Draft 08/28/00

Knowledge-based Automation of a Design Method for
Concurrent Systems

Kevin L. Mills
National Institute of Standards and Technology, Gaithersburg, Maryland 20899 USA

Hassan Gomaa
George Mason University, Fairfax, Virginia 22030 USA

Abstract. This paper describes a knowledge-based approach to automate a software
design method for concurrent systems. The approach uses multiple paradigms to
represent knowledge embedded in the design method. Semantic data modeling provides
the means to represent concepts from a behavioral modeling technique, called Concurrent
Object-Based Real-time Analysis (COBRA), which defines system behavior using
data/control flow diagrams. Entity-Relationship modeling is used to represent a design
meta-model based on a design method, called COncurrent Design Approach for Real-
Time Systems (CODARTS), which represents concurrent designs as software
architecture diagrams, task behavior specifications, and module specifications.
Production rules provide the mechanism for codifying a set of CODARTS heuristics that
can generate concurrent designs based on semantic concepts included in COBRA
behavioral models and on entities and relationships included in CODARTS design meta-
models. Together, the semantic data model, the entity-relationship model, and the
production rules, when encoded using an expert-system shell, compose CODA, an
automated designer's assistant. Other forms of automated reasoning, such as knowledge-
based queries, can be used to check the correctness and completeness of generated
designs with respect to properties defined in the CODARTS design meta-model. CODA
is applied to generate ten concurrent designs for four real-time problems. The paper
reports the degree of automation achieved by CODA. The paper also evaluates the quality
of generated designs by comparing the similarity between designs produced by CODA
and human designs reported in the literature for the same problems. In addition, the paper
compares CODA with four other approaches used to automate software design methods.

Keywords: automated software engineering; knowledge-based software engineering;
software design; concurrent and real-time system design

Draft 08/28/00

1. Introduction

Software engineering researchers and practitioners strive to improve the quality of
software products by increasing the discipline used during software development. One
means of increasing discipline entails the development and application of software design
methods and supporting notations. Some researchers attempt to enhance the utility of
software design methods by providing automated support. To date, such attempts rely
upon either of two approaches: clustering algorithms or rule-based expert systems.
Richer knowledge engineering models, integrating semantic data modeling with
production rules, can potentially lead to more effective automation of software design
methods. This paper describes and evaluates one such approach to automating a software
design method.

Unlike previous approaches to design automation, the approach described and
evaluated in this paper develops and exploits an underlying meta-model that can
represent and reason about instances of requirements models, design models, and the
relationships between the two. As a result, the approach described in this paper can check
instances of designs for consistency and completeness against the meta-model, can track
traceability between the requirements model and the evolving design model, can
automatically capture design rationale, can take different design decisions depending on
whether interacting with a novice or experienced designer, and can vary the generated
design to account for general design guidelines or to account for differences in target
implementation environment.

Beyond its novel aspects, the design automation approach also fares quite well when
considering its performance in two ways: (1) degree of automation and (2) quality of
designs. The automated design mechanism consists of two main phases: model analysis
and design generation. The model analysis phase aims to classify all symbols on a
requirements model (represented with data/control flow diagrams), and to assign
semantic tags to those symbols. For the models analyzed, 86% of the elements were
classified without help from the designer. Further information about the intent,
construction, and performance of the model analyzer can be found elsewhere [22]. The
automated design generator is the main topic of the current paper. Of 1,571 design
decisions required to generate ten concurrent designs, the design generator made 1,527,
or 97%, without human assistance. Further, the quality of the generated designs was quite
good, when compared against designs generated by human designers and documented in
the literature.

After describing in Section 2 the motivation for design automation research, the paper
discusses in Section 3 some previous approaches to automate software design. In Section
4, the paper briefly introduces CODARTS (COncurrent Design Approach for Real-Time
Systems), a software design method for concurrent and real-time systems, and then in
Section 5 proposes a knowledge-based approach to automate CODARTS. The proposed
approach leads directly to CODA (COncurrent Designer's Assistant), an automated
designer's assistant. In a fragment from a case study, presented in Section 6, the paper
describes the use of CODA to generate a design for an automobile cruise-control
subsystem. Following the case study, the paper evaluates in Section 7 the performance of
CODA when used to generate ten different concurrent designs for four real-time
problems. In Section 8, the paper discusses the contributions of CODA, as compared

Draft 08/28/00

with some previous approaches to automate software design methods. Section 9 considers
future research.

2. Benefits from Automating Software Design Methods

A software design method provides a methodical, consistent, and teachable approach that
defines what decisions a designer needs to make, when to make them, and, importantly,
when to stop making decisions [1]. In addition, a software design method provides a
consistent notation that can improve communication among those who must review and
understand the meaning of a design. In effect, a software design method encodes
knowledge about good design practices into a form that designers can use to construct
software designs. For these reasons, numerous software design methods have been
proposed and practiced [2-15].

Using automated support for software design methods can lead to several benefits.
First, automation can improve the rigor with which a software design method is applied.
Automation can ensure that a designer does not overlook any of the myriad details
associated with the design process. Automation can establish that constraints levied on a
design are satisfied, or that any unsatisfied constraints are brought to the designer's
attention. Second, automation can improve a designer's ability to generate alternate
designs. Since automation can speed up the generation of designs without sacrificing
rigor, a designer can more readily produce several designs from one problem model.
Third, automation can reduce the variability among the types of designs generated by
various designers. Reduced variability of form can increase the ability of customers,
analysts, and programmers to understand and compare designs. Fourth, automation can
improve the performance of inexperienced designers both immediately, by making
default decisions, and gradually, by explaining default design decisions to the designer.
The work described in this paper was motivated by the desire to produce an automated
design assistant that would realize these benefits, while also advancing the state-of-the-art
in automated design systems.

3. Previous Work on Automating Software Development

A number of researchers have proposed approaches to automate software
development. The field exhibits a long history of attempts to automatically generate
operational programs from requirements specifications. Much of that work failed to
achieve the difficult goals envisioned. Realizing the difficulty of automated software
generation, several researchers turned to the application of artificial intelligence
techniques to provide automated assistance for the software design phases alone. Some
researchers aimed at high-level design, while others focused on detailed design. Most of
this work was disconnected from any particular software design methods that human
designers applied, and so the results have met with little success. Learning from these
failures, some researchers have attempted to provide automated support for specific
design methods with which human designers are already familiar. The work described in
this paper can be classified in this latter category. The sections that follow provide a brief
review of related research, discussed in three categories: (1) automatic programming, (2)
automating software design, and (3) automating software design methods.

Draft 08/28/00

3.1 Automatic Programming. Unlike automated, design assistants, which help a
human analyst complete a single, if essential, transformation in the software development
process, automatic-programming systems [34-38] attempt to perform, without human
intervention, every transformation required to generate a working implementation from
an initial specification of user requirements. A different form of automatic programming,
end-user programming, enables a computer-naive user to interact with an intelligent agent
to select, exercise, evaluate, and modify an application program. End-user programming
[39] requires no formal specification of requirements; in fact, the user need only bring the
ideas in his head to a computer terminal to begin the process.

Numerous problems block success with automatic programming. Many automatic
programming research projects seem to be limited to a single, small domain. Even in
such projects the number and type of transformations required to convert a moderate
specification into a program can be enormous. In addition, the automatic generation
process produces a huge repository of data that can be difficult to manage. Further, the
knowledge contained in an automatic programming system is dispersed widely and, thus,
modifying such a system can be challenging. When an automatic programming system
produces incorrect results, end users tend to examine the target code for the cause of the
errors. Such an approach to software debugging, reminiscent of programmers who would
modify the object code produced by a faulty compiler, can be costly, risky, and
unproductive. Experience to date indicates that automatic programming will remain
confined, for the foreseeable future, to single, small application domains.

The end-user variant of automatic programming systems overcomes the limits of a
single, small domain, but at a cost. End-user programming systems require that a user
sort through a range of problem-solving strategies in an effort to determine which
approach might best meet his problem. After selecting an approach, the user must
interact with the program over a long period of time until the performance of the program
meets the user's expectations. As one possible outcome of this prolonged interaction, the
user or the system might realize that the initial problem-solving strategy was, in fact,
wrong. The basic approach to end-user programming seems to be educated guess,
followed by trial and error refinement. Few users have the patience for such an approach
to programming.

3.2 Automating Software Design. Designing software requires that a designer
possess both creativity and a capacity for complexity and detail. A number of researchers
investigate automated approaches to assist designers with the intricacies of software
design, without unduly restricting the creative aspects of the design process. Some
researchers address design at the architectural level, while others consider assistance for
detailed design. For example, Fickas' Critter [40], based on an earlier tool known as
Glitter [41], provides an automated assistant that attempts to bridge between requirements
and design for composite systems, those containing a mixture of human, hardware, and
software components. Critter uses an artificial intelligence paradigm of state-based
search, relying on a human user to provide the domain knowledge necessary to guide the
search. Critter encapsulates only domain-independent, design knowledge. Critter and a
human designer interact to develop a design to solve a domain-specific problem. To date,
the results with Critter do not appear encouraging. Critter's limited reasoning techniques
prevent its use on large software engineering problems; the analysis algorithms used in

Draft 08/28/00

Critter prove too slow for an interactive design system; Critter's knowledge-base and
representation omit several classes of system design concepts.

Progress to date on automating detailed design does not look any better. A number of
other researchers investigated methods of providing automated assistance for detailed
design. Most such methods assume the existence of one or more architectural designs.
The assistance then focuses on locating and modifying, or on creating, components that
can be fitted into one of the existing architectures. In most cases, detail-design assistants
[42-46] operate in a narrow domain. Automated assistants of this type might be useful
once a designer has already developed a system architecture.

3.3 Automating Software Design Methods. Some researchers attempt to provide
automated support for familiar and well-established design methods. Four previous
approaches are described here. Three of the four approaches produce a sequential design,
represented as structure charts, from a behavioral model represented by data flow
diagrams (DFDs). The fourth approach produces a concurrent design that to be mapped
directly onto a design simulator. Each of these approaches is described below, followed
by a brief discussion of advances made by the research presented in this paper.

3.3.1 Cluster Analysis. A system called Computer-Aided Process Organization, or
CAPO, embodies one approach to transform a data flow diagram into a structured design
[16]. CAPO strives to free a designer from using structured design techniques, such as
transform and transaction analysis, to create structure charts. CAPO represents a data
flow diagram as a flow graph, and then converts that flow graph into six matrices, used to
compute an interdependency weight for the links joining each pair of transformations.
Based upon the computed weights, CAPO converts the flow graph into a weighted,
directed graph, and then uses a number of cluster analysis techniques to decompose that
directed graph into a set of non-overlapping subgraphs.

CAPO provides no automated traceability between the flow graph and the resulting
structure charts; such mapping must be determined by human inspection. CAPO also
provides no automated assistance for checking the completeness and consistency of the
proposed structure charts. In addition, CAPO does not capture the design rationale used
to propose the various structure charts. In fact, wide variations in proposed structure
charts can be obtained without changing the structure of the flow graphs by manipulating
various numbers assigned to elements of the input flow graph. CAPO generates alternate
designs by using various clustering algorithms but does not consider aspects of the target
environment that might suggest alternate designs.

3.3.2 Specification-Transformation Expert System. Tsai and Ridge [17] describe a
Specification-Transformation Expert System (STES) that automatically translates a
specification model (expressed as data flow diagrams) into a sequential design (expressed
as structure charts). The STES, implemented using the OPS5 expert-system shell,
encapsulates the Structured Design method of Yourdon and Constantine [15] in expert-
system rules. STES represents both data flow diagrams and structure charts as structured
facts. STES uses several textbook heuristics, including coupling, cohesion, fan-in, and
fan-out, to guide the design process. Each data flow in a data flow diagram has an
associated data dictionary entry that can be used by STES to gauge the degree of
coupling between modules in a structure chart. An expert system has difficulty
determining cohesion among functions, and so STES consults a user for information

Draft 08/28/00

required to make inferences about functional cohesion. STES attempts to maximize fan-
in and tries to achieve a moderate span of control.

STES operates as a sequential set of phases. First, STES factors the data flow
diagram into afferent, efferent, and transform-centered branches. This factoring results in
a top-level design for the structure chart. Second, STES refines each module at the next
level of the structure chart using textbook guidelines for coupling, cohesion, fan-in, and
fan-out. Third, STES renders the resulting, multilevel, structure chart using a CASE
system from Cadre Technologies.

The approach embodied in STES limits its application to small designs, amenable to
the sequential processing paradigm known as "inputs-processing-outputs”. In addition,
the STES provides no automated checking for completeness and consistency of the
generated structure chart. Traceability between the data flow diagram and the structure
chart must be verified manually. STES does not capture the rationale for design
decisions. Though consulting the designer at various times, STES does not temper the
nature of such consultation based on the designer's level of experience. STES cannot
generate alternate designs without changing the data flow diagram.

3.3.3. Formal Rule Rewriting. Boloix, Sorenson, and Tremblay [18] describe another
approach, based on an entity-aggregate-relationship-attribute (EARA) model, to
automatically transform data flow diagrams to structure charts. Here, transformation
rules, based on set theory, convert data flow diagrams, described formally at the lowest
level of decomposition using an EARA model, into a formal description of structure
charts. A human analyst then improves the resulting structure charts.

The EARA approach provides no automated completeness and consistency checking
for the generated structure charts. In addition, the approach fails to capture the rationale
used to generate the structure charts. Nor does the approach give consideration to
generating alternate designs based upon variations in the intended run-time environment
for the system under design. When consulting the designer at numerous points in the
design-generation process, the EARA method does not vary the scope and nature of this
elicitation based on the designer's level of experience.

3.3.4 SARA Design Apprentice. Another approach, reported in the literature by Lor
and Berry [19], transforms requirements into a design, but without using structure charts
as the target. This semi-automated, knowledge-based approach, developed by Lor as the
subject of a Ph.D. dissertation in the context of the System ARchitects Apprentice
(SARA), a joint development of researchers at UCLA and the University of Wisconsin
[47], builds on the SARA environment by providing automated assistance to help a
designer transform a requirements specification into a SARA structural model and graph
model of behavior, or GMB. Lor uses data flow diagrams and system verification
diagrams to specify requirements. System verification diagrams provide a stimulus-
response model of behavior that Lor uses to specify interactions among subsystems in a
design. Lor uses data flow diagrams mainly to specify the interior of subsystems.

Lor chose a rule-based approach for his design assistant for two reasons. First, since
the current set of rules for transforming requirements into SARA designs remains
incomplete, locking the knowledge into a procedural program appears premature.
Second, the sequence of rule firings provides a natural explanation facility for design
choices. The design assistant encompasses 21 rules for building the structural model, 59
for synthesizing the control domain, and 37 for modeling the data domain. Lor's

Draft 08/28/00

approach synthesizes a SARA structural model through a direct translation of the
hierarchy of data flow diagrams; at the lowest level of decomposition, the data flows map
to SARA domain primitives. Lor's approach also creates a SARA GMB from the
stimulus-response model provided by the system verification diagrams, as well as from
the data flow diagrams.

Lor reports that his research provides a better understanding of, and a methodical
approach to, designing systems in the SARA environment. The rules encapsulated in the
design assistant can be called syntactically complete because every requirements
construct is covered. The rules cannot, however, be called semantically complete;
alternative designs cannot be considered and the rules cannot always map each
requirements element to the most concise design construct. A human designer must
answer queries as the design progresses (to provide needed information and to indicate
preferences), and must improve the generated design. Given the same requirements
specification technique (i.e., system verification diagrams and data flow diagrams), Lor
asserts that his approach could be adapted to other design representations by rewriting the
rule consequents; however, since the most crucial step in Lor's approach entails
developing formal definitions, represented by SARA design constructs, for every
construct in his requirements language, adapting to another design representation would
require that this most crucial step be repeated.

3.3.5 Advances Over Previous Approaches. The work described in this paper provides
several advances over the previous, related research. First, the current work provides an
underlying meta-model that describes components, relationships, and constraints that
designs must satisfy. This allows automated checking of design instances for
completeness and consistency with respect to the meta-model. Such checking enables
errors that can easily be made by human designers to be uncovered. Of course, the
automated design generator included in the approach generates designs that should
readily pass the completeness and consistency checks. Second, the current work provides
automatic capture of design rationale. This allows a human designer to understand how a
design decision was made. Such rationale can be used when an experienced designer
changes a design, or when an inexperienced designer is learning the design method.
Third, the current work provides two modes of operation: experienced and inexperienced.
In experienced mode, the design generator will elicit information and assistance from the
designer, as needed to address various subtleties in an evolving design, or to seek
additional information that can help to resolve ambiguities or to provide a better design.
In the inexperienced mode, the design generator uses default assumptions to address
subtleties, to resolve ambiguities, and to make decisions about design optimizations.
Finally, the current work enables the generation of designs that depend on characteristics
of the target hardware and operating system. Using this feature, a designer can generate
design variations more suited to particular target environments. A more detailed
comparison between the current work and these previous approaches is given in Section
8, Discussion.

4. CODARTS: A Software Design Method for Real-time Systems

CODARTS, or COncurrent Design Approach for Real-Time Systems, is a software
design method for concurrent and real-time systems. CODARTS [7] uses criteria for
information hiding and task structuring to form a concurrent design, including both tasks

Draft 08/28/00

and information-hiding modules, [20] from a behavioral specification. CODARTS
begins by using COBRA (Concurrent Object-Based Real-time Analysis) to analyze and
model a system under design. COBRA uses RTSA (Real-Time Structured Analysis)
notation, as summarized in Figure 1. However, COBRA provides an alternative to the
RTSA [8,14] decomposition strategy that includes guidelines for developing an
environmental model based on the system context diagram, and defines structuring
criteria for decomposing a system into subsystems and for determining objects and
functions in each subsystem. Finally, COBRA includes a behavioral approach, based on
event sequencing scenarios, for determining how the objects and functions within a
subsystem interact. A COBRA specification is documented as a hierarchical data/control
flow diagram (D/CFD) and a data dictionary. A D/CFD has a state-transition diagram for
each control transformation and a mini-specification for each data transformation. Figure
15 shows a fragment of a COBRA D/CFD for an automobile cruise-control application.
Once a COBRA specification exists, CODARTS provides four steps for generating a
concurrent design: (1) Task Structuring, (2) Task Interface Definition, (3) Module
Structuring, and (4) Task and Module Integration. First;, CODARTS task structuring

criteria assist a designer in

Terminator Data examining a COBRA
Flow specification to identify

Data Two-Way concurrent tasks. The task
Store > DataFlow structuring criteria,
consisting of a set of

Event heuristics derived from

............... > - . -

Data Flow experience obtained in the
Transformation design of concurrent

systems, can be grouped into

four categories: input/output

task structuring criteria,
Control internal task structuring
Transformation criteria, task cohesion
criteria, and task priority
criteria. In a given design, a
task may exhibit several
criteria and many tasks may
exhibit the same criteria.

The input/output and
internal task structuring criteria help to identify tasks based upon how and when a task is
activated: periodically, based on the need to poll a device or to perform a calculation, or
asynchronously, based on an external device interrupt or on an internal event. The task
cohesion criteria help a designer to identify COBRA objects and functions that can be
combined together in the same task. Single tasks might be formed wherever a set of
transformations must be performed sequentially (sequential cohesion). When a set of
tasks can be executed with the same period or with a harmonic period, those tasks might
also be combined (temporal cohesion). When a set of transformations performs closely
related functions, those transformations might be included in the same task (functional

Figure 1. Syntactic Elements for Composing COBRA
Data/control Flow Diagrams

Draft 08/28/00

cohesion). The task priority criteria prevent a designer from combining tasks that might
need to execute at substantially differing priorities.

As a second step, CODARTS provides guidelines for defining interfaces between
tasks. Once tasks are defined, data and event flows from a COBRA specification can be
mapped to inter-task signals or to tightly or loosely coupled messages, depending on the
synchronization requirements between specific pairs of tasks.

As a third step, CODARTS includes criteria, based on information hiding, to help a
designer identify modules from the objects and functions in a COBRA specification. In
general, the CODARTS module structuring criteria form modules to hide the details of
device characteristics, data structures, state-transition diagrams, and algorithms.

Finally, once both the task and module views of a concurrent design exist,
CODARTS provides guidelines to help a designer combine the independent views into a
single, consistent design. Each task represents a separate thread of control, activated by
some event: an interrupt, a timer, an
internal signal, or a message arrival.
Each module provides operations
that can be accessed by the tasks in
a design. CODARTS helps a
b. Queue and Queued Message — ||~ designer establish the control flow
from events to tasks and then on to
_ operations within modules.

c. Tightly Coupled Message R E— The results of applylng
— CODARTS are documented in the

form of a software architecture

d. Tightly Coupled Message with Reply diagram, and an accompanying set
of task and module specifications.

Some of the key icons in the

e. Event (i.e., interrupt, timer expiration, or ~ ———— graphical notation are illustrated in
software signal) Figure 2. The contents of the task

and module specifications are
[] discussed elsewhere [11]. Figure 16

g. Information Hiding Module | | | | gives an example of a CODARTS
with four Operations | | design corresponding to the

| || | COBRA requirements model shown

I in Figure 15.

a. Task

f. Data or Operation Invocation

Figure 2. Some Key Icons from the CODARTS 5. Automating CODARTS
Graphical Notation

CODARTS provides design-
structuring criteria to help a designer in structuring a software system into components.
These criteria, expressed as heuristics or guidelines, are based on real-world experience
in designing concurrent and real-time systems, and have evolved over several refinements
of the design method [30, g86, ga89, 7]. Furthermore, the criteria have been validated
through widespread use on industrial projects [cg91]. As the CODARTS structuring
criteria are aimed at a human designer, they are described textually in considerable detail
with the aid of examples [7]. A key challenge for automating CODARTS was to codify
these natural language heuristics as production rules that could be processed by a

Draft 08/28/00

machine, capturing all the different cases, and subtleties, addressed by the heuristics.
Once codified, and encoded using an expert system shell, this design knowledge forms
the basis for CODA, an automated assistant for designers of concurrent and real-time
systems. The following discussion explains the ideas underlying CODA.

5.1 Overview of CODA. Figure 3 illustrates one view of the architecture for
CODA. Given a data/control flow diagram and a description of the intended target
environment, along with any design guidelines, CODA largely automates the process of
generating a concurrent design. The resulting design consists of a software architecture
diagram, initial specifications for tasks and for information hiding modules, and
consistency and completeness analyses of the generated design. Conceptually, CODA
consists of two main components: a model analyzer and a design generator. The model
analyzer converts a syntactically described flow diagram into a flow diagram annotated
with semantic concepts from COBRA (see Figure 15 for an example of an annotated flow
diagram). The model analyzer consists of four knowledge bases: (1) an analysis meta-
model that describes relationships among semantic concepts within a specific analysis
method, (2) concept classification rules that perform inferences on instances of semantic
concepts within the analysis meta-model, (3) axioms that define relationships required
and prohibited among semantic concepts in the analysis meta-model, and (4) information
elicitation rules that can be used to obtain information not readily available from visual
representations of the analysis meta-model. For CODA to support a specific analysis
method, these four knowledge bases must be created. In the work discussed in this paper,
knowledge bases were built to support Concurrent Object-Based Real-time Analysis, or
COBRA [7]. The model analyzer, discussed in detail elsewhere [21-22], is described
briefly in Section 5.2.

The design generator uses design knowledge from CODARTS to transform an
annotated flow diagram into a concurrent design. The current paper focuses on the
design generator, highlighted in Figure 3, which consists of a design meta-model that
encodes the entities, attributes, and relationships available to construct instances of
CODARTS designs, and three knowledge bases that encode CODARTS design
heuristics, process constraints, and consistency and completeness constraints,
respectively. Section 5.3 describes the CODARTS design meta-model, the related
consistency and completeness constraints, and the characteristics of target environments,
as seen by CODA. Section 5.4 explains how CODARTS heuristics can be represented as
rule sets. Section 5.5 discusses how constraints from the CODARTS meta-model can be
represented as predicates, and how those predicates can be encoded as object-oriented
queries that can be applied to instances of CODARTS designs. Section 5.6 gives a brief
explanation of the techniques used to capture and access design rationale.

5.2 The CODA Model Analyzer. The starting point for CODA consists of a
data/control flow diagram represented using the syntactic elements of RTSA, as
illustrated in Figure 1. Before the CODA design generator can apply CODARTS
heuristics, the model analyzer, working together with the designer where necessary, must
classify the syntactical elements from RTSA flow diagrams as semantic concepts in
COBRA. To accomplish this task, the model analyzer depends upon a COBRA meta-
model, a concept classifier and axiom checker, and an information elicitor.

The COBRA meta-model, described elsewhere [21], comprises a taxonomy of
semantic concepts [23-24]. Each concept in the taxonomy can be constrained by a set of

0T

YA0D QuelsIssy S, 18ubisa@ 1UaJandu0) 10J 94N19311Y2ay [en1dasuo) g aanbi4

MODEL ANALYZER

COBRA Meta-Model

Concept Classifier

Axiom Checker

Information Elicitor

Data Flow Diagram/
Control Flow Diagram
(DFD/CFD)

DESIGNER
INTERACTIONS

DESIGN GENERATOR

Target
Environment &
Design
Guidelines

CODARTS Design Meta-Model

Design

Design-Generation Knowledge

Analyses

1

ANNOTATED DFD / CFD

See Figure 15 for an
Example DFD/CFD
[Annotations in Square

Brackets]

UNDERSTANDING THE PROBLEM MODEL

Design-Process Knowledge

Design-Checking Knowledge

A

Task
Behavior
Specification

Information
Hiding Module
Specification

SOFTWARE ARCHITECTURE
DIAGRAM

See Figure 16 for an
Example Software
Architecture Diagram

GENERATING THE CONCURRENT DESIGN

‘Awouoxe] ay1 Jo dol ayy 01 syed adueiayul S |je Buoje s1daouod aeipawBIUl dY)
10J pauljap swoixe |je Ajsnes 1snw Awouoxe) ayy ul 1daduod |ans]-Jea] yoe3 ‘[gz] swoixe

00/8¢/80 Wela

Draft 08/28/00

The actual classification of concepts on the flow diagram occurs through use of an
automated concept classifier [26]. The concept classifier developed for CODA consists
of a four-stage inference network [27], illustrated in Figure 4. The classifier examines
RTSA syntactic elements and classifies each as a concept in the COBRA taxonomy.
Figure 4 identifies the 36 leaf-level concepts in the COBRA taxonomy. Where ambiguity
exists during classification, the concept classifier consults the designer. Where the
designer cannot resolve the ambiguity, the concept classifier makes default decisions that
have been encoded in the classification rules as the most likely outcome in the particular
situation. To verify the work of the concept classifier, an axiom checker can ensure that
every RTSA element is properly classified as one of the 36 COBRA semantic concepts
shown in Figure 4, and can ensure that each concept satisfies all required axioms.

@

Designer Designer

Terminator A Stimulus/Response & Function A
Classifications Selections Information
v A 4 v
Terminator —p
Data Store —— " " .
RTSA Data Flow —! A Unclassified Transformation Unclassified | stimulus- | Unclassified | ambiguous-
i Concepts Concepts Concepts i
Syntactic Two-way Data Flow —¥ ¢y5cification P | Classiication P ,| Response P | Function

Classification Classification

Elements Event Flow —)
Data Transformation —p»

Control Transformation —»|

Stage One Stage Two Stage Three Stage Four
Classifications Classifications Classifications Classifications
Terminators Functions Data Flows Functions
Device Periodic Function Stimulus Asynchronous Function
Bxternal Subsystem Triggered Periodic Function Response Synchronous Function
User Role Enabled Periodic Function Triggered Asynchronous Function
Data ESL\:\IIS Enabled Asynchronous Function Triggered Synchronous Function

Output i Obje_cts :

Store Periodic Dewce_lnput ObJecg
COBRA Retrieve Asynchronous Device Input Object
Semantic Update Pa_sswe De_/lce Input Objgct
Concepts Event Flows Periodic DewcelOutput Object

Interrupt Asynchrt_)nous DeV|ce Output iject

Signal Passwe Dewce_ Output iject

Trigger Periodic Dewce_lo Objecg

Enable Asynchr_onous D_ewce 10 iject

. Passive Device |0 Object
Disable
Timer
Objects

Control Object
User-Role Interface Object
Subsystem Interface Object

Figure 4. An Automated Classifier for COBRA Semantic Concepts

The final component of the model analyzer elicits information from the designer,
where such information cannot be derived directly from a flow diagram. In addition,
newly classified concepts might require additional information in order to make
subsequent design decisions. For example, if a control flow is classified as a timer, a
positive period must be supplied for the timer. The information elicitor automatically
identifies when additional information is necessary, prompts the designer for the

11

Draft 08/28/00

information, and performs consistency checks on the information supplied. Figure 15
illustrates the output of the COBRA model analyzer for a fragment of a D/CFD for an
automobile cruise-control system.

5.3 The CODARTS Design Meta-Model. The CODARTS design meta-model
provides a basis for describing concurrent designs and for reasoning about those designs
using automated methods. The design meta-model also provides for traceability between
concurrent designs and elements of the data/control flow diagrams from which the design
is generated. In addition, the design meta-model allows design decisions and associated
rationale to be captured and organized automatically.

The CODARTS design meta-model consists of entities, attributes, relationships,
and constraints. The entities, attributes, and relationships can be visualized conveniently
using an Entity-Relationship (ER) diagram. The constraints cannot be shown in a visually
appealing form. One class of constraints restricts the possible mappings between
elements from a COBRA behavioral model and elements in a corresponding concurrent
design. The second class of constraints defines restrictions among relationships in a
concurrent design. These constraints permit instances of a design to be checked for
consistency and completeness.

Figure 5 illustrates the entities and associated attributes that compose the meta-
model for concurrent designs. The figure also shows some inheritance relationships
among those entities, and depicts two key relationships in which all design entities
participate. Every entity in the design meta-model is a named design element that
possesses a unique object identifier within a given design. Each design element can track
every decision made about it; thus, CODA captures design rationale, including the name
of the rule (see Section 5.4)
that executed the decision and
the specific actions taken to

- ecison update the design. In
addition, each design element

Priorty Queve oh (] pamotr | must trace from one (or more)
‘-/ \- specification element in a
| e | | oreen | COBRA meta-model;
:>Repegmes.gn ST | however, certain constraints,
Cinstance > 5 5 given in Table 1, restrict this
e D © rela:;[ionship to) those that

IsA ISA make sense. The remaining

i AN entities in Figure 5 depict the

cen | [wesse | semantic elements used in

CODARTS to describe

eervel concurrent designs. In

@

general, CODARTS designs
consist of three types of
entities: (1) repeatable design
elements, (2) directed design

Figure 5. E-R Model of Design Entities Composing the elements, and (3) auxiliary

CODARTS Design Meta-Model design elements. Repeatable
design elements include the

Queued Message

priority

Tightly-Coupled
Message

12

Draft 08/28/00

main structural elements of a concurrent design: tasks and information-hiding modules.
Directed design elements link together the structural components of a design. For
example, messages are sent between tasks. Two types of messages can be exchanged
between tasks: (1) queued messages and (2) tightly coupled messages.

Table 1. Constraints on Traceability from COBRA Behavioral Models to Concurrent

Designs
Design Element Traces from COBRA Semantic Concept(s)
Task Control or Data Transformation
Information Hiding Module | Data Store, Data Flow, Control or Data Transformation,
Two-Way Data Flow

Queue or Priority Queue Signal, Stimulus, Control or Data Transformation

Message or Message Data Control Event Flow, Internal Data Flow, Signal

Event Control Event Flow, Normally-Named Event Flow

Data External Data Flow

Operation Data-Store Data Flow, External Data Flow, Interrupt,
Transformation, Update

Parameter Control Event Flow, Data Store, External Data Flow,
Internal Data Flow, Signal

The "Tracks" and "Traces" relationships depicted in Figure 5 apply to every
design element. The "Tracks" relationship enables a history of design decisions to be
associated with each element in a design. Similarly, the "Traces" relationship enables
each design element to be associated with the flow-diagram symbols from which the
element is derived. Other semantic relationships between design elements are depicted
using a separate E-R diagram, shown as Figure 6. Entities with the same name on both
Figure 5 and Figure 6 represent the same design element, so the two E-R diagrams can be
understood as two different views of a more complex model. Each relationship in Figure
6 should be understood to be bi-directional, including both the relationship as shown and
its inverse. For the most part, the relationships shown in Figure 6 can be read intuitively.

Consider the relationships between Task and Message, as depicted on Figure 6. A
Task can send and receive many messages, and each message must be sent and received
by one Task. Further, a message may include Message Data, which carries information
between tasks. Messages may be of two types, a Queued Message, which can be sent
without causing the sending Task to block, or a Tightly Coupled Message, which causes
the sending Task to block until the receiving Task accepts the message. Some messages
require a reply, as depicted by the Answers relationship. Note that a Tightly Coupled
Message answers a message; thus, all replies cause the sending Task to block until the
receiving Task has accepted the reply.

While Figure 6 does depict cardinality constraints, more complex constraints do
not appear on the E-R diagram. For example, each module in a given design is either
contained in a task or is accessed by a task or another module. Such complex constraints
are represented as predicates that must hold for valid instances of the design meta-model.
These predicates, when expressed as knowledge-based queries, provide the design

13

Draft 08/28/00

generator with the knowledge needed to check designs for consistency and completeness
with respect to the design meta-model.

While many design decisions can be taken in the abstract, depending only on
concepts represented in the design meta-model, other design decisions must account for
specific characteristics of the target environment in which the design will execute. To
account for such characteristics, CODA enables the designer to specify, for instance, the
number of processors involved in a system, the type of inter-process communications
mechanisms available, and the number of available task priority levels.

@
N 1

N

N,N>0
— Event IHM Requires
N

N
N N N N

Operation
Generates N
1
1 N
N
Data N Reads
I Parameter

[
=z

Oorl

Priority Queue
Oorl
H Holds N Queued Message

1 N Message
Message @ Data

Tightly-Coupled
Message

Figure 6. E-R Model of Design Relationships Composing the CODARTS Design Meta-
Model

14

Draft 08/28/00

5.4 Design Generation Knowledge. Using the semantic concepts represented in the
COBRA meta-model and the CODARTS design meta-model, along with some
characteristics of the intended target environment, a human designer can apply various
heuristics from the CODARTS design method to produce a concurrent design from a
COBRA behavioral model. To automate design generation, heuristics from CODARTS
must be formulated as expert-system rules [28] that can reason about data/control flow
diagrams and evolving concurrent designs. The specific rules contained in CODA were
developed from a natural language description of CODARTS design heuristics [7]. Since
the requirements meta-model and the design meta-model were constructed from concepts
contained in COBRA and CODARTS, the CODA rules can express CODARTS
heuristics in terms relatively familiar to a human designer. Each rule consists of an if-
then construction, where the antecedent matches a pattern of concepts in the annotated
flow diagram, entities and relationships in the evolving design, or some combination.
Many rules proved to be very simple with only a single predicate in the antecedent. In
some rules, a conjunction of as many as ten predicates was required to correctly specify
the antecedent. Some complexity also arose associated with guiding the firing order when
multiple rules might be satisfied simultaneously. To address these situations, a careful
analysis of the CODARTS design process, as applied by human designers, identified
which design criteria should take precedence over other criteria. This knowledge was
encoded as six precedence levels. Each of the 126 design-generation rules was assigned
one of the six levels. By comparing the designs produced by CODA against designs
produced by human designers, as reported in the literature, the expert system rules were
tested for validity. Where differences appeared between the designs generated by CODA
and the designs reported in the literature, the reasons for the differences were identified
and analyzed. Section 7.3 provides more detail related to this validation.

The expert system rules that formalized the CODARTS design heuristics were
encoded as a partitioned repository of design-generation knowledge that the CODA
design generator uses to transform flow diagrams into designs. Each knowledge partition
corresponds to a step in the CODARTS design method: (1) Task Structuring, (2) Task-
Interface Definition, (3) Information-Hiding Module Structuring, and (4) Task and
Module Integration. The execution of these four knowledge partitions must meet the
process constraints imposed by the CODARTS design method. Task Structuring and
Module Structuring are independent activities that must both be completed prior to
integrating the task and module views. Task Structuring must be completed prior to
defining the interfaces between tasks. A more detailed discussion follows for each
knowledge partition.

5.4.1 Task Structuring Knowledge. Task structuring knowledge, as encoded for use
by the CODA design generator, consists of a sequence of four decision-making
processes: (1) identify candidate tasks, (2) allocate remaining transformations to tasks,
(3) consider task mergers, and (4) consider resource monitors. Each of these processes
consists of a set of production rules that search the flow diagram and the emerging design
for matching patterns. When a matching pattern is found, the associated rule is activated,
updating the emerging design according to actions specified in the rule. The first
decision-making process, consisting of 11 rules, applies CODARTS heuristics to identify
those transformations that can be allocated to input/output tasks and to internal tasks.
The second process, encompassing nine rules, applies selected CODARTS cohesion

15

Draft 08/28/00

criteria to allocate each of the remaining transformations to one or more of the tasks
identified during the first process. The third process, comprising eight rules, examines
the tentative task structure, applying additional CODARTS cohesion criteria to reduce the
number of tasks by merging tasks where appropriate. The final process, requiring only
two rules, identifies instances where a resource monitor task is needed to arbitrate access
by multiple tasks to a single device. A few examples, taken from a case study presented
in Section 5, will illustrate how CODARTS task structuring knowledge can be
represented as production rules.

Figure 7 shows how a transformation in a flow diagram model leads to the
generation of an input/output task. Figure 7 (a) shows a transformation, Cruise Control
Lever, activated by an interrupt. During preprocessing by the CODA model analyzer,
Cruise Control Lever was classified as an "Asynchronous Device Input Object”. Since
such an object inherits the characteristics of an "Asynchronous Device Interface Object”,
Cruise Control Lever satisfies the antecedent of the rule shown in Figure 7 (c). As a
consequence of this rule, Figure 7 (b) shows that an asynchronous-device input task, [task
A], is created and that a traceability link, [Traces], is established between the new task
and the transformation. Not shown in Figure 7, the decision and rationale are noted and
added to the design history for the new task. Using the rule
shown in Figure 7 (c) and two similar rules, the CODA design generator can identify all
transformations that lead to CODARTS input/output tasks. Eight additional rules are

A/[Traces]\A

[transformation T] [task A]

Cruise Cruise .

Control Control Cruise

Input Lever *'RControl >

equests
Lever -¥\ 114 q
__Interrupt
(a) Flow Diagram Fragment (b) CODARTS Design Fragment

transformation T is an Asynchronous Device Interface Object
then

if transformation T is an Asynchronous Device Input Object

then create an asynchronous device-input task A

elseif transformation T is an Asynchronous Device Output Object

then create an asynchronous device-ouput task A

else create an asynchronous device-input/ouput task A

fi

record the decision and rationale in the design history for task A

denote the traceability between the transformation T and task A
fi

(c) Task Structuring Rule - Asynchronous Device Interface

Figure 7. Heuristic for Generating an Input/Output Task

16

Draft 08/28/00

required to apply CODARTS criteria for structuring internal tasks.

Figure 8 describes one of the rules encoding the CODARTS criteria for identifying
internal tasks. Figure 8 (a) shows a transformation, Maintain Speed, which was
previously classified by the CODA model analyzer as an "Enabled Periodic Function®.
The rule defined in Figure 8 (c), matches transformations that are enabled and disabled
by a control object and that execute periodically when enabled. The rule in Figure 8 (c)
creates a task, shown as a design fragment in Figure 8 (b), and links that task to the

// [Traces] \A

[transformation T] [task P]

Current——
4 Speed
Desired

Speed —

> Speed
Timer < _

Throttle >

Value
a

Maintain

Speed Maintain

Speed
Task

EnableL

1.11.4
Disable

~

(a) Flow Diagram Fragment (b) CODARTS Design Fragment

transformation T is an Enabled Periodic Function
then
create an enabled periodic task P
record the decision and rationale in the design history for task P
denote the traceability between transformation T and task P
fi

(c) Task Structuring Rule - Enabled Periodic Algorithm
Figure 8. Rule for Generating an Internal Task

appropriate transformation from the flow diagram model.

Figure 9 illustrates how two CODARTS criteria, functional cohesion and temporal
cohesion, can be combined into a single rule that can merge tasks. When periodic tasks
of identical type (functional cohesion) exhibit identical execution intervals (temporal
cohesion) and each of those tasks represents a single instance, the tasks can be merged
into one task. Figure 9 (c) specifies the rule that recognizes when tasks can be merged.
Before the rule execution, Figure 9 (a), the design consists of two periodic device-input
tasks, each of which executes every 100 milliseconds. After the rule execution, Figure 9
(b), these tasks have been merged to form a single task.

5.4.2 Task-Interface Definition Knowledge. After determining the tasks in a
concurrent design, the CODA design generator can identify the subset of data and event
flows exchanged among the tasks and can then map those flows to specific
communication mechanisms between pairs of tasks. The CODARTS design method
provides guidelines for selecting appropriate interface mechanisms. These guidelines can
be represented as production rules encoded within five decision-making processes: (1)
allocate external interfaces, (2) allocate control and event flows, (3) allocate data flows,

17

Draft 08/28/00

(4) elicit message priorities, and (5) allocate queue interfaces. The first process,
consisting of five rules, creates the timer and interrupt events needed to activate particular
tasks, maps data flows between tasks and devices into appropriate input and output data,
and identifies the data and event flows exchanged between tasks. The second process,
requiring eight rules, decides how to allocate event flows and control flows that are
exchanged between tasks. Such flows can be allocated to software interrupts, to tightly
coupled messages, or to queued messages. The third process uses 12 rules to map data
flows onto either tightly coupled messages or queued messages. The fourth process has
one rule that allows an experienced designer to indicate the relative priority of multiple
messages arriving at specific tasks. The final process decides upon appropriate interfaces
to receive queued messages. Such decisions depend upon the type of mechanisms
available in the target environment and upon the priorities assigned when multiple
gueued messages arrive at a single task. Some examples will show how the CODARTS

[task T3 then task T1]

Monitor
Brake Sensor
Task

text E
[task T2]

100 ms.

ftask T3]

Monitor
Auto Sensors
Task

Monitor
Engine Sensor
Task

(a) Design Frament before Rule (b) Design Frament after Rule
Execution Execution

task T1 is a periodic device-input task or a periodic device-output task
or a periodic device-1/O task or a periodic internal task and
task T2 is of identical type to task T1 and
both tasks, T1 and T2, have a cardinality of one and
tasks T1 and T2 have identical periods
then
combine task T1 and task T2 into a single task T3
record the decision and rationale in the design history for task T3
fi

(c) Task Structuring Rule - Periodic Tasks with Identical Periods
Figure 9. Rule Applying Functional and Temporal Cohesion to Merge Two Tasks

guidelines can be encoded as production rules.

Figure 10 illustrates one rule for mapping an event flow onto a queued message
exchanged between two tasks. The rule, defined in Figure 10 (c), recognizes the case
where an event flows from a device-input object in one task to a control object in another
task. In such cases, provided that the control object is not locked in one state awaiting
the incoming event, the event flow can be mapped onto a queued message that is sent by
the device-input task and received by the control task. One such case is shown in Figure
10 (a), where a periodic device-input task, Monitor Auto Sensors, traces to a periodic
device-input object, Engine, that sends an event flow, Engine Off, to a control object,
Cruise Control, that traces to a control task of the same name. After the execution of the
rule given in Figure 10 (c), the CODA design generator updates the design fragment, as
illustrated in Figure 10 (b), to include a new queued message, Sensor Status Message,

18

Draft 08/28/00

and two appropriate relationships, "Sends" and "Receives”. In addition, the design
generator records the traceability between Engine Off and the new Sensor Status
Message, along with the decision and rationale. Once a message exists, additional event
flows, such as Engine On in Figures 10 (a) and (b), between the same set of tasks are
allocated as event types in a parameter of the message.

- T~ [control object CO]

an%'tne L Engine On . /Cruise,

mnput_, - & Control |

/

Poion S "N1.1.1.
.1 secs ~ - -7

- -
-

~~-____Engine Off -~

[Traces] = ~ 2 [Traces]
[signal S]
Monitor .
Auto Cruise
.1 secs Sensors Control
Task Task
[task P] [task C]

(a) Design Fragment Before Rule Execution

- ~~~._ [control object CO]

Engine - i ~ i
Inp%t //// Englne On \\\ ///CrUIse\\\
> 4 Control |
. / //’\;L.l.l.:L/
.1 secs e . - by
S~ Engine Off __-~
———_ T - [Traces]
[signal S]
Monitor [Traces]

Auto
Sensors
Task

Control

.1 secs
Task

Sensor Status Message
[task P] _ [sends] [9ueyed mew [task C]

(b) Design Fragment After Rule Execution

task P sends a signal S to task C and

the sink of signal S is a control object CO and

control object CO is not blocked waiting for signal S and

task P is a periodic or asynchronous device input task and

task C is a control task and

the source of signal S is a Periodic or Asynchronous Device Input Object
then

create a queued message M from task P to task C

establish the design relationship task P sends message M

establish the design relationship task C receives message M

denote the traceability between signal S and message M

record the decision and rationale in the design history for message M
fi

(c) Task Interface-Definition Rule - Event Flow Creates Queued Message

Figure 10. Rule to Map Event Flow to a Queued Message

Figure 11 (a) depicts a design fragment where one task, Cruise Control, receives
gueued messages from three sending tasks. In order to ensure that no incoming messages
are lost and that each message is processed in an appropriate order, Cruise Control
requires a queue to hold arriving messages. Figure 11 (c) defines one rule that generates
a queue in a specific circumstance. When a task receives multiple queued messages at
the same priority and the target environment provides message queues, a queue can be

19

Draft 08/28/00

created to hold the incoming messages until the receiving task can consume them, as
illustrated in Figure 11 (b). An alternative mechanism can be selected using a different

rule when the target environment does not provide message queues.

Monitor Auto Sensor Event
Auto
Sensors [receives]
[queued message]

Monitor . Crui
Cruise Cruise Control Lever Event ruise

- > Control
Control [queued message] [receives] Task

Lever

Speed
Control

(a) Design Fragment Before Rule Execution

Reached Cruising

[receives] [task C]

[queued message]

Cruise Control
[holds] \ Events

[queue Q]

Monitor Auto Sensor Event
Auto

Sensors [queued message

receives]

Cruise Control Lever Event
[queued message]

Cruise
Control
Task

Monitor
Cruise
Control
Lever

[receives]

[receives]
[holds]

Reached Cruisin
Speed
Control

(b) Design Fragment After Rule Execution

[task C]

[holds]

[queued message]

[consumes]

task C receives queued messages at a single priority and
message queues are available in the target environment
then
create a queue Q for task C
establish the design relationship task C consumes queue Q
record the decision and rationale in the design history for queue Q
for each queued message M to task C
establish the design relationship queue Q holds message M
record the descision and rationale in the design history for queue Q

rof

(c) Task Interface-Definition Rule - Use Single Priority Queues to Order Messages

Figure 11. Rule to Allocate a Message to a Queue

While many event flows and data flows can be mapped to queued messages, the
CODARTS guidelines identify some situations requiring the use of tightly coupled

messages. These guidelines can also be represented using production rules.

20

Draft 08/28/00

5.4.3 Information-Hiding Module Structuring Knowledge. The CODARTS design
method permits a designer to define information-hiding modules from a flow diagram
model. This activity, called module structuring, can be carried out independently from
the structuring of tasks. The CODA design generator provides support for module
structuring by encoding CODARTS module-structuring guidelines into six decision-
making processes: (1) identify candidate modules, (2) allocate functions to data-
abstraction modules, (3) allocate remaining transformations to modules, (4) allocate
isolated elements to modules, (5) consider combining modules, and (6) determine module
operations. The first process contains seven rules that identify nodes on a flow diagram
that can be allocated to software modules. The second process consists of five rules that
find specific transformations that can be mapped to functions provided by data-
abstraction modules created during the first process. The third and fourth processes, each
consisting of three rules, determine how to map the remaining transformations and data
stores to software modules, either allocating each node to an existing module or to a new
module. The fifth process, available only to experienced designers, contains one rule to
identify situations in which a designer might prefer to combine software modules in the
emerging design. Each such situation is referred to the designer for a decision. The final
process, requiring 21 rules, determines the specific operations provided by each module
in the design, along with the parameters required by each operation. Two examples
illustrate how CODARTS module-structuring guidelines can be represented as
knowledge-based rules.

Figure 12 (c) gives a rule that encodes one of the CODARTS heuristics used to
identify an information-hiding module from nodes in a flow diagram model. In this case,

Traces] as shown in Figure 13

/ \ (a), any data store, such
as Desired Speed, which

[node N] o [data- abstraction module D] is accessed by multiple
“g?;gg;;'” Desired transformations, such as
1114 Speed Clear Desired Speed,
Maintain Speed, and

Select Desired Speed,
serves as the basis for a
data-abstraction module.
As a result of executing
this rule on the flow

Clear
Desired
Speed

1113

Desired
Speed

Select
Desired
Speed

1112

(a) Flow Diagram Fragment (b) Design Fragment diagram fragment shown
in Figure 13 (a), the
if node N is a data store and CODA design generator
node N is accessed by multiple transformations produces the design

then . .
create a data-abstraction module D fragment illustrated in

record the decision and rationale in the design history for module D i i

denote the traceability between node N and module D Figure 13 (b) and links
fi the data store to the new
data-abstraction module.
(c) Module Structuring Rule - Data-abstraction Module Other CODARTS

heuristics lead to similar
Figure 12. Rule to Identify a Data-Abstraction Module rules for identifying

21

Draft 08/28/00

device-interface modules, user-interface modules, subsystem-interface modules, state-
transition modules, function-driver modules, and algorithm-hiding modules. After the
initial software modules are identified, another handful of rules can be used to allocate

[transformation T] [transformation T]
// \\\ /// \\\
7 \ / h
// . \\ Ve N
i Cruise \) / Cruise
|
»\ Control /J ! Control /«’
Wliiroo ‘1111)
\\ // \\ //
| Trigger '
| Trigger 2,

| | E
[function F] Y [function F]

Select Select
Dggggg Current Desired Current Desired
1112 Speed Speed Speed Speed [operation O]
Desired 1112 Select Desired
Speed Speed
[Data-abstraction
[Data-abstraction Module]
Module] rovides
[Traces]/ [P]
[module M] [Tfacesl\o/,[module M]
(@) Initial Flow Diagram Fragment and (b) Updated Flow Diagram Fragement
Design Fragment and Design Fragment
if module M is an algorithm-hiding module or a function-driver module or a

data-abstraction module and

function F traces to module M and

((function F recieves a trigger or enable or stimulus or signal from
transformation T and transformation T does not trace to module M) or
(function F does not receive any trigger or enable or stimulus or signal))

then
create an operation O with the same name as function F

denote the traceability between function F and operation O
establish the design relationship module M provides operation O
record the decision and rationale in the design history for module M
fi
(c) Module Structuring Rule - Define Operation From External Function

Figure 13. Rule to Create a Module Operation

any remainin