival igamma =0 5) ;'J'e-lh ull Inverse Survival (gamma = 1)
25 1 a
201 ]
" 51 »
10 2]
5 1 "'\-\._\_\_\_\_\_\_
a — a
a 25 05 075 1 a 25 a5 0TE 1
Proska bility Proba bility
l|::'||'v|.-||:|u|| Inverss Survival (gamma = 2) i Ife-lb ull Invers= Survival {gamma = §)
13
251 12 \
11
2 1
® 15 \ o gg \““x\\
1] 07 \
_ T a8
a5 — 02 \
Y% Tom a5 am 1 0 ez g5 am 1
Proba bility Proba bility
Common The formulas below are with the location parameter equal to zero and

Satistics the scale parameter equal to one.

Mean v+1
n( )

where I' is the gamma function

T'fa) = * e —tdt
(a) .[u e
Median m(g)lh

Mode
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1.3.6.6.8. Weibull Distribution

Parameter
Estimation

Comments

Software

NIST
SEMATECH

1

1— ) > 1

( ,},) ¥

{ v 1
Range Zero to positive infinity.
Standard Deviation v+ 2 v+ 1

e -y

¥ g
Coefficient of F(’_‘d—_ﬂ)
Variation T _1
NEDE

Maximum likelihood estimation for the Weibull distribution is

discussed in the Reliability chapter (Chapter 8). It isalso discussed in
Chapter 21 of Johnson, Kotz, and Balakrishnan.

The Weibull distribution is used extensively in reliability applications
to model failure times.

Most general purpose statistical software programs support at |east
some of the probability functions for the Weibull distribution.
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1.3.6.6.9. Lognormal Distribution
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1.3.6.6.9. Lognormal Distribution

Probability A variable X islognormally distributed if Y = LN(X) is

Density normally distributed with "LN" denoting the natura

Function logarithm. The general formulafor the probability density
function of the lognormal distribution is

E—':Uﬂl:(f—ﬁ:'.-’mﬂzfl:ﬁazﬂ
(r— &)oy/2m

fz)= x> 6m,0 > 0

where a is the shape parameter, g is the ocation parameter
and m is the scale parameter. The case where g = 0 and m =

liscalled the standard lognormal distribution. The case
where g equals zero is called the 2-parameter lognormal
distribution.

The equation for the standard lognormal distribution is

e—{(in2)2202)
fley=——— z2>0a>0

T 2

Since the general form of probability functions can be

expressed in terms of the standard distribution, all subsequent
formulasin this section are given for the standard form of the

function.

The following is the plot of the lognormal probability density
function for four values of .
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1.3.6.6.9. Lognormal Distribution

Pro babil ity Density
B m & -2
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Proiba bll ity Dens ity
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X
5 Lognarmal POF (sigma = §)
£ 51
2
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£ 3
=}
B 27
2 1-||\_
a -

There are several common parameterizations of the

lognormal distribution. The form given here is from Evans,

Hastings, and Peacock.

Cumulative  The formulafor the cumulative distribution function of the
Distribution  lognormal distribution is
Function n
I
F(m)_'b(%) x>0a>(
where & is the cumulative distribution function of the normal
distribution.
The following is the plot of the lognormal cumulative
distribution function with the same values of & as the pdf
plots above.
] Logno rmal COF i_:lgma =10.5) . Log normal COF (sigma =1)
gﬂ.?‘j 1 gﬂ.?ﬁ 1
E Q57 ﬁ a5
o o
= 025 / = 025
a T T a T T
a 1 2 x a 4 ] a 1 2 % k| 4 &
0E Lognormal COF i:lgm_a_:_E_]_ 07 Log narmal COF (sigma =)
077 — 06 f_________
£ Eg: £ o0s
g 04 3 aa
2 a0aj / 2 s
027
a1 a2
a 1 a
a 1 2 X a 4 & 1 2 ¥ 3 4 &
Percent The formulafor the percent point function of the lognormal
Point distribution is
Function

G(p) =exp(o®'(p))

0<p<liog>0
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1.3.6.6.9. Lognormal Distribution

where @ Listhe percent point function of the normal
distribution.

The following is the plot of the lognormal percent point
function with the same values of & as the pdf plots above.

Lognormal PPF (sigma =0 5] Lognormal PPF (sigma = 1)
4 20
3 ,'II 15
ol 27 / 140 II|
1 d_ﬂ__f—f""f 5 ///
— R
a T a
a 25 a5 0.75 1 a 25 05 a.75 1
Probability Probability
Lognormal PPFisigma = Lognarmal PPFisigma =
200 = 9 4 200000 = a 3
150 150000
* 100 %00000 |
507 _J 50000 J
] N=—————— ¥ ' a '
a 25 a5 0.75 1 a 0.25 05 .75 1
Prizba bility Probability

Hazard The formulafor the hazard function of the lognormal
Function distribution is

Ay flnz
h(m,a):% x> 00>

where o] is the probability density function of the normal
distribution and ¥ is the cumulative distribution function of
the normal distribution.

The following is the plot of the lognormal hazard function
with the same values of & as the pdf plots above.

Lognormal Hazard isigma =0 5] . Lognarmal Hazardisigma = 1)
T a8
151 T ar]
2 B ﬂﬂ_ "
E i III E as —-._____\_\_\_\-
2 I a4
a3
L] 0z
a1
a T T a T T
a 1 2 3 4 5 a 1 2 3 4 5
X X
Logrno rmal Hazard{sigma = J) Lognormal Hazardisigma = §)
2 T
8
157 5
b=} =
A4 o
T £ 3
s 2
—_— 1 I'._\_H_
o o a I
a 1 2 3 4 E a 1 2 El 4 5
X X
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1.3.6.6.9. Lognormal Distribution

Cumulative
Hazard
Function

Survival
Function

The formula for the cumulative hazard function of the
lognormal distribution is

In(x] W

Hizr) = —In{l—

a

where @ is the cumulative distribution function of the normal
distribution.

The following is the plot of the lognormal cumulative hazard
function with the same values of « as the pdf plots above.

Logﬂnnrmal Cumu lative Hazard (sigma =0 5] Lc?n:!r mal Cumulative Hazardisigma = 1

25
e

157
1

0.5

Zumu lative Hazand

Zumu kative Hazand
[ R T -

. . il . .
1 2 a 4 5 a 1 2 3 L &
X X

[=]

Lr:!?ncrmal Cumulative Hazard (sigma = 2) Lr:!?n:!rm:ll Cumulative Hazardisigma = 5

B z 089 o

g 151 et g as
2 — 2 a7
o - T &
£ 1 £ ]
£ £ 0s
= = g4
E LER 5 CER
0z

P — P

a 1 2 _3 4 & g 1 2 _3 4 5

x x

The formulafor the survival function of the lognormal
distribution is

2y x20;0>0

where @ is the cumulative distribution function of the normal
distribution.

The following is the plot of the lognormal survival function
with the same values of « as the pdf plots above.
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1.3.6.6.9. Lognormal Distribution

Inverse
Survival
Function

Common
Satistics

Lognarmal Survlval (sd=10.3)

Lognarmal Suncheal {sd =2

T
Ens:
0.4
0.3
0.z

Lograrmal Survhral{sd =1)
1

0.5
o
Fos
[
=

0254

Q T | B — T
u} 1 z a 4 5
x
Lograrmal Survhral{sd =4)

03

0HA
£0.7
EDE'

05

[ Ny

L] T

L] 1 =4 a 4 =
X

The formula for the inverse survival function of the

lognormal distribution is

Z(p) = explc®'(1 - p))

0<p<lio>(

where @ Listhe percent point function of the normal

distribution.

The following is the plot of the lognormal inverse survival
function with the same values of & as the pdf plots above.
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LR
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i -

Q
a ] 1

2B 05 0
Probability

3:]L':]-ulg mormal Imverse Survival (sigma =2)

150

* 100

507

a

a 5 1

2% 05 0
Proska bility

40
] L

00000

Log normal Inverse Survival (sigma =1)
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[i] T T —
a 25 05 078
Probability

1

normal Inverse Survival (sigma =5
EﬂﬂmLt?g g I

150000

50000 I\-

a
a

75 1

2% as 0
Proba bility

The formulas below are with the location parameter equal to
zero and the scale parameter equal to one.

Mean L0507

Median Scale parameter m (= 1 if scale parameter
not specified).

Mode 1
er?

Range

Zexo to positive infinity
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1.3.6.6.9. Lognormal Distribution

Parameter
Estimation

Comments

Software

NIST
SEMATECH

Standard et (Enﬂ _ 1)

Deviation

Skewness (En-'* _|_2) e _ 1

Kurtosis (g*)*i 1 2[3"2)3 4 3(3173)2 — 3
Coefficient of er? _ 1

Variation i

The maximum likelihood estimates for the scale parameter,
m, and the shape parameter, a, are

T =expji

and
. \/z::fil (tn () - A2
N

where

o ln X;
N

-~

=

If the location parameter is known, it can be subtracted from
the original data points before computing the maximum
likelihood estimates of the shape and scale parameters.

The lognormal distribution is used extensively in reliability
applications to model failure times. The lognormal and
Welbull distributions are probably the most commonly used
distributions in reliability applications.

Most general purpose statistical software programs support at
least some of the probability functions for the lognormal
distribution.
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1.3.6.6.10. Fatigue Life Distribution
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1.3.6.6.10. Birnbaum-Saunders (Fatigue Life)
Distribution

Probability  The Birnbaum-Saunders distribution is also commonly known as the
Density fatigue life distribution. There are several aternative formulations of
Function the Birnbaum-Saunders distribution in the literature.

The general formula for the probability density function of the
Birnbaum- Saunders distribution is

LEE T VE,

2y(x — p)

x>y, >0

where Y is the shape parameter, f4 is the location parameter, /3 isthe
scale parameter, D isthe probability density function of the standard
normal distribution, and & is the cumulative distribution function of
the standard normal distribution. The case where fi=0and 3= 1is
called the standard Birnbaum-Saunder s distribution. The equation
for the standard Birnbaum- Saunders distribution reduces to

BRGAR EWa'E
o) = (g o)

Since the general form of probability functions can be expressed in
terms of the standard distribution, all subsequent formulasin this
section are given for the standard form of the function.

2>y >0

The following is the plot of the Birnbaum-Saunders probability density
function.
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1.3.6.6.10. Fatigue Life Distribution

Cumulative
Distribution
Function
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Point
Function
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The formula for the cumulative distribution function of the Birnbaum-
Saunders distribution is

x>y >0

where & is the cumulative distribution function of the standard normal
distribution. The following is the plot of the Birnbaum-Saunders
cumulative distribution function with the same values of ¥ as the pdf
plots above.

Probab ity

Q.75 1

1Fatigura Life COF [gamma =0.5)
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th

025 ."'

Probab lity

1Fatigura Lifa COF [gamma= 1)

e
e

0.75 1

=
h

025

a9 ar
ag e a5 e
a7 - ] e
E-ﬂﬂ g as ng
o 051 =z 047,
E 041 E aadl
o 037 o ga
02 .III
gb— v gl
a 1 2 3 4 5 a 1 2 El 4 ]
x x

The formulafor the percent point function of the Birnbaum-Saunders
distribution is

¢e) =5 o) +va T ey

where &1 is the percent point function of the standard normal
distribution. The following is the plot of the Birnbaum-Saunders
percent point function with the same values of ¥ as the pdf plots
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1.3.6.6.10. Fatigue Life Distribution

above.
nFatig ue Life PPF [gamma = 0.5) 2 Fatigue Life PPF [gamma = 1)
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Proba bi lity Probability
Hazard The Birnbaum-Saunders hazard function can be computed from the
Function Birnbaum- Saunders probability density and cumulative distribution
functions.

The following is the plot of the Birnbaum-Saunders hazard function
with the same values of Y as the pdf plots above.
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151 5
= =
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= = = 3
a5 \_\ 2 |
— 1
—_— '\_\_\_
a . . a Py
a 1 2 3 4 5 a 1 2 3 q &
X x

Cumulative  The Birnbaum-Saunders cumulative hazard function can be computed
Hazard from the Birnbaum-Saunders cumulative distribution function.

Function
The following is the plot of the Birnbaum-Saunders cumulative hazard
function with the same values of ¥ as the pdf plots above.
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1.3.6.6.10. Fatigue Life Distribution
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Survival The Birnbaum-Saunders survival function can be computed from the
Function Birnbaum-Saunders cumulative distribution function.

The following is the plot of the Birnbaum-Saunders survival function
with the same values of ¥ as the pdf plots above.

Fa1tigua Life Survival [gamma = 0.5) F13tigua Life Survival [gamma = 1)
gﬂ.?ﬁ 1 ! gﬂ.?ﬁ 1
E as E a5
2 2
*ass " azs
'H-.______
a —= " a " —
a 1 2 3 4 5 a 1 2 3 4 5
X x
F15tigua Life Survival [gamma = 2} F15tigua Life Survival [gamma = &)
s 02
£ a7 g 987
O {81 o 0.7
2 g5 2 g
o 047 o g5
az e —
01— a3
a 1 2 3 4 il a 1 2 i | 4 ki
X X
Inverse The Birnbaum-Saunders inverse survival function can be computed
Survival from the Birnbaum-Saunders percent point function.

Function
The following is the plot of the gamma inverse survival function with

the same values of Y as the pdf plots above.
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1.3.6.6.10. Fatigue Life Distribution

Common
Satistics

Parameter
Estimation

Comments

Software

NIST

SEMATECH

F-nL Inverse Survival [gamma =0.5) EL Inwverse Survival [gamma =1}
T
a |I i
Y 5
LR \ ®  ad
E]
1 T 2
_\_‘_‘—‘——\_\_\_\_\_\_\ 1 -.._\_\_\_\_\_\__
a T a T —=
a 25 05 0.78 1 a 25 0.5 0.78 1
Proba bility Proba bility
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251
150 1
20
= 15 = 10d
107
501
51
—
a . . . — a . e ——— e
a 0.25 05 0.75 1 a 0.25 05 0.78 1
Proba bility Probability

The formulas below are with the location parameter equal to zero and
the scale parameter equal to one.

Mean
1+ L
2
Range Zero to positive infinity.
Standard Deviation 572
Wt
Coefficient of 2+

Variation Tm

Maximum likelihood estimation for the Birnbaum- Saunders
distribution is discussed in the Reliability chapter.

The Birnbaum-Saunders distribution is used extensively in reliability
applications to model failure times.

Some general purpose statistical software programs, including
Dataplot, support at least some of the probability functions for the
Birnbaum-Saunders distribution. Support for this distribution is likely
to be available for statistical programs that emphasize reliability
applications.

The"bs" package implements support for the Birnbaum-Saunders
distribution for the R package. See

Leiva, V., Hernandez, H., and Riquelme, M. (2006). A New
Package for the Birnbaum-Saunders Distribution. Rnews, 6/4,

35-40. (http://www.r-project.org)
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1.3.6.6.11. Gamma Distribution
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1.3.6.6.11. Gamma Distribution

Probability
Density
Function

The general formulafor the probability density function of
the gamma distribution is

Bt Y71 gy [ T=h
55 ﬂl“}(?)( 7) >y, >0

where ¥ is the shape parameter, j4 is the location parameter,
{3 isthe scale parameter, and I' is the gamma function which

has the formula

flz) =

I'fa) = —/:ﬂ 2 le—tdt

The case where f4= 0 and 3 = 1lis called the standard

gamma distribution. The equation for the standard gamma
distribution reduces to
g2

f@) =Ty

Since the general form of probability functions can be
expressed in terms of the standard distribution, all subsequent
formulasin this section are given for the standard form of the
function.

x>0y >0

The following is the plot of the gamma probability density
function.
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1.3.6.6.11. Gamma Distribution
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Cumulative  The formula for the cumulative distribution function of the
Distribution  gamma distribution is

Function ()
Ty
Flz)==2 x>0y >0
I'(y) ’
where I is the gamma function defined above and T',(a} is
the incomplete gamma function. The incomplete gamma
function has the formula
g
Tpla) = f t*letdi
1}
Thefollowing is the plot of the gamma cumulative
distribution function with the same values of ¥ as the pdf
plots above.
] GammiCDF {gamma = 0.5) . Gamma IZE:IF gamma =1]
09 /,- /-__
z gﬁ_ I.( gﬂ.?ﬁ-
2 g g o5
[ [
03 025
a2
a1 T T a T T
ﬂ1234§ﬂ?ﬂ&1ﬂ 012343373910
] Gamma CDF igamma =2) . Gamma COF igamma =5)
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E a5 E a5
] 2
n-ﬂzﬁ'/"rf I1'1].'25'
0 Forrrrrrerrr a
ﬂ1234§ﬂ?591ﬂ ﬂ1234;ﬂ?ﬂﬂ-1ﬂ
Percent The formulafor the percent point function of the gamma
Point distribution does not exist in a simple closed form. It is
Function computed numerically.
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1.3.6.6.11. Gamma Distribution

The following is the plot of the gamma percent point function
with the same values of ¥ as the pdf plots above.

a Gamma PPF igamma =0 5] 5 Gamma PPFigamma =1)
|
13- 47
a
LB »
2
1 1
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Proba bility Proba bility
7 Gamma PPFigamma = 2) a0 Gamma PPFigamma = §)
.
5 15 1
4.
i = 10
3 J
2 51 —
a 25 a5 0.75 1 a 25 0.5 075 1
Preba bility Proba bility
Hazard The formulafor the hazard function of the gamma
Function distribution is
-1 _—&
T e
h(z) = x>0y >0
T(y) —T(y)

The following is the plot of the gamma hazard function with
the same values of ¥ as the pdf plots above.
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e ’ o
T Ly -
Q.75 a5
= =
= — ﬂ.d_.
A o5 A
= £ 03
0251 az
ai
a TR a B R EEEEEE R
ﬂ1234§ﬂ?391ﬂ 01234331’3910

Cumulative  The formulafor the cumulative hazard function of the
Hazard gamma distribution is
Function

Te() )

I'{y)

where I is the gamma function defined above and I',.(a} is
the incomplete gamma function defined above.

H(z)=—log(l — >0y >0
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1.3.6.6.11. Gamma Distribution

The following is the plot of the gamma cumulative hazard
function with the same values of ¥ as the pdf plots above.
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Survival The formulafor the survival function of the gamma
Function distribution is

S(m)zl—m x>0y >0

where I is the gamma function defined above and T',.(a} is
the incomplete gamma function defined above.

The following is the plot of the gamma survival function with
the same values of ¥ as the pdf plots above.

Gamma Survival (gamma = 0.5) Gamma Survival{gamma =1)
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a7 0.75 |
£ a8 £
S 051 =
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0z 0325
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Gamma Survival{gamma =2) . Gamma Survival (gamma =5)

=1
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P roba bil ity
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[=]] th
P robaa bl ity
=
oh

075

0251
[IE e e T a -----.-.-.---.-.-\-\-T_-_:
a1 23 45 68 78 910 a1 2 3 45 4878 910
X X
Inverse The gamma inverse survival function does not exist in simple
Survival closed form. It is computed numberically.

Function
The following is the plot of the gamma inverse survival

function with the same values of Y as the pdf plots above.

http://www.itl .nist.gov/div898/handbook/eda/section3/eda366b.htm[6/27/2012 2:02:40 PM]



1.3.6.6.11. Gamma Distribution

Gdﬂ mma Inwerse Survival (gamma = 0 .5)

|
-

L]

-

a TT———
a Q.25 a5 Q.75 1
Probability
?Gamn'u Imverse Survival (gamma = 2)
o
5 B
-
3
2 B ™
—
1 “ﬁ-_q__‘_\
o s e
a 25 05 Q.75 1
Probability

ljG.:ln'lrrl.:l Imverse Survival {gamma =1)

1 —

—

a ¥ 1

25 05 A
Probability

2l:l;.éicln'lrn:l Imverse Survival (gamma = §)

2% a5 07TE 1
Proba bility

Common
Statistics zero and the scale parameter equal to one.
Mean Y
Mode v—1 vl
Range Zero to positive infinity.
Standard Vv
Deviation
Skewness 2
VY
Kurtosis 34 J
r
Coefficientof 1
Variation v(a—r
Parameter The method of moments estimators of the gamma distribution
Estimation are
.
=)
57
F

The formulas below are with the location parameter equal to

where Z and s are the sample mean and standard deviation,
respectively.

The equations for the maximum likelihood estimation of the
shape and scale parameters are given in Chapter 18 of Evans,

Hastings, and Peacock and Chapter 17 of
Balakrishnan. These equations need to be solved numericaly;

this is typically accomplished by using statistical software
packages.
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1.3.6.6.11. Gamma Distribution

Software Some general purpose statistical software programs support
at least some of the probability functions for the gamma
distribution.

MNIST : :
TEMATEER HOME [TOOLS & AIDS [SEARCH [BACK NEXT

http://www.itl .nist.gov/div898/handbook/eda/section3/eda366b.htm[6/27/2012 2:02:40 PM]


http://www.itl.nist.gov/div898/handbook/search.htm
http://www.itl.nist.gov/div898/handbook/toolaids.htm
http://www.itl.nist.gov/div898/handbook/index.htm
http://www.sematech.org/
http://www.nist.gov/

1.3.6.6.12. Double Exponentia Distribution
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1.3.6.6.12. Double Exponential Distribution

Probability  The general formula for the probability density function of

Density the double exponential distribution is
Function -
o
r)l=

where #i is the location parameter and ;3 is the scale
parameter. The case where ji = O and 3 = liscalled the
standard double exponential distribution. The equation for

the standard double exponential distribution is
E_lﬂ:l

fley ="

Since the general form of probability functions can be

expressed in terms of the standard distribution, all subsequent
formulasin this section are given for the standard form of the

function.

The following is the plot of the double exponential
probability density function.

Couble Exponential POF

a5
a4

a3

Protab ity Dens ity

az

ai

Cumulative  The formulafor the cumulative distribution function of the
Distribution  double exponential distribution is
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1.3.6.6.12. Double Exponential Distribution

Function
£ for x
Flz)= 2 _, or r < (
1—% forxz>0
The following is the plot of the double exponential
cumulative distribution function.
Double Enponentlal COF
1
0.7
E
% a4
0.25
a T T T T T T T T T
-5 - -3 =2 | a 1 2 3 a E]
x
Percent The formulafor the percent point function of the double
Point exponential distribution is
Function . ( ) ;
og(2p aor p < {.3
P) = -
G(P) —log(2{1 —p)) forp> 0.3
Thefollowing is the plot of the double exponential percent
point function.
Do uble Enponentlal PPF
a4
.
]
1 —
g
-1 -
-2 —
-
-4 T T T T T T
a a25 a5 0.75 1
Praba bl ity
Hazard The formulafor the hazard function of the double exponential
Function distribution is
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1.3.6.6.12. Double Exponential Distribution

Cumulative
Hazard
Function

Survival
Function

x
2

far » < {)
_ =
hlz) = 7 far z > Q

The following is the plot of the double exponential hazard
function.

Double Eaponentlal Hazard

14

14
ﬂﬂl__
a4q —
a7 —

a4 -

Hazamd

ﬂ.ﬁ__
a4 -
a3+
az2 -

a.1

a 1 1T 1 1T T 1T T °T T 17 & T 7171
-8 -4 -4 -2 - a 1 2 | 4 El
x

The formula for the cumulative hazard function of the double

exponential distribution is

Hix) — —log(l — %) forz <0
(z) = r+log(2) forz>(

The following is the plot of the double exponential
cumulative hazard function.

Double Enponentlal Cumulathee Hazard

Cumulathe Hazard
tal
|

The double exponential survival function can be computed
from the cumulative distribution function of the double
exponential distribution.

The following is the plot of the double exponential survival
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1.3.6.6.12. Double Exponential Distribution

function.
Double Enponentlal S urviwal
1
0.75
% a5
0.25 T
a T T T T T T T T T
-5 - -3 =2 | a 1 2 3 aq a
x
Inverse The formulafor the inverse survival function of the double
Survival exponential distribution is
Function . ;
2(1 — < (.5
Z(p) = 082 —p)) forp<05
—log(2p) far p > 0.5
Thefollowing is the plot of the double exponential inverse
survival function.
Double Enponentlal meerse Suncheal
a4
1]
.
.
o a
-1 -
-2 —
-
-4 ] T T T T T T
i} 125 4] .75 1
Praba bl ity
Common Mean A
Satistics Median 2
Mode H
Range Negative infinity to positive infinity
Standard V213
Deviation
Skewness 0
Kurtosis 6
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1.3.6.6.12. Double Exponential Distribution

Parameter
Estimation

Software

NIST
SEMATECH

Coefficient of 3
Variation Vﬁ(ﬂl)

The maximum likelihood estimators of the location and scale
parameters of the double exponential distribution are

where X isthe sample median.

Some general purpose statistical software programs support
at least some of the probability functions for the double
exponential distribution.
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1.3.6.6.13. Power Normal Distribution

| P ENGINEERING STATISTICS HANDBOOK

HOME TOOLS & AIDS SEARCH BACK MNEXT

1. Exploratory Data Analysis
1.3. EDA Techniques

1.3.6. Probability Distributions
1.3.6.6. Gallery of Distributions

1.3.6.6.13. Power Normal Distribution

Probability  The formulafor the probability density function of the
Density standard form of the power normal distribution is

Function
f(z,p) = po(z)(®(—2)~"  =z,p>0

where p is the shape parameter (also referred to as the power
parameter), @ is the cumulative distribution function of the
standard normal distribution, and P isthe probability density
function of the standard normal distribution.

Aswith other probability distributions, the power normal
distribution can be transformed with a location parameter, g,
and a scale parameter, . We omit the equation for the
general form of the power normal distribution. Since the
general form of probability functions can be expressed in
terms of the standard distribution, all subsequent formulasin
this section are given for the standard form of the function.

The following is the plot of the power normal probability
density function with four values of p.

Power Mormal PDF{p =05) Power Normal POF (p=1)
a4 a4
= =
T g3 / T g3+ \
d 4 &
£ a2 £ 021
2 g
o 441 o a1
[ o
a —TT —T a —TT —r=—
444-2-1212345 -5-4-3-2-101:12345
Porwrer Mormal POF {p= &) Powrer Mormal POF{p =1Q)
a7 aa
E oas g a7
2 051 ,l'n\ T g1
2 . f & a5
E " E aa
E a3 f} E a3
8 az2 8 021
aoai / B ogi1
a Ty e a SR
-5-4-3-2-1g12345 -5-4-3-2-10112345

Cumulative  Theformulafor the cumulative distribution function of the
Distribution  power normal distribution is
Function

http://www.itl .nist.gov/div898/handbook/eda/section3/eda366d.htm[6/27/2012 2:02:43 PM]


http://www.itl.nist.gov/div898/handbook/index.htm

1.3.6.6.13. Power Normal Distribution
Flz,p)=1—(®(—=) =p>0

where & is the cumulative distribution function of the
standard normal distribution.

Thefollowing is the plot of the power normal cumulative
distribution function with the same values of p as the pdf

plots above.
] Poweer Mormal COF (p =0.5) . Power Normal COF {(p=1)
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Percent The formulafor the percent point function of the power
Point normal distribution is

Function
Gfi=e'(1-(1-HY) 0<f<L;p>0

where &1 is the percent point function of the standard
normal distribution.

The following is the plot of the power normal percent point
function with the same values of p as the pdf plots above.

Power Normal PPF {p =0 5) Powrer Normal PPF {(p=1)

025 _ 05 047 1 a 025 05 075 1
Proba bility Proba bility

Power Mormal PPF (p = §) Power Mormal PPF{p =10]

-2

] 1 a .75 1

25 5 0 2% a5 @
Proba bility Proba bility

Hazard The formulafor the hazard function of the power normal
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1.3.6.6.13. Power Normal Distribution

Function distribution is
_ plx)
hiz,p) = (—z) x,p> 0

The following is the plot of the power normal hazard function
with the same values of p as the pdf plots above.
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Cumulative  The formulafor the cumulative hazard function of the power
Hazard normal distribution is

Function
H(z,p) = —log ((B(—=)F) =2,p>0

The following is the plot of the power norma cumulative
hazard function with the same values of p as the pdf plots
above.
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Survival The formulafor the survival function of the power normal
Function distribution is

S(z,p) = (@(==))F  zp>0
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1.3.6.6.13. Power Normal Distribution

The following is the plot of the power normal survival
function with the same values of p as the pdf plots above.

1F'-uwe-rN:|rrru|Suru|‘ua|ip=ﬂ.5] i Power Normal Survival {(p=1]
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Inverse The formulafor the inverse survival function of the power
Survival normal distribution is
Function

ZH=e'1-f" Q<f<lip>0

The following is the plot of the power normal inverse
survival function with the same values of p as the pdf plots

above.
Power Normal Imverse Survival (p =0.5) gmﬂ hormal Inverse Survival (p=1)
3 2
2 ] \
w 1 T T
a-
- \ -1 \
.21 -2
-2 T T -3 T T
a 0.25 035 075 1 a 0.25 0.5 0.78 1
Probability Frobability
Porwer Mormal Inverses Survival (p = 5] Pﬂcwer Marmal Inverse Survival (p= 10)
o \ A \\hh
* "“ﬂaq_____hh w 2 -
B \ B \
-q ¥ ¥ ¥ ¥ ¥ = ¥ 1l -4 ¥ ¥ M = ¥ '
a 0.25 05 075 1 a 25 05 0.7 1
Probability Probability
Common The statistics for the power normal distribution are
Statistics complicated and require tables. Nelson discusses the mean,

median, mode, and standard deviation of the power normal
distribution and provides references to the appropriate tables.

Software Most general purpose statistical software programs do not

support the probability functions for the power normal
distribution.
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1.3.6.6.14. Power Lognormal Distribution
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1.3.6.6.14. Power Lognormal Distribution

Probability  The formulafor the probability density function of the standard form of
Density the power lognormal distribution is

Function
£,p,0) = (2)d(=25) (0(—

logz —logx

Nt z,pe>0

where p (also referred to as the power parameter) and o are the shape
parameters, & is the cumulative distribution function of the standard
normal distribution, and disthe probability density function of the
standard normal distribution.

Aswith other probability distributions, the power lognormal distribution
can be transformed with a location parameter, ;;, and a scale parameter,
B. We omit the equation for the general form of the power lognormal
distribution. Since the general form of probability functions can be
expressed in terms of the standard distribution, all subsequent formulas
in this section are given for the standard form of the function.

The following is the plot of the power lognormal probability density
function with four values of p and o set to 1.
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a4 =g p=4.5 a7 a p=1]
& f B 08
o 93 a ]
F f 5 95
a4
£ 021 £
2 2 oa
- a2
ai
£ T & g4 -
’ T ——
a a T
a 1 2 3 4 ] a 1 2 3 4 &
x x
3 Powrer Lognermal PDF{p =5) 1 Powrer Lognormal POF {p = 10)
£ 257 £
Z 2 3
g 2\ g
£ 15 | £ 2
o 0
g -ERE N
o 057 o I|II
gt O
a 1 2 3 4 il a 1 2 i | 4 ki
X X

Cumulative  Theformulafor the cumulative distribution function of the power
Distribution  lognormal distribution is
Function
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1.3.6.6.14. Power Lognormal Distribution

Flo,p,0) =1 - @(TED)  z,p0>0

where & is the cumulative distribution function of the standard normal
distribution.

The following is the plot of the power lognormal cumulative
distribution function with the same values of p as the pdf plots above.

Power Lognormal COF (p=0.5) Power Lognormal COF{p=1)
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Percent The formulafor the percent point function of the power lognormal
Point distribution is
Function
Gf,p,o) =exp (@' (1-(1 - f)#)a) 0<p<l;po>0
where &1 is the percent point function of the standard normal
distribution.
The following is the plot of the power lognormal percent point function
with the same values of p as the pdf plots above.
sa Power Lognormal PPF{p =0 5) a0 Power Lognormal PPF {p=1)
401 | 15 -
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b * 40 |
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10 5 /j
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Prokba bi lity Probability
a Power Lognormal PPF {p= §) as Power Lognormal PPF {p =10)
a7
15 as7]
)II as
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a3q
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o a1l
ﬂﬂ . 25 . ﬂl.ﬁ . ﬂ.-?‘j . 1 ﬂﬂ 25 . ﬂl.ﬁ - ﬂ.-?i . 1
Proba bility Probability
Hazard The formulafor the hazard function of the power lognormal distribution
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1.3.6.6.14. Power Lognormal Distribution

Function

Cumulative
Hazard
Function

is

1 loga
pl=-)9(™2%)
h(.‘?:?p?ﬂ): ;(_— lnﬂf) .'TJ?P?J:?‘-‘G
where & is the cumulative distribution function of the standard normal

distribution, and P isthe probability density function of the standard
normal distribution.

Note that this is ssimply a multiple (p) of the lognormal hazard function.

The following is the plot of the power lognormal hazard function with
the same values of p as the pdf plots above.
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The formulafor the cumulative hazard function of the power lognormal
distribution is

—logx

H(.’J‘:,p,ﬂ) = —]_ﬂg[:['I’( ))p) r,p,o >0

a

The following is the plot of the power lognormal cumulative hazard
function with the same values of p as the pdf plots above.
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1.3.6.6.14. Power Lognormal Distribution

Survival The formulafor the survival function of the power lognormal
Function distribution is
—logzx
Slepa) =(@(———)F =pa>
The following is the plot of the power lognormal survival function with
the same values of p as the pdf plots above.
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Inverse The formulafor the inverse survival function of the power lognormal
Survival distribution is
Function

a3 —
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The following is the plot of the power lognormal inverse survival

function with the same values of p as the pdf plots above.
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1.3.6.6.14. Power Lognormal Distribution

Common
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Parameter
Estimation

Software
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The statistics for the power lognormal distribution are complicated and
require tables. Nelson discusses the mean, median, mode, and standard
deviation of the power lognormal distribution and provides references to
the appropriate tables.

Nelson discusses maximum likelihood estimation for the power
lognormal distribution. These estimates need to be performed with
computer software. Software for maximum likelihood estimation of the
parameters of the power lognormal distribution is not as readily
available as for other reliability distributions such as the exponential,
Weibull, and lognormal.

Most general purpose statistical software programs do not support the
probability functions for the power lognormal distribution.
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1.3.6.6.15. Tukey-Lambda Distribution

Probability ~ The Tukey-Lambda density function does not have a ssimple,

Density closed form. It is computed numericaly.

Function
The Tukey-Lambda distribution has the shape parameter A.
As with other probability distributions, the Tukey-Lambda
distribution can be transformed with a location parameter, g,
and a scale parameter, . Since the general form of
probability functions can be expressed in terms of the
standard distribution, all subsequent formulasin this section
are given for the standard form of the function.

The following is the plot of the Tukey-Lambda probability
density function for four values of A.
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Cumulative  The Tukey-Lambda distribution does not have a ssimple,

Distribution  closed form. It is computed numerically.

Function
The following is the plot of the Tukey-Lambda cumulative
distribution function with the same values of A as the pdf
plots above.
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1.3.6.6.15. Tukey-Lambda Distribution
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The formula for the percent point function of the standard
form of the Tukey-Lambda distribution is

G(P) :PA_ [i_P)A

The following is the plot of the Tukey-Lambda percent point
function with the same values of A as the pdf plots above.
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The Tukey-Lambda distribution is typically used to identify
an appropriate distribution (see the comments below) and not
used in statistical models directly. For this reason, we omit
the formulas, and plots for the hazard, cumulative hazard,
survival, and inverse survival functions. We also omit the
common statistics and parameter estimation sections.

The Tukey-Lambda distribution is actually a family of
distributions that can approximate a number of common
distributions. For example,

A=-1 approximately Cauchy
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1.3.6.6.15. Tukey-Lambda Distribution

Software

NIST
SEMATECH

A=0 exactly logigtic

A = 0.14 approximately normal

A=05 U-shaped

A=1 exactly uniform (from-1to +1)

The most common use of this distribution is to generate a
Tukey-Lambda PPCC plot of a data set. Based on the ppcc
plot, an appropriate model for the datais suggested. For
example, if the maximum correlation occurs for a value of A
at or near 0.14, then the data can be modeled with a normal
distribution. Values of A lessthan this imply a heavy-tailed
distribution (with -1 approximating a Cauchy). That is, as the
optimal value of A goes from 0.14 to -1, increasingly heavy
tails are implied. Similarly, as the optimal value of A becomes
greater than 0.14, shorter tails are implied.

Asthe Tukey-Lambda distribution is a symmetric
distribution, the use of the Tukey-Lambda PPCC plot to
determine a reasonabl e distribution to model the data only
applies to symmetric distributuins. A histogram of the data
should provide evidence as to whether the data can be
reasonably modeled with a symmetric distribution.

Most general purpose statistical software programs do not

support the probability functions for the Tukey-Lambda
distribution.
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1.3.6.6.16. Extreme Value Type | Distribution

Probability  The extreme value type | distribution has two forms. Oneis

Density based on the smallest extreme and the other is based on the

Function largest extreme. We call these the minimum and maximum
cases, respectively. Formulas and plots for both cases are
given. The extreme value type | distribution is also referred to
as the Gumbel distribution.

The general formula for the probability density function of
the Gumbel (minimum) distribution is

flz) = %e m_ﬁﬁe_“%&

where f1 is the location parameter and ;3 is the scale
parameter. The case where 2= 0 and 3 = 1liscalled the

standard Gumbel distribution. The equation for the
standard Gumbel distribution (minimum) reduces to

flz) =e%e®

The following is the plot of the Gumbel probability density
function for the minimum case.

Extreme Walue Type | (Minimum) PDF

a4
a3

az

Protab llity Dens ity

ai

The general formula for the probability density function of
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1.3.6.6.16. Extreme Vaue Type | Distribution

the Gumbel (maximum) distribution is

f(m) = %ﬂ_%&e—a_m_g&

where #i is the location parameter and ;3 is the scale
parameter. The case where j4 = O and /3 = liscaled the

standard Gumbel distribution. The equation for the
standard Gumbel distribution (maximum) reduces to

flo) =ese

The following is the plot of the Gumbel probability density
function for the maximum case.

Extreme Walue Type | (Maximum] POF
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a3

az

Protab ity Dens iy

ai

Since the general form of probability functions can be
expressed in terms of the standard distribution, all subsequent
formulasin this section are given for the standard form of the
function.

Cumulative  Theformula for the cumulative distribution function of the
Distribution  Gumbel distribution (minimum) is
Function

Flz)=1- e

The following is the plot of the Gumbel cumulative
distribution function for the minimum case.
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Exstreme Walue Type [{Minlmum) CDOF

0.7

a4 -

Protab ity

0.25 7

The formula for the cumulative distribution function of the
Gumbel distribution (maximum) is

et

Flx)y=e"*

Thefollowing is the plot of the Gumbel cumulative
distribution function for the maximum case.

Eatreme Walue Type | (Manimum) CDF
1
0.7 -
-
g as |
1.25
a T T T T T T T
-4 -1 -2 -1 a 1 2 =] 4
x
Percent The formulafor the percent point function of the Gumbel
Point distribution (minimum) is
Function ]
G(p) = In[ln{—
(p) = (in(7 =)

The following is the plot of the Gumbel percent point
function for the minimum case.
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Eatreme Walue Type | {(Minlmum) PPF

q a2s as a.75 1
Prakba b lity

The formulafor the percent point function of the Gumbel
distribution (maximum) is

G(p) = —In(in(2))

P

The following is the plot of the Gumbel percent point
function for the maximum case.

Eatreme Walue Type | {Manlmum) PPF

[4] a25 a5 Q.75 1
Proba bty
Hazard The formula for the hazard function of the Gumbel
Function distribution (minimum) is
h(z) =€*

The following is the plot of the Gumbel hazard function for
the minimum case.
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Entreme Walue Type | {Minimum) Hazard
al
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The formula for the hazard function of the Gumbel
distribution (maximum) is
—&

hiz) =

Thefollowing is the plot of the Gumbel hazard function for
the maximum case.

Entreme Value Type | {Manlmum] Hazard

0.75

a5 -

Hazam

04.25

Cumulative  Theformulafor the cumulative hazard function of the
Hazard Gumbel distribution (minimum) is

Function
H(zx)=¢€"

Thefollowing is the plot of the Gumbel cumulative hazard
function for the minimum case.
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Eatreme ¥alue Type | {Minlmum)] Cumulathee Hazard

Cumulathe Hazard
®
|

The formula for the cumulative hazard function of the
Gumbel distribution (maximum) is

H{x)=—In{l—¢e™")

Thefollowing is the plot of the Gumbel cumulative hazard
function for the maximum case.

Eatreme Walue Type | {Manlimum) Cumulathee Hazard
E]
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g
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g |
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9—T——T T 71T T 1 T T T T T T T T 1
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x
Survival The formulafor the survival function of the Gumbel
Function distribution (minimum) is
S(x)y=e*

Thefollowing is the plot of the Gumbel survival function for
the minimum case.
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Inverse
Survival
Function
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The formula for the survival function of the Gumbel
distribution (maximum) is

S(xy=1—e*"

Thefollowing is the plot of the Gumbel survival function for
the maximum case.
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The formula for the inverse survival function of the Gumbel
distribution (minimum) is

Z(p) = In(in(=))

P

The following is the plot of the Gumbel inverse survival
function for the minimum case.
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Exstreme Walue Type [{MInlmum) [mrerse Suncheal
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The formula for the inverse survival function of the Gumbel
distribution (maximum) is

Z(p)

— In{In{

1

1—p

))

The following is the plot of the Gumbel inverse survival
function for the maximum case.

Exstreme Walue Type [{Maalmum) Inverse Survheal

Q23 a5
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Common
Satistics
Mean

Median
Mode
Range
Standard
Deviation

The formulas below are for the maximum order statistic case.

n+ 0577253

The constant 0.5772 is Euler's number.
n— fln(In(2))

J

Negative infinity to positive infinity.
3

V6
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Parameter
Estimation

Software

NIST
SEMATECH

Skewness 1.13955

Kurtosis 54

Coefficient of B
Variation \/{_3[;1: + 0‘5-??2;9)

The method of moments estimators of the Gumbel
(maximum) distribution are

-2

ji=X — 037724

where X and s are the sample mean and standard deviation,
respectively.

The equations for the maximum likelihood estimation of the
shape and scale parameters are discussed in Chapter 15 of
Evans, Hastings, and Peacock and Chapter 22 of Johnson
Kotz, and Balakrishnan. These equations need to be solved
numerically and this is typically accomplished by using
statistical software packages.

Some general purpose statistical software programs support
at least some of the probability functions for the extreme
value type | distribution.
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1.3.6.6.17. Beta Distribution

Probability =~ The general formula for the probability density function of the beta
Density distribution is
Function
f( ) ('T — G)P_l (b — m)q_l
)] =
B(p,g)(b—a)y+-!
where p and g are the shape parameters, a and b are the lower and upper

bounds, respectively, of the distribution, and B(p,q) is the beta function.
The beta function has the formula

a<zr<hpg>{

Bla ) = [ Lpei(1 gy

The case wherea= 0 and b= 1 iscaled the standard beta distribution.
The equation for the standard beta distribution is

_ a1 !

Typically we define the general form of a distribution in terms of location
and scale parameters. The betais different in that we define the general
distribution in terms of the lower and upper bounds. However, the location
and scale parameters can be defined in terms of the lower and upper limits

I<z<Lpg>0

as follows:
location = a
scde=b-a

Since the general form of probability functions can be expressed in terms
of the standard distribution, al subsequent formulasin this section are
given for the standard form of the function.

The following is the plot of the beta probability density function for four
different values of the shape parameters.
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1.3.6.6.17. Beta Distribution
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The formula for the cumulative distribution function of the beta distribution
is also called the incomplete beta function ratio (commonly denoted by 1)

and is defined as

T — £yt
F(-'E):Iﬂr(PaQ)ZID EE(p q)) 0<x<1;pg>0

where B is the beta function defined above.

The following is the plot of the beta cumulative distribution function with
the same values of the shape parameters as the pdf plots above.
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The formula for the percent point function of the beta distribution does not
exist in a simple closed form. It is computed numerically.

Thefollowing is the plot of the beta percent point function with the same
values of the shape parameters as the pdf plots above.
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Other
Probability
Functions

Common
Satistics

Parameter
Estimation
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Since the beta distribution is not typically used for reliability applications,
we omit the formulas and plots for the hazard, cumulative hazard, survival,
and inverse survival probability functions.

The formulas below are for the case where the lower limit is zero and the
upper limit is one.

Mean P

ptg
Mode p—1

— > 1
Range Oto1l
Standard Deviation Py

(P+¢Pp+q+1)

Coefficient of g
Variation P(P+Q+1)

Skewness 2g —plvp+ag+1
(p+4+2)/Pe

First consider the case where a and b are assumed to be known. For this
case, the method of moments estimates are

sz(@—l)

(= -a T

where 7 is the sample mean and s? is the sample variance. If aand b are

T~ 8 and s2 with —

not 0 and 1, respectively, then replace x with —
b—a (b— a)?

in the above equations.

For the case when a and b are known, the maximum likelihood estimates
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can be obtained by solving the following set of equations

P — B+ 4§ =

(G —y(H+4) = Zlﬂg

b_

The maximum likelihood equations for the case when a and b are not

known are given in pages 221-235 of Volume Il of Johnson, Kotz, and
Balakrishan.

Software Most general purpose statistical software programs support at least some of
the probability functions for the beta distribution.
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1.3.6.6.18. Binomial Distribution

Probability
Mass
Function

Cumulative
Distribution
Function

The binomial distribution is used when there are exactly two
mutually exclusive outcomes of a trial. These outcomes are
appropriately labeled "success' and "failure”. The binomial
distribution is used to obtain the probability of observing x successes
in N trials, with the probability of successon a single trial denoted
by p. The binomial distribution assumes that pis fixed for al trials.

The formulafor the binomial probability mass function is

X

P(ﬂ:?p?ﬂ) - ( ; ) [p)ﬂ:(l _P)Eﬂ_ﬂ:} for x :031::2?'”?”

where

ny n!
z ] zifn—x)!

The following is the plot of the binomial probability density function
for four values of p and n = 100.
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The formulafor the binomial cumulative probability function is
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1.3.6.6.18. Binomial Distribution

F(z,p,m)
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The following is the plot of the binomial cumulative distribution
function with the same values of p as the pdf plots above.

Binomial COF (P=0.1, N=100]) ) Binomial CDF{P=025, N=100) 3
gﬂ.?ﬁ gﬂ.?ﬁ 1
E g s
o ]
* 025 = 025
L | L |
a 20 4a 2] 81 100 a 20 40 60 81 104d
x x
: Binomial ZDF {P=0.50, N=100) i 4 Binomial CDF{P=0.75, N=100) )
Eﬂ.?ﬁ Eﬂ.?ﬁ
E 05 E a5
S 2
025 025
a - f' v ! a T T |—III f )
a 20 40 &0 8l 100 a 24 4a =] ad 10a
x x
Percent The binomial percent point function does not exist in simple closed
Point form. It is computed numerically. Note that because this is a discrete

Function distribution that is only defined for integer values of x, the percent
point function is not smooth in the way the percent point function
typicaly is for a continuous distribution.

The following is the plot of the binomial percent point function with
the same values of p as the pdf plots above.
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80 7] 80
707 T
&0 4]
® 507 ® 507
Llily a7
30 1 30 —_
20 20 |
107 10 r
a T T a T T
a 0.25 a5 0.75 1 a 0.25 a5 a.75 1
Prokba bility Probability
Binomial PPF {P=0.50, N=100] Binomial PPF (P=0.75, N=10d)
10a 10a J
940 =]
0] aa f_______———’
707 T
60 ] 60 7
= 50 = 50
40 4 40
307 30
207 207
10 104
a T T T v 1 1] T T T v 1
a 25 135 0.75 1 a 25 035 0.73 1
Proba bility Probability
Common Mean np
Satistics  pode pln+1)—1<z<pln+1)
Range OtoN
Standard Deviation np(1 — p)
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1.3.6.6.18. Binomial Distribution

Comments

Parameter
Estimation

Software

NIST
SEMATECH

Coefficient of 1 —
Variation ( npp)
Skewness (1 —2p)
np(l — p)
Kurtosis 6 1
3——+——
n  np(l—p)

The binomial distribution is probably the most commonly used
discrete distribution.

The maximum likelihood estimator of p (nisfixed) is
T

p==
n

Most general purpose statistical software programs support at least
some of the probability functions for the binomial distribution.
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1.3.6.6.19. Poisson Distribution
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1.3.6.6.19. Poisson Distribution

Probability
Mass
Function

Cumulative
Distribution
Function

The Poisson distribution is used to model the number of
events occurring within a given time interval.

The formulafor the Poisson probability mass function is

g—ANE

rl

P(J:;}‘): fﬂIm:ﬂ?1?2?+“

A is the shape parameter which indicates the average number
of eventsin the given time interval.

The following is the plot of the Poisson probability density
function for four values of A.

a2 Polsson POF (LAMBDA = §) Polsson POF{LAMBDA =15)
m m
LR E ERE
= =
£ £
= a4 F a1
g g
PLLE ‘ Sans |
g L | L . ot .I|| A I||.
a4 10 2033 a1 sa 0 10 20 3a 40 &4
x X
Poisson PDF{LAMBDA = 25) Poisson PDF{LAMBDA =35)
a2 az
ﬁﬂjﬁ ﬁﬂ]ﬁ
= =
g a1 g ai
o F}
g 3
Sons ‘ Sans H”“
g - |I|| .|.||||...I —— a4 ..,..|||||||.. .|.|.||I|...
a 10 20 x aa 4q a0 i} 10 20 X aa 40 a0

The formulafor the Poisson cumulative probability function
is

T E—A}‘i
Flz,N) =Y i
=0

The following is the plot of the Poisson cumulative
distribution function with the same values of A as the pdf
plots above.
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1.3.6.6.19. Poisson Distribution

: Poisson COF (LAMB DA = §) : Poisson CDF (LAMBDA =15)
gﬂ.?ﬁ gﬂ.?ﬁ 1
o o
H 051 051
o o
o o

Q25 “ Q25 ‘ H
L || | Ll
a 10 20 30 40 50 a 10 20 30 40 &0
x X

: Poisson COF {LAMBDA = 25) : Polsson COF (LAMBDA =35)
Eﬂ.?ﬁ Eﬂ.?ﬁ 1
g 05 g 05
£ £

025 ‘ 025 H
i ...I||.|.. HH SIS Y a I...||||||.. FIEN A
a 10 20 aa 4q 50 a 1d 20 aa 40 50
x X
Percent The Poisson percent point function does not exist in simple
Point closed form. It is computed numerically. Note that because

Function thisis a discrete distribution that is only defined for integer
values of x, the percent point function is not smooth in the
way the percent point function typically is for a continuous
distribution.

The following is the plot of the Poisson percent point
function with the same values of A as the pdf plots above.

Poisson PPF (LAMBDA =§) Poisson PPF(LAMBDA =15
11 3a
1@ 7]
g1 25 1
: S y
7
® 87 =151 —
: h/—’_r ol
3 54
I : .
a 0.25 a5 0.75 1 a 25 a5 a.75 1
Proba bl lity Proba bility
a0 Poisson PPF({LAMEDA = 25 . Poisson PPF{LAMEBDA = 35
351 / 45 /I
aa x 'rr.l 44a r"-rl
= 25 L —~ = 35 ! all
| aa{
15'flr‘l Eﬁ'fﬂ
B — S A—
a 25 a5 0.75 1 a 25 035 0.73 1
Proba bility Praoba bility
Common Mean A
Satistics Mode For non-integer A, it is the largest integer
lessthan A. For integer A, x = Aand x = A
- 1 are both the mode.
Range 0 to positive infinity
Standard VA
Deviation
Coefficientof 1
Variation ﬁ
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1.3.6.6.19. Poisson Distribution

Parameter
Estimation

Software

NIST
SEMATECH

Skewness

8-

Kurtosis l
A

L
+

The maximum likelihood estimator of A is
A=X
where X is the sample mean.

Most general purpose statistical software programs support at
least some of the probability functions for the Poisson
distribution.
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1.3.6.7. Tables for Probability Distributions
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Tables Several commonly used tables for probability distributions can
be referenced below.

The values from these tables can also be obtained from most
general purpose statistical software programs. Most
introductory statistics textbooks (e.g., Snedecor and Cochran)
contain more extensive tables than are included here. These
tables are included for convenience.

1.

2.

NIST
SEMATECH

Cumulative distribution function for the standard normal
distribution

Upper critical values of Student's t-distribution with &/
degrees of freedom

Upper critical values of the F-distribution with #1 and 2
degrees of freedom

Upper critical values of the chi-square distribution with
v degrees of freedom

Critical values of t= distribution for testi ng the output of
alinear calibration line at 3 points

Upper critical values of the normal PPCC distribution
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1.3.6.7.1. Cumulative Distribution Function of the Standard Normal Distribution
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1. Exploratory Data Analysis

1.3. EDA Techniques

1.3.6. Probability Distributions

1.3.6.7. Tables for Probability Distributions

1.3.6.7.1. Cumulative Distribution Function of
the Standard Normal Distribution

How to The table below contains the area under the standard normal

Use This curve from 0 to z. This can be used to compute the cumulative

Table distribution function values for the standard normal
distribution.

The table utilizes the symmetry of the normal distribution, so
what in fact isgiven is

P < < |a]

where aisthe value of interest. Thisis demonstrated in the
graph below for a= 0.5. The shaded area of the curve
represents the probability that x is between 0 and a.

Normal POF

a4
a3

az2

Protab ity Cens fy

Qi

This can be clarified by a few simple examples.

1. What is the probability that x is lessthan or equal to
1.53? Look for 1.5 in the X column, go right to the 0.03
column to find the value 0.43699. Now add 0.5 (for the
probability less than zero) to obtain the final result of
0.93699.

2. What is the probability that x is lessthan or equal to -
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1.3.6.7.1. Cumulative Distribution Function of the Standard Normal Distribution

1.537? For negative values, use the relationship

Plr<al=1-Plr < |q

From the first example, this gives 1 - 0.93699 =
0.06301.

forr < Q)

What is the probability that x is between -1 and 0.5?

Look up the valuesfor 0.5 (0.5 + 0.19146 = 0.69146)
and -1 (1 - (0.5 + 0.34134) = 0.15866). Then subtract
the results (0.69146 - 0.15866) to obtain the result

0.5328.

To use this table with a non-standard normal distribution
(either the location parameter is not O or the scale parameter is
not 1), standardize your value by subtracting the mean and
dividing the result by the standard deviation. Then look up the
value for this standardized value.

A few particularly important numbers derived from the table
below, specifically numbers that are commonly used in
significance tests, are summarized in the following table:

[p_][0.001 ][0.005 [[0.010 |[0.025 [[0.050 [[0.100 ]

-3.090|-2.576

-2.326

-1.960

-1.645

-1.282

[p ][0.999 ][0.995 [[0.990 ][0.975 ]0.950 [[0.900 |

+3.090|[+2.576

+2.326

+1.960

+1.645

+1.282

These are critical values for the normal distribution.

.00
.08

oo

-00000
-03188
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.07142
-07926
-11026
211791
-14803
.15542
-18439
-19146
.21904
.22575
.25175
.25804
-28230
.28814
-31057
-31594
-33646

[elelolojojojolololojolojololololololele]
[N
[e}
o
(o0}
N
[eleleololololololololololololololololeolo]

-00399
-03586
-04380
-07535
-08317
-11409
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-15173
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-18793
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.26115
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O O O O o o o o o o

Area under the Normal

.02

-00798
.04776
-08706
-12552
-16276
-19847
.23237
-26424
-29389
.32121

0.03

O O O O o o o o o o

.01197
.05172
-09095
-12930
-16640
.20194
.23565
.26730
.29673
.32381

0.04

0

0
0
0
0
0.
0
0
0
0

-01595
.05567
-09483
.13307
.17003

20540

.23891
.27035
.29955
-32639

0.05

0.01994
.05962
.09871
.13683
.17364

0

0

0

0
0.20884
0.24215
0.27337
0.30234
0

.32894
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.0
.35769
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1.3.6.7.2. Critical Values of the Student's-t Distribution
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1.3.6.7.2. Critical Values of the Student's t

How to
Use This
Table

Distribution

This table contains critical values of the Student's t
distribution computed using the cumulative distribution
function. Thet distribution is symmetric so that

tl-a,v = _ta,V'

The table can be used for both one-sided (lower and upper)
and two-sided tests using the appropriate value of a.

The significance level, a, is demonstrated in the graph below,
which displays a t distribution with 10 degrees of freedom.
The most commonly used significance level isa = 0.05. For a
two-sided test, we compute 1 - a/2, or 1 - 0.05/2 = 0.975 when
a = 0.05. If the absolute value of the test statistic is greater
than the critical value (0.975), then we regject the null
hypothesis. Due to the symmetry of the t distribution, we only
tabulate the positive critical valuesin the table below.

t PDF (Two-Sided Test at Alpha =0.05)
04

=]
(5]

Probability Density
[=]
ha

Given a specified value for a :

1. For atwo-sided test, find the column corresponding to
1-a/2 and reject the null hypothesis if the absolute value
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1.3.6.7.2. Critical Values of the Student's-t Distribution

of the test statistic is greater than the value of t1_,/» ,,in
the table below.

2. For an upper, one-sided test, find the column
corresponding to 1-a and reject the null hypothesis if the
test statistic is greater than the table value.

3. For alower, one-sided test, find the column
corresponding to 1-a and reject the null hypothesis if the
test statistic is less than the negative of the table value.

Critical values of Student'st distribution with v degrees of
freedom

Probability less than the critical value

(tl-a, v)

v 0.90 0. 95 0. 975 0.99 0. 995
0. 999

1. 3.078 6.314 12.706 31.821 63.657
318. 313

2. 1. 886 2.920 4. 303 6. 965 9. 925
22. 327

3. 1.638 2. 353 3.182 4.541 5.841
10. 215

4. 1.533 2.132 2.776 3.747 4.604
7.173

5. 1.476 2.015 2.571 3. 365 4.032
5. 893

6. 1. 440 1.943 2. 447 3.143 3.707
5. 208

7. 1.415 1. 895 2. 365 2.998 3.499
4.782

8. 1. 397 1. 860 2. 306 2. 896 3. 355
4.499

9. 1. 383 1.833 2.262 2.821 3. 250
4. 296

10. 1.372 1.812 2.228 2.764 3.169
4.143

11. 1. 363 1.796 2.201 2.718 3. 106
4.024

12. 1. 356 1.782 2.179 2.681 3. 055
3.929

13. 1. 350 1.771 2.160 2. 650 3.012
3.852

14. 1. 345 1.761 2. 145 2.624 2.977
3.787

15. 1.341 1.753 2.131 2.602 2.947
3.733

16. 1. 337 1.746 2.120 2.583 2.921
3. 686

17. 1. 333 1.740 2.110 2.567 2.898
3. 646

18. 1. 330 1.734 2.101 2.552 2.878
3.610

19. 1.328 1.729 2.093 2.539 2.861
3.579

20. 1. 325 1.725 2. 086 2.528 2. 845
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3.190

85. 1.292 1. 663 1.988 2.371 2. 635
3.189

86. 1.291 1. 663 1.988 2.370 2.634
3.188

87. 1.291 1. 663 1.988 2.370 2.634
3.187

88. 1.291 1. 662 1.987 2. 369 2.633
3.185

89. 1.291 1. 662 1.987 2. 369 2.632
3.184

90. 1.291 1.662 1.987 2.368 2.632
3.183

91. 1.291 1. 662 1. 986 2. 368 2.631
3.182

92. 1.291 1. 662 1. 986 2.368 2. 630
3.181

93. 1.291 1. 661 1.986 2. 367 2. 630
3.180

94. 1.291 1. 661 1.986 2.367 2.629
3.179

95. 1.291 1. 661 1. 985 2. 366 2.629
3.178

96. 1.290 1. 661 1.985 2. 366 2.628
3.177

97. 1.290 1. 661 1.985 2. 365 2.627
3.176

98. 1.290 1. 661 1.984 2. 365 2.627
3.175

99. 1.290 1. 660 1.984 2. 365 2.626
3.175

100. 1.290 1. 660 1.984 2.364 2.626
3.174

(89 1.282 1. 645 1. 960 2. 326 2.576
3. 090
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1.3.6.7.3. Upper Critical Vaues of the F Distribution
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1. Exploratory Data Analysis

1.3. EDA Techniques

1.3.6. Probability Distributions

1.3.6.7. Tables for Probability Distributions

1.3.6.7.3. Upper Critical Values of theF

How to
Use This
Table

Contents

Distribution

This table contains the upper critical values of the E

distribution. This table is used for one-sided F tests at the «x =

0.05, 0.10, and 0.01 levels.

More specifically, a test statistic is computed with #1 and ¥2
degrees of freedom, and the result is compared to this table.
For a one-sided test, the null hypothesis is rejected when the
test statistic is greater than the tabled value. Thisis
demonstrated with the graph of an F distribution with 1 = 10
and ¥2 = 10. The shaded area of the graph indicates the
rejection region at the ex significance level. Since thisis a one-
sided test, we have « probability in the upper tail of exceeding
the critical value and zero in the lower tail. Because the F
distribution is asymmetric, a two-sided test requires a set of of
tables (not included here) that contain the rejection regions for
both the lower and upper tails.

F PDF (One-Sided Test at Alpha = 0.05)

2 o o
(=" TV - -

bility Density
[=]
tn

04
0.3
8 o2
01 s fT aRY
0 1 2 3 4 5 6
X

The following tables for 14 from 1 to 100 are included:

1. One sided, 5% significance level,#1=1- 10
2. One sided, 5% significance level, ¥1= 11 - 20
3. One sided, 10% significance level,#1=1- 10
4. One sided, 10% significance level, ¥1= 11 - 20
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1.3.6.7.3. Upper Critical Vaues of the F Distribution

5. One sided, 1% significance level,#1=1- 10
6. One sided, 1% significance level, ¥1= 11 - 20

Upper critical values of the F distribution

for Y1 numerator degrees of freedom and V2 denominator
degrees of freedom

5% significance level

F.u.'a(l*‘n 1&)
\ ¥ 1 2 3 4 5
6 7 8 9 10
L]
1 161. 448 199.500 215. 707 224.583 230.162
233.986 236.768 238.882 240.543 241.882
2 18.513 19.000 19.164 19.247 19.296
19.330 19.353 19.371 19.385 19.396
3 10. 128 9. 552 9.277 9.117 9.013
8.941 8. 887 8. 845 8.812 8. 786
4 7.709 6. 944 6. 591 6. 388 6. 256
6.163 6. 094 6. 041 5. 999 5. 964
5 6. 608 5. 786 5. 409 5.192 5. 050
4. 950 4.876 4.818 4. 772 4.735
6 5. 987 5.143 4. 757 4.534 4. 387
4.284 4. 207 4. 147 4. 099 4. 060
7 5.591 4. 737 4. 347 4.120 3.972
3. 866 3. 787 3.726 3.677 3. 637
8 5.318 4. 459 4. 066 3. 838 3. 687
3.581 3.500 3.438 3. 388 3. 347
9 5.117 4. 256 3. 863 3. 633 3.482
3. 374 3.293 3. 230 3.179 3.137
10 4. 965 4. 103 3.708 3. 478 3. 326
3.217 3.135 3.072 3.020 2.978
11 4. 844 3.982 3.587 3. 357 3.204
3.095 3.012 2.948 2.896 2.854
12 4. 747 3. 885 3. 490 3. 259 3.106
2.996 2.913 2.849 2.796 2. 753
13 4. 667 3. 806 3.411 3.179 3.025
2.915 2.832 2. 767 2.714 2.671
14 4. 600 3.739 3. 344 3.112 2.958
2.848 2.764 2. 699 2. 646 2.602
15 4.543 3.682 3. 287 3. 056 2.901
2.790 2.707 2.641 2.588 2.544
16 4. 494 3.634 3. 239 3. 007 2.852
2.741 2. 657 2.591 2.538 2.494
17 4. 451 3.592 3.197 2. 965 2.810
2.699 2.614 2.548 2.494 2. 450
18 4. 414 3. 555 3. 160 2.928 2.773
2.661 2.577 2.510 2. 456 2.412
19 4. 381 3.522 3.127 2.895 2.740
2.628 2.544 2. 477 2. 423 2.378
20 4. 351 3. 493 3. 098 2. 866 2.711
2.599 2.514 2. 447 2.393 2.348
21 4. 325 3. 467 3.072 2. 840 2.685
2.573 2.488 2. 420 2. 366 2.321
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86 3.952 3.103 2.711 2. 478 2.321
2. 206 2.118 2.048 1.991 1. 943
87 3.951 3.101 2. 709 2. 476 2.319
2. 205 2.117 2. 047 1. 989 1. 941
88 3.949 3. 100 2.708 2. 475 2.318
2.203 2.115 2. 045 1.988 1. 940
89 3.948 3.099 2. 707 2.474 2.317
2.202 2.114 2.044 1.987 1. 939
90 3. 947 3.098 2.706 2. 473 2.316
2.201 2.113 2.043 1. 986 1.938
91 3. 946 3. 097 2. 705 2. 472 2. 315
2.200 2.112 2.042 1. 984 1. 936
92 3. 945 3. 095 2.704 2. 471 2.313
2.199 2.111 2. 041 1.983 1. 935
93 3.943 3.094 2.703 2. 470 2.312
2.198 2.110 2.040 1.982 1.934
94 3.942 3. 093 2. 701 2. 469 2.311
2.197 2.109 2.038 1.981 1.933
95 3.941 3.092 2. 700 2. 467 2.310
2.196 2.108 2.037 1. 980 1.932
96 3. 940 3.091 2.699 2. 466 2.309
2.195 2.106 2.036 1.979 1.931
97 3. 939 3. 090 2.698 2. 465 2.308
2.194  2.105 2.035 1.978 1. 930
98 3.938 3.089 2.697 2. 465 2.307
2.193 2.104 2.034 1.977 1.929
99 3.937 3.088 2.696 2. 464 2. 306
2.192 2.103 2.033 1.976 1.928
100 3.936 3. 087 2.696 2. 463 2. 305
2.191 2.103 2.032 1.975 1.927
\ V1 11 12 13 14 15
16 17 18 19 20
vy
1 242.983 243.906 244.690 245.364 245.950
246. 464 246.918 247.323 247.686 248.013
2 19. 405 19.413 19.419 19.424 19.429
19.433 19.437 19.440 19.443 19.446
3 8.763 8. 745 8. 729 8. 715 8.703
8. 692 8. 683 8.675 8. 667 8. 660
4 5. 936 5.912 5. 891 5.873 5. 858
5.844 5.832 5.821 5.811 5. 803
5 4.704  4.678 4. 655 4.636 4.619
4.604 4.590 4.579 4.568 4. 558
6 4.027 4. 000 3.976 3. 956 3.938
3.922 3.908 3. 896 3. 884 3. 874
7 3. 603 3.575 3. 550 3.529 3.511
3.494  3.480 3. 467 3. 455 3. 445
8 3.313 3.284 3. 259 3. 237 3.218
3. 202 3.187 3.173 3. 161 3. 150
9 3.102 3.073 3. 048 3.025 3. 006
2.989 2.974 2.960 2.948 2.936
10 2.943 2.913 2.887 2.865 2. 845
2.828 2.812 2.798 2.785 2.774
11 2.818 2.788 2.761 2. 739 2.719
2. 701 2.685 2.671 2.658 2. 646
12 2. 717 2.687 2. 660 2. 637 2.617
2.599 2.583 2.568 2.555 2.544
13 2.635 2.604 2.577 2.554 2.533
2.515 2. 499 2.484 2. 471 2. 459
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764
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761
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757

1. 866
754

1. 863
751

1. 860
748

1. 857
745

1. 855
742

1. 852
739

1. 849
737

1. 847
734

1. 845
732

1.842
729

1. 840
727

1. 838
725

1. 836
122

1.834
720

1.832
718

1. 830
716

1.828
714

1. 826
712

1.824
710

1.822
708
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1.914 1.878 1. 848

78
1.775

P R R R R R R R R R R R R R R R R R R R R R R

755 . 738

1.877
. 736

1.875
. 734

1.874
. 733

1.872
. 731

1.871
. 729

1. 869
. 728

1. 868
. 7126

1. 867
. 125

1. 865
. 724

1. 864
. 122

1. 863

1 1.721
1 1.
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1 1,
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1 1.
1 1,
1 1,

739  1.721  1.705
1 1,
1 1,
1 1,
1 1,
1 1,
1 1,
1 1.
1 1,
1 1,
1 1.
1 1,

720
718
716
715
713
712
710
709
707
706

1.861
. 720

1. 860
. 718

1. 859
117

1. 858
. 716

1. 857
. 715

1. 856
. 713

1. 854
. 712

1.853
. 711

1.852
. 710

1.851
. 709

1. 850
. 708

703
702
701
699
698
697
696
695
694
693
691

Upper critical values of the F distribution

1. 846
1. 845
1. 843
1.841
1. 840
1. 838
1.837
1. 836
1.834
1. 833
1.832
1. 830
1.829
1.828
1.827
1. 826
1.825
1.823
1.822
1.821
1.820
1.819

1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.

1.821
707

1.819
705

1.817
703

1.816
702

1.814
700

1.813
698

1.811
697

1. 810
695

1. 808
694

1. 807
692

1. 806
691

1. 804
690

1. 803
688

1. 802
687

1. 801
686

1. 800
684

1.798
683

1.797
682

1.796
681

1.795
680

1. 794
679

1.793
678

1.792
676
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. 797
. 795
. 793
. 792
. 790
. 789
. 787
. 786
. 784
. 783
. 782
. 780
. 779
. 778
. 776
. 775
.774
.173
v
L1771
. 770
. 769
. 768

for ¥1 numerator degrees of freedom and ¥2 denominator
degrees of freedom
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1.3.6.7.3. Upper Critical Vaues of the F Distribution

vy
1 39.863 49.500 53.593 55.833 57.240
58.204 58.906 59.439 59.858 60.195
2 8.526 9.000 9.162 9.243  9.293
9.326 9.349 9.367 9.381 9.392
3 5.538 5.462 5.391 5.343 5.309
5.285 5.266 5.252 5.240 5.230
4 4.545 4.325 4.191 4.107 4.051
4.010 3.979 3.955 3.936 3.920
5 4.060 3.780 3.619 3.520 3.453
3.405 3.368 3.339 3.316  3.297
6 3.776 3.463 3.289 3.181  3.108
3.055 3.014 2.983 2.958 2.937
7 3.589 3.257 3.074 2.961 2.883
2.827 2.785 2.752 2.725 2.703
8 3.458 3.113 2.924 2.806 2.726
2.668 2.624 2.589 2.561 2.538
9 3.360 3.006 2.813 2.693 2.611
2.551 2.505 2.469 2.440 2.416
10 3.285 2.924 2.728 2.605 2.522
2.461 2.414  2.377 2.347  2.323
11 3.225 2.860 2.660 2.536 2.451
2.389 2.342 2.304 2.274  2.248
12 3.177 2.807 2.606 2.480 2.394
2.331 2.283 2.245 2.214  2.188
13 3.136 2.763 2.560 2.434  2.347
2.283 2.234 2.195 2.164 2.138
14 3.102 2.726 2.522 2.395 2.307
2.243 2.193 2.154 2.122  2.095
15 3.073 2.695 2.490 2.361 2.273
2.208 2.158 2.119 2.086 2.059
16 3.048 2.668 2.462 2.333 2.244
2.178 2.128 2.088 2.055 2.028
17 3.026 2.645 2.437 2.308 2.218
2.152 2.102 2.061 2.028 2.001
18 3.007 2.624 2.416 2.286 2.196
2.130 2.079 2.038 2.005 1.977
19 2.990 2.606 2.397 2.266 2.176
2.109 2.058 2.017 1.984 1.956
20 2.975 2.589 2.380 2.249 2.158
2.091 2.040 1. 999 1. 965 1.937
21 2.961 2.575 2.365 2.233 2.142
2.075 2.023 1.982 1.948 1. 920
22 2.949 2.561 2.351 2.219 2.128
2.060 2.008 1. 967 1.933 1. 904
23 2.937 2.549 2.339 2.207 2.115
2.047 1. 995 1. 953 1.919 1. 890
24 2.927 2.538 2.327 2.195 2.103
2.035 1.983 1. 941 1. 906 1. 877
25 2.918 2.528 2.317 2.184  2.092
2.024 1.971 1. 929 1. 895 1. 866
26 2.909 2.519 2.307 2.174 2.082
2.014 1.961 1.919 1.884 1.855
27 2.901 2.511 2.299 2.165 2.073
2. 005 1. 952 1. 909 1.874 1.845
28 2.894 2.503 2.291 2.157 2.064
1. 996 1.943 1.900 1.865 1. 836
29 2.887 2.495 2.283 2.149 2.057
1.988 1.935 1.892 1. 857 1.827
30 2.881 2.489 2.276 2.142  2.049
1.980 1. 927 1.884  1.849 1.819
31 2.875 2.482 2.270 2.136 2.042
1.973 1.920 1.877 1.842 1.812
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2. 869

. 913

2.477
870
2.471
864
2. 466
858
2.461
852
2. 456
847
2.452
842
2.448
838
2.444
833
2.440
829
2. 437
825
2.434
821
2.430
817
2.427
814
2.425
811
2.422
808
2.419
805
2.417
802
2.414
799
2.412
796
2.410
794
2.408
791
2. 406
789
2.404
787
2.402
785
2.400
782
2.398
780
2. 396
779
2. 395
77
2.393
775
2.392
773
2. 390
771
2. 389
770

1.
1.
1.
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2. 263
835
2.258
828
2.252
822
2. 247
817
2.243
811
2.238
806
2.234
802
2.230
797
2.226
793
2.222
789
2.219
785
2.216
781
2.213
778
2.210
774
2. 207
771
2.204
768
2.202
765
2.199
763
2.197
760
2.194
757
2.192
755
2.190
752
2.188
750
2.186
748
2.184
746
2.182
744
2.181
742
2.179
740
2.177
738
2.176
736
2.174
735
2.173
733

1.
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2.129
805

2.123
799

2.118
793

2. 113
787

2.108
781

2.103
776

2. 099
772

2. 095
767

2.091
763

2.087
759

2. 084
755

2. 080
751

2.077
747

2.074
744

2.071
741

2.068
738

2. 066
735

2.063
732

2.061
729

2. 058
727

2. 056
724

2.054
122

2. 052
719

2. 050
717

2.048
715

2.046
713

2. 044
711

2.043
709

2.041
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2. 039
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2.038
703

2.036
702
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. 024
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. 005
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. 959
. 957
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2.786

. 813

2.387
768

2. 386
767

2. 385
765

2.384
764

2.382
762

2.381
761

2. 380
760

2.379
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2.378
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2.377
756

2.376
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2.375
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2.374
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2.373
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2. 369
747
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746

2.368
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744
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744
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743

2. 365
742

2. 364
741

2.363
740

2. 363
739

2.362
739

2.361
738

2.361
737

2. 360
736

2. 359
736

1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.

2.171
731

2.170
730

2.169
728

2.167
727

2.166
725

2. 165
724

2.164
723

2.163
721

2.161
720

2.160
719

2. 159
718

2.158
716

2. 157
715

2. 156
714

2. 155
713

2.154
712

2.154
711

2.153
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2.152
709

2.151
708

2. 150
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2.149
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2. 149
705

2.148
705

2.147
704

2.146
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2. 146
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2.145
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2.144
701

2.144
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2.142
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1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.
1.

2. 035
700
2.033
699
2.032
697
2.031
696
2.029
694
2.028
693
2.027
691
2.026
690
2.025
689
2.024
687
2.022
686
2.021
685
2.020
684
2. 019
683
2.018
682
2.017
681
2. 016
680
2.016
679
2.015
678
2.014
677
2. 013
676
2.012
675
2.011
674
2.011
673
2.010
672
2.009
671
2. 008
670
2.008
670
2. 007
669
2. 006
668
2. 006
667
2. 005
667
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96 2. 759 2. 359 2. 142 2.004 1. 908
1. 836 1. 780 1.735 1. 698 1. 666
97 2.758 2.358 2. 141 2.004 1. 908
1. 836 1. 780 1.734 1. 697 1. 665
98 2. 757 2.358 2.141 2.003 1. 907
1. 835 1.779 1.734 1. 696 1. 665
99 2. 757 2. 357 2. 140 2.003 1. 906
1. 835 1.778 1.733 1. 696 1. 664
100 2. 756 2. 356 2.139 2.002 1. 906
1. 834 1.778 1.732 1. 695 1.663
\ Y111 12 13 14 15
16 17 18 19 20
vy
1 60.473 60.705 60.903 61.073 61.220
61.350 61.464 61.566 61.658 61.740
2 9. 401 9. 408 9. 415 9. 420 9. 425
9. 429 9. 433 9. 436 9. 439 9. 441
3 5.222 5.216 5.210 5. 205 5. 200
5.196 5.193 5.190 5.187 5.184
4 3. 907 3. 896 3. 886 3.878 3.870
3.864  3.858 3. 853 3. 849 3. 844
5 3.282 3. 268 3. 257 3. 247 3.238
3. 230 3.223 3. 217 3.212 3. 207
6 2.920 2.905 2.892 2.881 2.871
2.863 2.855 2.848 2.842 2.836
7 2.684 2.668 2.654 2. 643 2.632
2.623 2.615 2.607 2.601 2.595
8 2.519 2.502 2. 488 2. 475 2. 464
2. 455 2. 446 2.438 2. 431 2. 425
9 2.396 2.379 2.364 2.351 2. 340
2.329 2.320 2.312 2. 305 2.298
10 2.302 2.284 2. 269 2. 255 2.244
2.233 2.224 2.215 2.208 2.201
11 2.227 2.209 2.193 2.179 2.167
2.156 2. 147 2.138 2.130 2.123
12 2.166 2. 147 2.131 2. 117 2.105
2.094 2.084 2.075 2.067 2. 060
13 2.116 2.097 2.080 2. 066 2.053
2.042 2.032 2.023 2.014 2. 007
14 2.073 2.054 2.037 2.022 2.010
1.998 1.988 1.978 1.970 1.962
15 2.037 2.017 2. 000 1. 985 1.972
1.961 1. 950 1.941 1.932 1. 924
16 2.005 1.985 1.968 1. 953 1. 940
1.928 1.917 1. 908 1. 899 1. 891
17 1.978 1. 958 1. 940 1. 925 1.912
1. 900 1.889 1. 879 1. 870 1.862
18 1. 954 1.933 1.916 1. 900 1.887
1. 875 1. 864 1. 854 1. 845 1. 837
19 1.932 1.912 1. 894 1.878 1. 865
1. 852 1.841 1.831 1.822 1. 814
20 1.913 1. 892 1. 875 1. 859 1. 845
1. 833 1. 821 1.811 1. 802 1. 794
21 1. 896 1. 875 1. 857 1. 841 1. 827
1. 815 1. 803 1.793 1. 784 1.776
22 1. 880 1. 859 1. 841 1. 825 1. 811
1.798 1.787 1. 777 1.768 1. 759
23 1. 866 1. 845 1. 827 1.811 1.796
1.784 1.772 1.762 1. 753 1. 744
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1.832
748

1. 820
736
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1.790
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1.773
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1.739
651

1.734
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1.729
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1. 724
635
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1.715
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1.710
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1. 706
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1.703
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1.699
608
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605

1.692
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598
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594
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591

1. 680
588

1.677
586

1.675
583

1.672
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1.814
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726

1.790
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1.785
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1.774
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1.754
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1.745
676

1. 737
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1.729
659

1.722
652

1.715
645

1.709
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1.703
632

1. 697
626

1.692
620

1.687
615

1.682
610

1.678
605

1.673
601

1.669
596

1. 665
592

1. 662
588

1. 658
585

1. 655
581

1. 652
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1.648
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571

1. 643
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557

1. 630
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. 714
. 707
. 700
. 694
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558
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1.632
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544
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1.624
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1.617
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1. 604
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1.599
522

1. 597
520
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Upper critical values of the F distribution

for Y1 numerator degrees of freedom and V2 denominator
degrees of freedom

1% significance level

Fa (1’1; 1&)
\ V1 1 2 3 4 5
6 7 8 9 10
vy

1 4052. 19 4999. 52 5403. 34 5624.62 5763.65
5858. 97 5928.33 5981.10 6022.50 6055. 85

2 98.502 99.000 99.166 99.249 99.300
99.333 99.356 99.374 99.388 99.399

3 34.116 30.816 29.457 28.710 28.237
27.911 27.672 27.489 27.345 27.229

4 21.198 18.000 16.694 15.977 15.522
15.207 14.976 14.799 14.659 14.546

5 16.258 13.274 12.060 11.392 10.967
10.672 10.456 10.289 10.158 10.051

6 13.745 10.925 9.780 9. 148 8. 746
8. 466 8. 260 8.102 7.976 7.874

7 12.246  9.547 8. 451 7.847 7. 460
7.191 6.993 6. 840 6.719 6. 620

8 11.259  8.649 7.591 7.006 6.632
6.371 6.178 6. 029 5.911 5.814

9 10.561  8.022 6.992 6. 422 6. 057
5. 802 5.613 5. 467 5. 351 5. 257
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1.3.6.7.3. Upper Critical Vaues of the F Distribution

10 10. 044 7. 559 6. 552 5.994
5. 386 5. 200 5. 057 4.942 4. 849

11 9. 646 7.206 6. 217 5. 668
5. 069 4. 886 4. 744 4.632 4. 539

12 9. 330 6. 927 5. 953 5.412
4.821 4. 640 4. 499 4. 388 4. 296

13 9. 074 6. 701 5. 739 5. 205
4.620 4. 441 4. 302 4.191 4.100

14 8. 862 6. 515 5. 564 5. 035
4. 456 4.278 4. 140 4. 030 3. 939

15 8. 683 6. 359 5.417 4.893
4,318 4.142 4. 004 3. 895 3. 805

16 8. 531 6. 226 5.292 4.773
4.202 4.026 3. 890 3.780 3.691

17 8. 400 6.112 5. 185 4. 669
4.102 3.927 3.791 3.682 3.593

18 8. 285 6. 013 5. 092 4.579
4. 015 3.841 3. 705 3. 597 3. 508

19 8. 185 5. 926 5. 010 4. 500
3. 939 3. 765 3.631 3.523 3.434

20 8. 096 5. 849 4.938 4.431
3.871 3. 699 3. 564 3. 457 3. 368

21 8.017 5. 780 4.874 4. 369
3.812 3. 640 3. 506 3.398 3. 310

22 7.945 5.719 4.817 4.313
3. 758 3. 587 3. 453 3. 346 3. 258

23 7.881 5. 664 4.765 4.264
3.710 3. 539 3. 406 3. 299 3.211

24 7.823 5.614 4.718 4.218
3. 667 3. 496 3. 363 3. 256 3.168

25 7.770 5. 568 4.675 4.177
3. 627 3. 457 3. 324 3. 217 3.129

26 7.721 5. 526 4. 637 4. 140
3.591 3.421 3. 288 3.182 3.094

27 7.677 5. 488 4.601 4.106
3. 558 3. 388 3. 256 3. 149 3.062

28 7.636 5. 453 4.568 4.074
3. 528 3. 358 3. 226 3.120 3.032

29 7.598 5.420 4.538 4. 045
3. 499 3. 330 3.198 3.092 3. 005

30 7.562 5. 390 4.510 4.018
3.473 3. 305 3.173 3. 067 2.979

31 7.530 5. 362 4.484 3. 993
3. 449 3.281 3. 149 3.043 2. 955

32 7.499 5. 336 4. 459 3. 969
3. 427 3. 258 3. 127 3.021 2.934

33 7.471 5.312 4. 437 3. 948
3. 406 3. 238 3. 106 3. 000 2.913

34 7.444 5. 289 4.416 3. 927
3. 386 3.218 3. 087 2.981 2.894

35 7.419 5. 268 4. 396 3. 908
3. 368 3. 200 3. 069 2.963 2.876

36 7. 396 5. 248 4. 377 3. 890
3. 351 3. 183 3. 052 2. 946 2. 859

37 7.373 5. 229 4. 360 3.873
3.334 3. 167 3. 036 2.930 2.843

38 7.353 5.211 4. 343 3. 858
3.319 3. 152 3.021 2.915 2.828

39 7. 333 5.194 4,327 3. 843
3. 305 3. 137 3. 006 2.901 2.814

40 7.314 5. 179 4. 313 3. 828
3.291 3.124 2.993 2.888 2.801

41 7.296 5. 163 4. 299 3. 815
3.278 3.111 2.980 2.875 2.788
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1.3.6.7.3. Upper Critical Vaues of the F Distribution

74 6.990 4.904  4.058 3.584  3.275
3. 056 2.891 2.762 2.657 2.570
75 6.985 4.900 4.054 3.580 3.272
3.052 2.887 2.758 2.653 2.567
76 6.981 4. 896 4. 050 3.577 3. 268
3. 049 2.884 2.755 2. 650 2.563
77 6.976  4.892 4.047 3.573 3. 265
3. 046 2.881 2. 751 2. 647 2.560
78 6.971 4. 888 4.043 3.570 3. 261
3. 042 2.877 2.748 2.644 2.557
79 6. 967 4.884  4.040 3. 566 3. 258
3.039 2.874 2.745 2. 640 2.554
80 6.963 4.881 4.036 3.563 3. 255
3.036 2.871 2. 742 2.637 2.551
81 6.958  4.877 4.033 3. 560 3. 252
3.033 2.868 2.739 2.634 2.548
82 6.954 4.874  4.030 3.557 3. 249
3.030 2.865 2.736 2.632 2. 545
83 6.950 4.870 4.027 3.554  3.246
3. 027 2.863 2.733 2.629 2.542
84 6. 947 4. 867 4.024  3.551 3.243
3.025 2. 860 2.731 2.626 2.539
85 6.943 4.864 4.021 3.548 3. 240
3.022 2.857 2.728 2.623 2.537
86 6.939 4. 861 4.018 3. 545 3.238
3.019 2.854 2.725 2.621 2.534
87 6.935 4.858 4.015 3. 543 3.235
3.017 2.852 2.723 2.618 2.532
88 6.932 4. 855 4.012 3. 540 3.233
3.014 2.849 2.720 2.616 2.529
89 6.928  4.852 4.010 3.538 3. 230
3.012 2. 847 2.718 2.613 2.527
90 6.925  4.849 4. 007 3.535 3.228
3. 009 2. 845 2.715 2.611 2.524
91 6.922 4. 846 4.004  3.533 3.225
3. 007 2.842 2.713 2.609 2.522
92 6.919 4.844  4.002 3.530 3.223
3.004 2.840 2.711 2.606 2.520
93 6.915 4.841 3.999 3.528 3.221
3. 002 2.838 2.709 2.604 2.518
94 6.912 4. 838 3.997 3.525 3.218
3. 000 2.835 2.706 2.602 2.515
95 6. 909 4. 836 3. 995 3.523 3. 216
2.998 2.833 2.704 2. 600 2.513
96 6.906  4.833 3.992 3.521 3.214
2.996 2.831 2.702 2.598 2.511
97 6.904  4.831 3.990 3.519 3.212
2.994  2.829 2.700 2.596 2.509
98 6. 901 4. 829 3.988 3.517 3. 210
2.992 2.827 2.698 2.594 2. 507
99 6.898 4.826 3. 986 3.515 3.208
2.990 2.825 2.696 2.592 2.505
100 6. 895 4. 824 3.984  3.513 3. 206
2.988 2.823 2.694 2.590 2.503
\ V1 11 12 13 14 15
16 17 18 19 20
vy
1 6083. 35 6106.35 6125.86 6142. 70 6157.28

6170. 12 6181.42 6191.52 6200.58 6208. 74
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1.3.6.7.3. Upper Critical Vaues of the F Distribution
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98. 2.434 2.371 2. 317 2. 269 2.227
2.189 2.155 2.124 2.096 2.071

99. 2.432 2. 369 2.315 2.267 2.225
2.187 2.153 2.122 2.094 2. 069
100. 2.430 2.368 2. 313 2.265 2.223

2.185 2.151 2.120 2.092 2. 067
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1.3.6.7.4. Critical Values of the Chi-Square Distribution
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1. Exploratory Data Analysis

1.3. EDA Techniques

1.3.6. Probability Distributions

1.3.6.7. Tables for Probability Distributions

1.3.6.7.4. Critical Values of the Chi-Square

How to
Use This
Table

Distribution

This table contains the critical values of the chi-square
distribution. Because of the lack of symmetry of the chi-
square distribution, separate tables are provided for the upper
and lower tails of the distribution.

A test statistic with v degrees of freedom is computed from
the data. For upper-tail one-sided tests, the test statistic is
compared with a value from the table of upper-tail critical
values. For two-sided tests, the test statistic is compared with
values from both the table for the upper-tail critical values and
the table for the lower-tail critical values.

The significance level, a, is demonstrated with the graph
below which shows a chi-square distribution with 3 degrees of
freedom for a two-sided test at significance level a = 0.05. If
the test statistic is greater than the upper-tail critical value or
less than the lower-tail critical value, we reject the null
hypothesis. Specific instructions are given below.

Chi-Square PDF (Two-Sided Test at Alpha = 0.05)

03
5. 0.25-
=
2
S 02
o
= 015~
=1
3 o1
g
005 -
1 o = 0025 a = 0025
0 ; . EP—..__.
0 5 10 15 20
X

Given a specified value of a:

1. For atwo-sided test, find the column corresponding to
1-a/2 in the table for upper-tail critical values and reject
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1.3.6.7.4. Critical Values of the Chi-Square Distribution

the null hypothesis if the test statistic is greater than the
tabled value. Similarly, find the column corresponding
to a/2 in the table for lower-tail critical values and
reject the null hypothesis if the test statistic is less than
the tabled value.

2. For an upper-tail one-sided test, find the column
corresponding to 1-« in the table containing upper-tail
critical and rgject the null hypothesis if the test statistic
Is greater than the tabled value.

3. For alower-tail one-sided test, find the column
corresponding to « in the lower-tail critical values table
and regject the null hypothesis if the computed test
statistic is less than the tabled value.

Upper-tail critical values of chi-square distribution with v
degrees of freedom

Probability |l ess than the critical

val ue

Vv 0.90 0. 95 0. 975 0.99
0. 999

1 2.706 3.841 5.024 6. 635
10. 828

2 4. 605 5.991 7.378 9.210
13. 816

3 6. 251 7.815 9. 348 11. 345
16. 266

4 7.779 9. 488 11. 143 13. 277
18. 467

5 9. 236 11. 070 12. 833 15. 086
20. 515

6 10. 645 12.592 14. 449 16. 812
22. 458

7 12. 017 14. 067 16. 013 18. 475
24. 322

8 13. 362 15. 507 17.535 20. 090
26. 125

9 14. 684 16. 919 19. 023 21. 666
27. 877

10 15. 987 18. 307 20. 483 23. 209
29. 588

11 17. 275 19. 675 21.920 24. 725
31. 264

12 18. 549 21. 026 23. 337 26. 217
32.910

13 19. 812 22.362 24. 736 27.688
34.528

14 21. 064 23. 685 26. 119 29. 141
36.123

15 22. 307 24.996 27. 488 30.578
37. 697

16 23.542 26. 296 28. 845 32.000
39. 252
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24.
25.
27.
28.
29.
30.
32.
33.
34.
35.
36.
37.
39.
40.
41.
42.
43.
44.
46.
47.
48.
49.
50.
51.
52.
54.
55.
56.
57.
58.
59.
60.

769
989
204
412
615
813
007
196
382
563
741
916
087
256
422
585
745
903
059
212
363
513
660
805
949
090
230
369
505
641
774
907

27.
28.
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31.
32.
33.
35.
36.
37.
38.
40.
41.
42.
43.
44.
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49.
50.
52.
53.
54.
55.
56.
58.
59.
60.
61.
62.
64.
65.

587
869
144
410
671
924
172
415
652
885
113
337
557
773
985
194
400
602
802
998
192
384
572
758
942
124
304
481
656
830
001
171

30.
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36.
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40.
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43.
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48.
49.
50.
51,
53,
54,
55,
56.
58,
59,
60.
61.
62.
64.
65.
66.
67.
69.

191
526
852
170
479
781
076
364
646
923
195
461
722
979
232
480
725
966
203
437
668
896
120
342
561
77
990
201
410
617
821
023

33.
34.
36.
37.
38.
40.
41.
42.
44.
45.
46.
48.
49.
50.
52.
53.
54.
56.
S57.
58.
59.
61.
62.
63.
64.
66.
67.
68.
69.
71.
72.
73.

409
805
191
566
932
289
638
980
314
642
963
278
588
892
191
486
776
061
342
619
893
162
428
691
950
206
459
710
957
201
443
683
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49
85. 351

109. 791

111. 055
70
112. 317
71
113. 577

114. 835
73
116. 092
74
117. 346

118. 599
76
119. 850
77
121. 100
78
122. 348
79
123. 594
80
124. 839

62.
63.
64.
65.
66.
67.
68.
69.
71.
72.
73.
74.
75.
76.
7.
78.
79.
81.
82.
83.
84.
85.
86.
87.
88.
89.
91.
92.
93.
94.
95.
96.

038
167
295
422
548
673
796
919
040
160
279
397
514
630
745
860
973
085
197
308
418
527
635
743
850
956
061
166
270
374
476
578

66.
67.
68.
69.
70.
72.
73.
74.
75.
76.
77.
79.
80.
81.
82.
83.
84.
85.
87.
88.
89.
90.
91.
92.
93.
95.
96.
97.
98.
99.
100.
101.

339
505
669
832
993
153
311
468
624
778
931
082
232
381
529
675
821
965
108
250
391
531
670
808
945
081
217
351
484
617
749
879

70.
71.
72.
73.
75.
76.
7.
78.
79.
80.
82.
83.
84.
85.
86.
88.
89.
90.
91.
92.
93.
95.
96.
97.
98.
99.
100.
101.
108.
104.
105.
106.

222
420
616
810
002
192
380
567
752
936
117
298
476
654
830
004
177
349
519
689
856
023
189
353
516
678
839
999
158
316
473
629

74.
76.
77.
78.
79.
81.
82.
83.
84.
85.
87.
88.
89.
90.
92.
93.
94.
95.
96.
98.
99.
100.
101.
102.
104.
105.
106.
107.
108.
109.
111.
112.
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919
154
386
616
843
069
292
513
733
950
166
379
591
802
010
217
422
626
828
028
228
425
621
816
010
202
393
583
771
958
144
329
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81 97. 680 103. 010 107. 783 113. 512
126. 083
82 98. 780 104. 139 108. 937 114. 695
127. 324
83 99. 880 105. 267 110. 090 115. 876
128. 565
84 100. 980 106. 395 111. 242 117. 057
129. 804
85 102. 079 107. 522 112. 393 118. 236
131. 041
86 103. 177 108. 648 113. 544 119. 414
132. 277
87 104. 275 109. 773 114. 693 120. 591
133.512
88 105. 372 110. 898 115. 841 121. 767
134. 746
89 106. 469 112. 022 116. 989 122. 942
135. 978
90 107. 565 113. 145 118. 136 124. 116
137. 208
91 108. 661 114. 268 119. 282 125. 289
138. 438
92 109. 756 115. 390 120. 427 126. 462
139. 666
93 110. 850 116. 511 121. 571 127. 633
140. 893
94 111. 944 117. 632 122. 715 128. 803
142. 119
95 113. 038 118. 752 123. 858 129. 973
143. 344
96 114. 131 119. 871 125. 000 131. 141
144. 567
97 115. 223 120. 990 126. 141 132. 309
145. 789
98 116. 315 122. 108 127. 282 133. 476
147. 010
99 117. 407 123. 225 128. 422 134. 642
148. 230
100 118. 498 124. 342 129. 561 135. 807
149. 449
100 118. 498 124. 342 129. 561 135. 807
149. 449

L ower-tail critical values of chi-square distribution with v
degr ees of freedom

Probability |l ess than the critical

val ue

v 0.10 0. 05 0. 025 0.01
0. 001

1. . 016 . 004 . 001 . 000
. 000

2. . 211 . 103 . 051 . 020
. 002
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3.
. 024
4.
. 091
5.
. 210
6.
. 381
7.
. 598
8.
. 857
9.
1.152
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643
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196
051
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465
269
075
884
695
509
326
144
965
787
612
439
268
098
930
764
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437
276
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958
801
646
492
339
188
038
889
741
595
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336
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233
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99. 81. 449 77. 046
61. 137
100. 82. 358 77.929
61.918
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1.3.6.7.5. Critical Values of the t<sup>*</sup> Distribution
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1. Exploratory Data Analysis

1.3. EDA Techniques

1.3.6. Probability Distributions

1.3.6.7. Tables for Probability Distributions

1.3.6.7.5. Critical Values of thet™ Distribution

How to This table contains upper critical values of the t* distribution
Use This that are appropriate for determining whether or not a
Table calibration lineisin a state of statistical control from

measurements on a check standard at three points in the
calibration interval. A test statistic with & degrees of freedom

is compared with the critical value. If the absolute value of the
test statistic exceeds the tabled value, the calibration of the
instrument is judged to be out of control.

Upper critical values of t* distribution at significance level 0.05
for testing the output of a linear calibration line at 3 points

# #

1 I.IZQS [:V) Vv I.I:GS [:v)
1 37.544 61 2. 455
2 7.582 62 2.454
3 4.826 63 2.453
4 3.941 64 2.452
5 3.518 65 2.451
6 3.274 66 2.450
7 3.115 67 2.449
8 3.004 68 2.448
9 2.923 69 2. 447
10 2. 860 70 2.446
11 2.811 71 2. 445
12 2.770 72 2. 445
13 2. 737 73 2. 444
14 2.709 74 2. 443
15 2.685 75 2.442
16 2. 665 76 2. 441
17 2.647 77 2.441
18 2.631 78 2.440
19 2.617 79 2.439
20 2. 605 80 2.439
21 2.594 81 2.438
22 2.584 82 2. 437
23 2.574 83 2.437
24 2. 566 84 2.436
25 2.558 85 2.436
26 2.551 86 2.435
27 2.545 87 2.435
28 2.539 88 2.434
29 2.534 89 2.434
30 2.528 90 2.433
31 2.524 91 2.432
32 2.519 92 2.432
33 2.515 93 2.431
34 2.511 94 2.431
35 2.507 95 2.431
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36 2.504 96 2.430
37 2.501 97 2. 430
38 2.498 98 2. 429
39 2. 495 99 2.429
40 2. 492 100 2. 428
41 2.489 101 2.428
42 2.487 102 2.428
43 2.484 103 2. 427
44 2.482 104 2. 427
45 2. 480 105 2. 426
46 2.478 106 2. 426
47 2.476 107 2.426
48 2. 474 108 2. 425
49 2.472 109 2.425
50 2.470 110 2.425
51 2. 469 111 2. 424
52 2. 467 112 2.424
53 2. 466 113 2. 424
54 2. 464 114 2.423
55 2. 463 115 2.423
56 2. 461 116 2. 423
57 2. 460 117 2.422
58 2. 459 118 2.422
59 2. 457 119 2. 422
60 2. 456 120 2.422
MNIST . .
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1.3.6.7.6. Critical Values of the Normal PPCC Distribution
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1. Exploratory Data Analysis

1.3. EDA Techniques

1.3.6. Probability Distributions

1.3.6.7. Tables for Probability Distributions

1.3.6.7.6. Critical Values of the Normal PPCC

How to
Use This
Table

Distribution

This table contains the critical values of the normal probability
plot correlation coefficient (PPCC) distribution that are
appropriate for determining whether or not a data set came
from a population with approximately a normal distribution. It
isused in conjuction with a normal probability plot. The test
statistic is the correlation coefficient of the points that make up
a normal probability plot. This test statistic is compared with
the critical value below. If the test statistic is less than the
tabulated value, the null hypothesis that the data came from a
population with a normal distribution is rejected.

For example, suppose a set of 50 data points had a correlation
coefficient of 0.985 from the normal probability plot. At the
5% significance level, the critical value is 0.9761. Since 0.985
is greater than 0.9761, we cannot reject the null hypothesis that
the data came from a population with a normal distribution.

Since perferct normality implies perfect correlation (i.e., a
correlation value of 1), we are only interested in rejecting
normality for correlation values that are too low. That is, this
isalower one-tailed test.

The values in this table were determined from simulation
studies by Filliben and Devaney.

Critical values of the normal PPCC for testing if data come
from a normal distribution

0.01 0.05
0. 8687 0. 8790
0. 8234 0. 8666
0. 8240 0. 8786
0. 8351 0. 8880
0. 8474 0. 8970
0. 8590 0.9043
0. 8689 0.9115
0. 8765 0.9173
0. 8838 0.9223
0. 8918 0.9267
0. 8974 0. 9310
0. 9029 0.9343
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15 0. 9080 0. 9376
16 0.9121 0. 9405
17 0. 9160 0.9433
18 0. 9196 0. 9452
19 0. 9230 0.9479
20 0. 9256 0.9498
21 0. 9285 0. 9515
22 0. 9308 0. 9535
23 0. 9334 0. 9548
24 0. 9356 0.9564
25 0. 9370 0. 9575
26 0. 9393 0. 9590
27 0.9413 0. 9600
28 0. 9428 0. 9615
29 0. 9441 0.9622
30 0. 9462 0.9634
31 0. 9476 0. 9644
32 0. 9490 0. 9652
33 0. 9505 0. 9661
34 0. 9521 0.9671
35 0. 9530 0.9678
36 0. 9540 0. 9686
37 0. 9551 0. 9693
38 0. 9555 0.9700
39 0. 9568 0.9704
40 0. 9576 0.9712
41 0. 9589 0.9719
42 0. 9593 0.9723
43 0. 9609 0.9730
44 0. 9611 0.9734
45 0. 9620 0.9739
46 0. 9629 0.9744
47 0. 9637 0.9748
48 0. 9640 0.9753
49 0. 9643 0.9758
50 0. 9654 0.9761
55 0. 9683 0.9781
60 0. 9706 0.9797
65 0.9723 0. 9809
70 0.9742 0.9822
75 0. 9758 0.9831
80 0.9771 0. 9841
85 0. 9784 0. 9850
90 0. 9797 0. 9857
95 0. 9804 0. 9864
100 0.9814 0. 9869
110 0. 9830 0.9881
120 0. 9841 0. 9889
130 0. 9854 0. 9897
140 0. 9865 0.9904
150 0.9871 0. 9909
160 0. 9879 0. 9915
170 0. 9887 0.9919
180 0. 9891 0.9923
190 0. 9897 0. 9927
200 0. 9903 0. 9930
210 0. 9907 0.9933
220 0. 9910 0. 9936
230 0.9914 0.9939
240 0. 9917 0. 9941
250 0. 9921 0.9943
260 0. 9924 0. 9945
270 0. 9926 0. 9947
280 0. 9929 0. 9949
290 0. 9931 0. 9951
300 0. 9933 0. 9952
310 0. 9936 0.9954
320 0. 9937 0. 9955
330 0. 9939 0. 9956
340 0. 9941 0. 9957
350 0. 9942 0. 9958
360 0. 9944 0. 9959
370 0. 9945 0. 9960
380 0. 9947 0.9961
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1. Exploratory Data Analysis

1.4. EDA Case Studies

SUmmary This section presents a series of case studies that demonstrate
the application of EDA methods to specific problems. In some
cases, we have focused on just one EDA technique that
uncoversvirtualy all thereisto know about the data. For other
case studies, we need several EDA techniques, the selection of
which is dictated by the outcome of the previous step in the
analaysis sequence. Note in these case studies how the flow of
the analysis is motivated by the focus on underlying
assumptions and general EDA principles.
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1. Exploratory Data Analysis
1.4. EDA Case Studies

1.4.1. Case Studies I ntroduction

Purpose The purpose of the first eight case studies is to show how
EDA graphics and quantitative measures and tests are
applied to data from scientific processes and to critique
those data with regard to the following assumptions that
typically underlie a measurement process; namely, that the
data behave like:

random drawings

from a fixed distribution

with a fixed location

with a fixed standard deviation

Case studies 9 and 10 show the use of EDA techniquesin
distributional modeling and the analysis of a designed
experiment, respectively.

Y =C+E If the above assumptions are satisfied, the processis said
to be statistically "in control” with the core characteristic
of having "predictability”. That is, probability statements
can be made about the process, not only in the past, but
also in the future.

An appropriate model for an "in control” processis
Y; = C+ E;

where C is a constant (the "deterministic" or "structura”
component), and where E; is the error term (or "random"

component).

The constant C is the average value of the process--it isthe
primary summary number which shows up on any report.
Although C is (assumed) fixed, it is unknown, and so a
primary analysis objective of the engineer isto arrive at an
estimate of C.

This goal partitions into 4 sub-goals:

1. Isthe most common estimator of C, 17’, the best
estimator for C? What does "best" mean?

2. 1f ¥ is best, what is the uncertainty 5% for ¥. In
particular, is the usual formulafor the uncertainty of
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Y:

Sy = 3;’\/1_\?
valid? Here, sisthe standard deviation of the data
and N isthe sample size.

3. If Y isnot the best estimator for C, what is a better
estimator for C (for example, median, midrange,
midmean)?

4. |f thereis a better estimator, tf', what isits
uncertainty? That is, what is 54?

EDA and the routine checking of underlying assumptions
provides insight into all of the above.

1. Location and variation checks provide information
as to whether C isreally constant.

2. Distributional checks indicate whether ¥ is the best
estimator. Techniques for distributional checking
include histograms, normal probability plots, and
probability plot correlation coefficient plots.

3. Randomness checks ascertain whether the usual

Sy = 3;"\/1_\?
isvalid.

4. Distributional tests assist in determining a better
estimator, if needed.

5. Simulator tools (namely bootstrapping) provide
values for the uncertainty of alternative estimators.

Assumptions If one or more of the above assumptions is not satisfied,

not satisfied then we use EDA techniques, or some mix of EDA and
classical techniques, to find a more appropriate model for
the data. That is,

Y; =D + E;

where D is the deterministic part and E is an error
component.

If the data are not random, then we may investigate fitting
some simple time series models to the data. If the constant
location and scale assumptions are violated, we may need

to investigate the measurement processto see if thereis an
explanation.

The assumptions on the error term are still quite relevant
in the sense that for an appropriate model the error
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Multivariable
data

First three
case studies
utilize data
with known
characteristics

Graphical
methods that
are applied to
the data

component should follow the assumptions. The criterion
for validating the model, or comparing competing models,
is framed in terms of these assumptions.

Although the case studies in this chapter utilize univariate
data, the assumptions above are relevant for multivariable
data as well.

If the data are not univariate, then we are trying to find a
model

Yi = F(Xq, ..., Xy) + Ej

where F is some function based on one or more variables.
The error component, which is a univariate data set, of a
good model should satisfy the assumptions given above.
The criterion for validating and comparing models is based
on how well the error component follows these
assumptions.

Theload cell calibration case study in the process
modeling chapter shows an example of thisin the
regression context.

The first three case studies utilize data that are randomly
generated from the following distributions:

« normal distribution with mean 0 and standard
deviation 1

« uniform distribution with mean 0 and standard
deviation , {1 f 12 (uniform over the interval (0,1))

« random wak

The other univariate case studies utilize data from
scientific processes. The goal isto determineif

Yi:C+Ei

is a reasonable model. This is done by testing the
underlying assumptions. If the assumptions are satisfied,
then an estimate of C and an estimate of the uncertainty of
C are computed. If the assumptions are not satisfied, we
attempt to find a model where the error component does
satisfy the underlying assumptions.

To test the underlying assumptions, each data set is
analyzed using four graphical methods that are particularly
suited for this purpose:

1. run sequence plot which is useful for detecting shifts
of location or scale
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Quantitative
methods that
are applied to
the data

2. lag plot which is useful for detecting non-
randomness in the data

3. histogram which is useful for trying to determine the
underlying distribution

4. normal probability plot for deciding whether the data
follow the normal distribution

There are a number of other techniques for addressing the
underlying assumptions. However, the four plots listed
above provide an excellent opportunity for addressing all
of the assumptions on a single page of graphics.

Additional graphical techniques are used in certain case
studies to develop models that do have error components
that satisfy the underlying assumptions.

The normal and uniform random number data sets are a'so
analyzed with the following quantitative techniques, which
are explained in more detail in an earlier section:

1. Summary statistics which include:

o mean

o standard deviation

o autocorrelation coefficient to test for
randomness

o normal and uniform probability plot
correlation coefficients (ppcc) to test for a
normal or uniform distribution, respectively

o Wilk-Shapiro test for a normal distribution

2. Linear fit of the data as a function of time to assess
drift (test for fixed location)

3. Bartlett test for fixed variance

4. Autocorrelation plot and coefficient to test for
randomness

5. Runstest to test for lack of randomness

6. Anderson-Darling test for a normal distribution
7. Grubbs test for outliers

8. Summary report

Although the graphical methods applied to the normal and
uniform random numbers are sufficient to assess the
validity of the underlying assumptions, the quantitative
techniques are used to show the different flavor of the
graphical and quantitative approaches.

The remaining case studies intermix one or more of these
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quantitative techniques into the analysis where appropriate.
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1.4.2. Case Studies

1.4.2.1. Normal Random Numbers

Normal This example illustrates the univariate analysis of a set of
Random normal random numbers.
Numbers

1. Background and Data

2. Graphical Output and Interpretation
3. Quantitative Output and Interpretation
4. Work This Example Y ourself
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1.4.2. Case Studies
1.4.2.1. Normal Random Numbers

1.4.2.1.1. Background and Data

Generation  The normal random numbers used in this case study are from
a Rand Corporation publication.

The motivation for studying a set of normal random numbers
isto illustrate the ideal case where all four underlying

assumptions hold.

Software The analyses used in this case study can be generated using
both Dataplot code and R code.

Data The following is the set of normal random numbers used for
this case study.
-1.2760 -1.2180 -0.4530 -0.3500 0.7230
0.6760 -1.0990 -0.3140 -0.3940 -0.6330
-0.3180 -0.7990 -1.6640 1.3910 0.3820
0.7330 0.6530 0.2190 -0.6810 1.1290
-1.3770 -1.2570 0.4950 -0.1390 -0.8540
0.4280 -1.3220 -0.3150 -0.7320 -1.3480
2.3340 -0.3370 -1.9550 -0.6360 -1.3180
-0.4330 0.5450 0.4280 -0.2970 0.2760
-1.1360 0.6420 3.4360 -1.6670 0.8470
-1.1730 -0.3550 0.0350 0.3590 0.9300
0.4140 -0.0110 0.6660 -1.1320 -0.4100
-1.0770 0.7340 1.4840 -0.3400 0.7890
-0.4940 0.3640 -1.2370 -0.0440 -0.1110
-0.2100 0.9310 0.6160 -0.3770 -0.4330
1.0480 0.0370 0.7590 0.6090 -2.0430
-0.2900 0.4040 -0.5430 0.4860 0.8690
0.3470 2.8160 -0.4640 -0.6320 -1.6140
0.3720 -0.0740 -0.9160 1.3140 -0.0380
0.6370 0.5630 -0.1070 0.1310 -1.8080
-1.1260 0.3790 0.6100 -0.3640 -2.6260
2.1760 0.3930 -0.9240 1.9110 -1.0400
-1.1680 0.4850 0.0760 -0.7690 1.6070
-1.1850 -0.9440 -1.6040 0.1850 -0.2580
-0. 3000 -0.5910 -0.5450 0.0180 -0.4850
0.9720 1.7100 2.6820 2.8130 -1.5310
-0.4900 2.0710 1.4440 -1.0920 0.4780
1.2100 0.2940 -0.2480 0.7190 1.1030
1.0900 0.2120 -1.1850 -0.3380 -1.1340
2.6470 0.7770 0.4500 2.2470 1.1510
-1.6760 0.3840 1.1330 1.3930 0.8140
0.3980 0.3180 -0.9280 2.4160 -0.9360
1.0360 0.0240 -0.5600 0.2030 -0.8710
0.8460 -0.6990 -0.3680 0.3440 -0.9260
-0.7970 -1.4040 -1.4720 -0.1180 1.4560
0.6540 -0.9550 2.9070 1.6880 0.7520
-0.4340 0.7460 0.1490 -0.1700 -0.4790
0.5220 0.2310 -0.6190 -0.2650 0.4190
0.5580 -0.5490 0.1920 -0.3340 1.3730
-1.2880 -0.5390 -0.8240 0.2440 -1.0700
0.0100 0.4820 -0.4690 -0.0900 1.1710
1.3720 1.7690 -1.0570 1.6460 0.4810
-0. 6000 -0.5920 0.6100 -0.0960 -1.3750
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0.5350 1.6070
0.3360 -1.1520
1.1440 0.9130
0. 0510 -0.9440
1. 0560 0.6350
2.0450 -1.9770
0.9700 -0.0170
0.3990 -1.2090
0.4580 1.3070
0. 0560 -0.1310
0. 3600 -0.1190
0. 8400 -0. 2460
0. 9520 -0.5660
0.1100 0. 2510
1.4790 -0.9860
1.3580 -1.2460
0.9250 0.7830
1.2720 -0.9450
1.8790 0.0630
0.4170 -0. 6660
1.3330 1.9870
1.1830 1.2110
0.1930 -1.0230
1.3190 0. 7850
0.0880 -1.3790
0.6180 0.2090
1.3760 1.0470
1.4250 -0.8120
1.2810 -2.5140
0.6670 -0.2230
1.4340 0.2900
0.1200 -1.5940
0. 3710 -0.2160
0. 6860 -0.0750
1.1070 -1.0390
1.4580 -0.5390
0. 5860 -0.4680
1.2340 2.3810
1. 4450 -0.6800
0.5710 1.2230
0. 3750 -0.9850
0.0240 0.1260
1.2270 -2.6470
0.5470 -0.6340
1.2890 -0.0220
0.5740 -1.1530
0. 3320 -0.4530
1.5080 0.4890
0.2330 -0.1530
0.4600 0.3930
0.1710 -0.1100
0.3280 1.0210
1.7700 -0.0030
1.0290 1.5260
0.5530 0.7700
0.3780 0.6010
1.0720 1.5670
1.4030 0.6980
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Goal The goal of this analysisis threefold:

1

4-Plot of
Data

G Ao e s

ad
50

a0
20
10

-10 -5 a

Determine if the univariate model:
., =C+E
is appropriate and valid.

. Determine if the typical underlying assumptions for

an "in control" measurement process are valid. These
assumptions are:
1. random drawings;
2. from afixed distribution;
3. with the distribution having a fixed 